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ABSTRACT 
 
Inertial Navigation Systems (INS) are critical for a wide range of applications due to their ability to 

provide reliable navigation information, even without external references. This paper presents a 

comprehensive study of the modeling of low-cost INS sensors and their inherent errors, focusing on how 

these errors impact the accuracy of the system's localization outputs. A MATLAB-based simulation 

platform was developed to analyze the effects of common sensor errors on position, velocity, and attitude 
over time. The experimental results show that these errors accumulate, leading to significant deviations 

from the true trajectory. Notably, the maximum positional error in the upward direction reached 65 meters 

by the end of the simulated trajectory, while the velocity error in the same direction deviated by 0.8 m/s. 

Initially, the estimated trajectory closely followed the reference path, but as the simulation progressed, a 

substantial divergence occurred, highlighting the cumulative impact of sensor errors. These findings 

underscore the necessity of advanced error mitigation techniques to enhance the long-term accuracy and 

reliability of INS in practical applications. 
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1. INTRODUCTION 
 

During the last two decades, the utilization of navigation sensors has observed a significant 
demand in many areas especially in land vehicle applications [1]. These sensors can be used 

separately or in combination to improve navigation. They include LiDAR (Light Detection and 

Ranging) sensors [2] [3], GPS (Global Positioning System) [4], and Inertial Measurement Units 

(IMUs) [5] [6]. Historically, The GPS is recognized as the most accurate navigation system, 
making it a crucial component for several navigation systems used in intelligent technologies 

such as drones and land vehicles. However, GPS can provide location information only when the 

receiver has a connection to four or more satellites [7]. To put it more simply, the system's 
performance is compromised in an urban environment due to signal blockage or attenuation, 

which can significantly degrade the accuracy of positioning [8].  

 
Nowadays the majority of navigation systems combine two or more complementary positioning 

technologies to provide high precision for the smart system’s three-dimensional position and 

velocity [9]. One of the proposed solutions to overcome the issue of satellite signal degradation in 

urban environments is to fuse GPS data with inertial systems using various approaches, including 
Kalman filter GPS/INS integrated system [10][11][12], GPS/INS integration based on Extended 

Kalman filter [13][14][15] and Neural-Kalman GNSS/INS navigation [16]. most of these 

approaches, simulate navigation in urban environments where the blockage of GPS signals occurs 
[8]. Indeed, the inertial navigation unit is utilized to provide positioning information in the 
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absence of satellite systems. However, with inexpensive inertial sensors with elevated noisy 
outputs, the inertial navigation system will rapidly diverge during GPS outages, leading to a 

significant decrease in navigation precision. 

 

This paper will detail the common errors confronted in inertial navigation systems. These errors 
result from many factors, including drifts, bias, and scale factors. These errors tend to degrade the 

accuracy of the system’s navigation, especially during outages of external references such as GPS 

signals. A comprehensive and precise modeling of these errors is essential for effective 
correction, crucial to verifying inertial navigation across various applications. We present a novel 

approach by developing a comprehensive simulation platform for INS systems. Unlike traditional 

methods that require the purchase and integration of physical sensors for testing and validation, 
our platform allows for the complete simulation of INS behavior under various conditions. This 

approach offers several key advantages: 

 

 Cost Efficiency: By eliminating the need for expensive sensor hardware, our platform 
significantly reduces the costs associated with INS system development and testing; 

 Flexibility: The platform allows for easy modification and testing of different sensor 

models, error characteristics, and environmental conditions without the need for physical 
alterations or multiple hardware setups; 

 Rapid Prototyping and Testing: Developers can quickly iterate on different INS 

designs and error mitigation strategies, accelerating the development process and 
enabling more comprehensive testing across a wide range of scenarios; 

 Scalability: The platform can simulate large-scale scenarios involving multiple sensors 

and complex environments, which would be challenging and costly to replicate with 

physical systems; 
 Educational and Research Utility: The simulation platform serves as a valuable tool for 

educational purposes and for researchers who require a controlled environment to study 

INS behavior and develop new algorithms without the need for specialized equipment. 
 

This paper is structured as follows: The first section is the introduction, which provides a brief 

description of the inertial navigation system (INS) and its various applications, highlighting the 

importance of such systems in modern technology. Section 2 offers a summary of existing works 
through a literature review, identifying research gaps and challenges that this work seeks to 

address. Section 3 discusses our proposed INS model, covering the modeling of the IMU, the 

modeling of INS errors, and the mechanization process for estimating navigation information. 
Section 4 presents our proposed approach. Section 5 describes the experimental setup realized in 

the Matlab environment. Section 6 presents the simulation results, applying our model to a 

reference trajectory and analyzing the outcomes. Section 7 concludes the paper by summarizing 
key findings. Finally, section 8 discusses future directions for expanding this research. 

 

2. EXISTING WORKS  
 

2.1. Literature Review  
 

In recent years, numerous studies have focused on mitigating errors in Inertial Navigation 

Systems (INS) by utilizing real INS units. Researchers have explored a variety of approaches, 
including the enhancement of sensor accuracy, the development of advanced filtering algorithms, 

and the integration of INS with other navigation systems like GPS. The authors of [17] analyzed 

the limitations of physical IMUs in dynamic environments, where motion-dependent errors 
accumulate, emphasizing the difficulty of maintaining accuracy without extensive corrections. 

Similarly, in [18] the authors highlighted the susceptibility of physical INS units to error 
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accumulation during GPS signal loss, demonstrating how neural networks can assist but still 
depend on the initial physical IMU accuracy. The researchers of [19] focused on sensor biases, 

revealing how physical IMUs' inherent drift leads to significant long-term errors without external 

correction. In [20] the study underscores the challenges of relying on physical IMUs for sensor 

fusion, particularly in dynamic environments where errors from physical sensors can be difficult 
to mitigate. The work on [21] explores a gyro-free approach but notes that physical 

accelerometers still face noise and environmental sensitivity challenges. Meanwhile, [22] 

highlights the limitations of physical laser INS systems, particularly their susceptibility to 
environmental noise and drift, which improved filtering techniques aim to mitigate. In [23] the 

researchers examined the extreme conditions of aerobatic flight, showcasing the pronounced 

limitations of physical INS units during high-dynamic maneuvers where complex correction 
algorithms are necessary. In [24] the study addressed the variability in physical INS units' 

performance, showing how multi-INS strategies can reduce but not fully eliminate 

inconsistencies without simulation tools. These traditional approaches to studying and mitigating 

these errors often involve using physical INS units, which can be costly, inflexible, and limited to 
the specific grade of the hardware available. 

 

2.2. Research Gaps and Challenges 
 

While inertial navigation systems offer promising solutions to mitigate several primary 

limitations of wireless-based navigation systems such as GPS and Galileo—especially in 
scenarios where satellite signals are intentionally or unintentionally blocked—there remain 

significant research gaps and challenges. Precise navigation estimation, relying on both signal-

based systems and proprioceptive sensors, is crucial for effective integration. Various 
methodologies have emerged in recent years; however, they often suffer from limitations 

explained below. 

 

 The primary challenge is the high cost of traditional INS systems, particularly high-grade 
INS, which can be prohibitively expensive for many research laboratories; 

 The complexity and time required to install, configure, and re-deploy these systems 

across different vehicles hinder experimental flexibility; 

 The bulk and size of physical INS units may also restrict their deployment in smaller or 

unconventional platforms; 

 The wear and tear from repeated use of real INS units can degrade performance over 

time, increasing maintenance costs and introducing variability into experimental results. 
 

Hence, the development of a platform combining both the modeling of INS and their inherent 

errors is presented in this work. This approach aims to address the cost and operational barriers 
by offering a more flexible and scalable solution that incorporates the accuracy of INS modeling 

while considering the typical errors.  

 

2.3. Benefits of a Simulation Platform for INS Modeling 
 

The reviewed literature highlights the challenges associated with using real INS for various 
applications, particularly in terms of cost, flexibility, and the ability to simulate different 

environments and sensor grades. By offering a simulation platform, our approach addresses these 

challenges, providing a cost-effective and flexible tool for researchers and engineers. The ability 

to adjust error parameters allows for the simulation of different grades of INS, enabling more 
comprehensive studies without the need for multiple physical systems. This flexibility makes 

simulation an attractive alternative to physical INS, especially for early-stage research and 

development. 
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This simulation technology offers a promising alternative by providing a platform where the 
inherent errors of INS can be modeled and manipulated virtually. This approach allows 

researchers and engineers to simulate different grades of INS by adjusting error parameters such 

as bias instability, scale factor errors, and noise characteristics without the need for multiple 

physical units. The flexibility of such a platform enables comprehensive analysis across a wide 
range of scenarios, making it an invaluable tool for both research and development. 

 

3. INS MODELING  
 
An inertial navigation system (INS) consists of two main parts: the inertial measurement unit 

(IMU) and the calculation unit. The IMU contains three gyroscopes and three accelerometers, 

covering the three dimensions, and providing raw sensor data. The calculation unit then uses 

these IMU measurements to estimate critical navigation information such as attitude, velocity, 
and position. This section details the development of our custom IMU model, including the 

accurate modeling of the gyroscopes and accelerometers. Additionally, it addresses the modeling 

of key errors that negatively impact the performance of these sensors, such as bias, noise, and 
scale factor errors. Finally, we describe the INS mechanization process, which is responsible for 

translating the IMU data into precise navigation estimates.  

 

3.1. IMU Modeling   
 

The chosen IMU to simulate is composed of three accelerometers and three gyroscopes. Thus, 
this simulation involves determining accelerations and angular velocities from 3D positions along 

the X, Y, and Z axes. The 3D positions are generated by a MATLAB code that simulates a 

vehicle’s trajectory. In this study, the ENU frame (East, North, Up) is used to express the IMU 
modeling equations. In the following, the ENU coordinate system will adopted as the navigation 

frame, also referred to as the n-frame. The body frame (b-frame) is situated at the center of the 

IMU. The IMU modeling equations in the n-frame are given by the following equations (1, 2, 3):  
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Table 1 summarizes the components of the equations above:  

 
Table 1.  The factors in the equations (1), (2), and (3). 

 
Element of the equations Meaning 

[φ, θ, ψ] Angles of Euler 

[x, y, z] 3D position in the ENU frame 

t Time 

[p, q, r] Angular velocity 

[ ,  , ] Time derivative of the Euler angles 

[fx, fy, fz] 3D linear acceleration  

b

n
C

 
Transformation matrix from navigation frame 

to body frame 

n

b
C

 
Conversion matrix from body frame to ENU 

frame 

 

3.2. IMU Errors Modeling   
 
Certainly, the inertial navigation system provides a very high level of navigation availability 

compared to the GPS, given that it is embedded in the vehicle. However, several types of errors 

affect this system, namely: Bias, scale factor error, and noise. The following equations (4, 5) 
illustrate our modeling of the aforementioned errors:  

(1 )*measured gyroscope true gyroscope gyroscopeSF b        (4) 

(1 )*measured accelerometer true accelerometer accelerometera SF a b      (5) 

 

Where 

measured
 is measured by angular rate, 

true
 is true angular rate, 

gyroscopeb
 is the gyroscope bias,  

gyroscope
 is the gyroscope noise,  

gyroscopeSF
 is the gyroscope scale factor, 

measureda
 is measured by linear acceleration, 

truea
 is true linear acceleration, 

accelerometerb
 is the accelerometer bias,  

accelerometer
 is the accelerometer noise,  

accelerometerSF
 is the accelerometer scale factor. 
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INS systems are utilized in several applications, so various grades of these systems are found on 
the market. These grades include consumer, industrial, tactical, and navigation. The table below 

shows the typical parameters for different grades of available inertial sensors. There exist other 

errors that influence the accuracy of dead-reckoning navigation using INS are not taken into 

consideration in this paper, including misalignments, temperature dependencies, and gyro g-
sensitivity. The process of IMU modeling within the body frame is shown in Figure 1. This figure 

provides a visual summary of the IMU modeling process in our simulation. The developed 

platform allows us to adjust the values of the errors, either increasing or reducing them, to 

simulate different scenarios and assess their impact on system performance.  

 

 
 

Figure 1.  Our process of IMU modeling within the body frame 

 

This paper focused primarily on the main INS errors, such as bias, noise, and scale factor, as 

these are the most significant contributors to overall system error. Temperature-induced drift, 
misalignment errors, and g-sensitivity were not included in the current model due to their 

relatively lower impact on the specific application scenarios we examined. However, future work 

will consider integrating these additional error sources to create a more comprehensive error 

model, particularly for environments where such factors are expected to influence INS 
performance more significantly. 

 

3.3. INS Mechanization  
 

The INS mechanization equations are utilized to derive navigation solutions—namely position, 

velocity, and attitude—from the measurements provided by inertial sensors, which include 
specific acceleration and angular rate. In this study, these mechanization equations are formulated 

within the ENU (East-North-Up) coordinate system, where the x-axis points East, the y-axis 

points North, and the z-axis points Up. Here, the ENU coordinate system serves as the navigation 
frame (n-frame). The body frame (b-frame), on the other hand, is centered at the INS. The 

dynamic equations governing the n-frame are expressed as shown in equation (6) [17, 25]. 
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Table 2 summarizes the components of the equations (6):  
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Table 2.  Equation (6) components. 
 

Element of the equations Meaning 
nv  Acceleration in the ENU frame 
b
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C

 Conversion matrix from b-frame to ENU frame 

 

The INS mechanization in the navigation frame is shown in Figure 2, adopted from [18, 26]: 
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Figure 2.  Mechanization of INS in the ENU frame 

 

4. PROPOSED APPROACH  
 

Our novel approach to modeling inertial navigation systems (INS) and their inherent errors is 
based on two fundamental components: accurate modeling of accelerometers and gyroscopes, 

and the exploitation of mechanization equations. The modeling process is carried out in a series 

of well-defined steps to ensure precision and adaptability. The first step involves generating the 
reference trajectory of a vehicle using MATLAB code. This trajectory is comprised of 3000 data 

points with coordinates X, Y, and Z in the ENU (East-North-Up) frame. The vehicle’s movement 

along this trajectory is not uniform; instead, its velocity varies as a result of acceleration and 
deceleration, allowing the model to simulate realistic dynamic behavior. This variability 

introduces a level of complexity that mimics real-world conditions, enhancing the robustness of 

the INS model by ensuring that it can handle changes in motion effectively. 

 
The second step is dedicated to the detailed modeling of the six sensors that constitute the inertial 

system—three accelerometers and three gyroscopes. This sensor modeling captures the essential 

outputs of the system, namely accelerations in the body frame and angular rotations, which are 
critical for navigation computations. Once the sensor data is obtained, INS errors are intentionally 

added to the system outputs in the third step. The flexibility of our platform allows these errors to 

be varied dynamically without requiring any physical alterations to the system itself. This 

capability represents a significant advantage, as it facilitates a wide range of simulation scenarios 
by enabling the modification of error values to represent different operating conditions. Finally, 
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the mechanization equations of the INS are employed in the last step to process the sensor data 
and generate the 3D navigation data. This output provides comprehensive information about the 

vehicle's position and orientation over time, making our platform a powerful tool for studying 

and simulating the behavior of INS in a variety of environments. 

 
Figure 3 provides a comprehensive visual representation and detailed explanation of our 

proposed method for modeling inertial navigation systems (INS) and their inherent errors. It 

illustrates each stage of the process, beginning with the generation of a reference trajectory, 
followed by the modeling of the accelerometers and gyroscopes, the addition of varying INS 

errors, and culminating in the application of mechanization equations to produce 3D navigation 

data. The figure serves as a step-by-step guide that outlines the flow of data and the interaction 
between the different components of the system, highlighting the flexibility and adaptability of 

our platform in handling various error conditions without the need for physical modifications to 

the hardware. 

 

 
 

Figure 3.  Visual representation of our proposed method for modeling INS 

 

5. EXPERIMENTAL SETUP  
 

The simulation scenario focuses on modeling the behavior of an inertial navigation system (INS) 
within an urban transport setting. The trajectory used for this simulation was carefully designed 

to replicate the complex motion of a vehicle navigating through an urban environment. It consists 

of a path that incorporates both straight segments and curved turns, reflecting the typical layout 
of urban streets, intersections, and roundabouts. The trajectory is composed of 3000 data points, 

defined by X, Y, and Z coordinates in the ENU (East-North-Up) frame, allowing for accurate 

representation of 3D movement. 
 

The vehicle's motion along this trajectory is not constant; instead, its velocity varies as the 

vehicle accelerates and decelerates at different points, simulating the real-world conditions of 

urban traffic, such as stops at traffic lights, turns at intersections, and variations in speed. These 
velocity changes introduce complexity in the dynamic behavior of the system, providing a 

realistic challenge for the INS. Additionally, the trajectory accounts for elevation changes, which 

are often present in urban environments due to bridges, tunnels, or uneven terrain. 
 

This trajectory serves as the foundation for evaluating the performance of the INS, allowing us to 

observe how well the system can navigate through a diverse range of urban transport conditions, 
where signal degradation or loss (due to buildings or tunnels) may occur. The variability in the 
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path, coupled with the ability to dynamically adjust sensor errors, enables a thorough simulation 
of urban navigation challenges. 

 

Figure 4 provides a detailed visual illustration of the reference trajectory used in the simulation, 

presented in both 2D and 3D perspectives. The 2D view offers a clear representation of the 
vehicle's movement along the X and Y axes. In contrast, the 3D view adds depth to the trajectory 

by incorporating the Z axis, which represents the elevation changes that occur throughout the 

vehicle's journey. This perspective allows for a more comprehensive visualization of the vehicle's 
motion in all three dimensions—highlighting variations in altitude, such as uphill and downhill 

segments, bridges, and underpasses that are common in urban settings. 

 

 
 

(a) 

 

 
 

(b) 

 
Figure 4.  Overview of the ground truth involving both straight and curved paths in 2D (a) and 3D (b) 

 

The performance characteristics of the simulated IMU adopted in this paper are presented in 
Table 3 below.  
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Table 3.  Performance characteristics of the simulated IMU compared to real IMU 

 
IMU Real IMU Simulated IMU 

Output data rate  From 100 Hz to 1 kHz 100 Hz 

Warm-up time around 1 to 5 seconds 5 seconds 

Gyroscopes  

Scale factor  1% to 5% 5% 

Bias 10° to 100°/hour 100°/hour 

Noise  0.01 to 0.1°/s/√Hz 0.1°/s/√Hz 

Accelerometers  

Scale factor  0.1% to 1% 1% 

Bias 100 to 1,000 µg 1,000 µg 

Noise  100 to 500 µg/√Hz 500 µg/√Hz 

 

6. SIMULATION RESULTS & VALIDATION  
 

During the experiment setup, the values of errors impacting the INS are adjusted according to the 

values shown in Table 3. 
 

6.1. Errors in Positioning 
 

As shown in Figure 5, the errors in position estimated by the INS grow exponentially over time, 

particularly in the east, north, and up directions. These errors are proportional to the duration of 

the trajectory, with specific deviations calculated at the end of ground truth. For example, the 
errors reach 4 meters in the east direction, about 14 meters in the north direction, and as much as 

65 meters in the up direction. The up direction experiences the largest error due to fluctuations in 

the gravity field, which significantly affect altitude estimation, leading to higher deviations 
compared to the horizontal directions. 

 

 
 

(a) 
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(b) 

 

 
 

(c) 

 
Figure 5.  INS positioning error in East (a), in North (b), and Up (c) 

 

6.2. Errors in Velocity 
 

Figure 6 illustrates the calculated velocity errors by comparing the estimated values with the 
reference values obtained from the reference trajectory. It is evident that these errors not only 

affect position but also velocity, leading to the accumulation of deviations over time, similar to 

what is observed in position errors. The velocity errors follow a pattern where the east direction 
exhibits the smallest errors, followed by the north direction, while the largest errors are recorded 

in the up direction. The magnitude of errors in the up direction reaches 0.12 m/s at its maximum 

during the trajectory. However, the magnitude of velocity errors is not as pronounced as in the 

position errors, because velocity is derived by differentiating position concerning time, which 
smooths the impact of positional deviations. 
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(a) 
 

 
 

(b) 

 

 
 

(c) 

 
Figure 6.  INS velocity error in East (a), in North (b), and Up (c) 
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6.3. Errors in Attitude 
 

Figure 7 illustrates the errors in attitude estimation for roll, pitch, and yaw angles, which are 

essential for the overall accuracy of the inertial navigation system. These errors accumulate over 
time due to inherent sensor inaccuracies and misalignments. As depicted, roll and pitch errors are 

relatively modest, with maximum deviations at the end of the trajectory of 0.02 degrees and 0.05 

degrees, respectively. In contrast, yaw angle errors are more pronounced, particularly over this 
extended trajectory, with a maximum deviation of 0.08 degrees at the end of the estimated 

trajectory. This larger yaw error is attributed to increased susceptibility to gyroscope drift. 

 

 
 

(a) 
 

 
 

(b) 

 

 
 

(c) 

 
Figure 7.  INS attitude error in Roll (a), in Pitch (b), and Yaw (c) 
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As shown in Figures 8 and 9, the estimated trajectory closely followed the reference path for a 
short time at the beginning. However, as time progressed, the trajectory began to deviate 

significantly from the reference, ultimately leading to a substantial discrepancy between the two 

paths by the end of the simulation. This divergence illustrates the cumulative impact of sensor 

errors on the accuracy of the INS over time, emphasizing the need for effective error mitigation 
strategies to ensure reliable navigation performance over extended periods. 

 

 
 

Figure 8.  The ground truth and the estimated trajectory by the INS in 2D 

 

 
 

Figure 9.  3D overview of the reference and the estimated trajectory 

 
The results depicted in Figure 10, which shows a zoomed-in view of the beginning of the 

trajectory, reveal that the reference trajectory and the one estimated by the INS are almost 

indistinguishable, indicating that the errors at this stage are negligible and do not exceed 0.5 

meters in the north direction. However, Figure 11, also a zoomed-in view, focuses on the 
endpoint of the trajectory, where a significant divergence between the reference and the INS-

estimated trajectory is evident. The errors in the east and north directions reach 22 and 35 meters, 

respectively. This divergence is primarily due to the accumulation of errors in the INS over time, 
a common issue with inertial navigation systems as small errors in velocity and orientation can 

compound, leading to substantial positional drift. The greater error in the north direction 

compared to the east is likely due to the specific alignment of the INS sensors or the movement 
dynamics, which can cause more significant drift along one axis depending on the trajectory and 

external forces experienced during the navigation process. 
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Figure 10: Zoomed-In view of the initial trajectory: close alignment between ground truth and ins-
estimated trajectories 

 

 
 

Figure 11: Zoomed-In view of the final trajectory: significant divergence between ground truth and ins-

estimated trajectories due to error accumulation 

 

The results demonstrate the impact of cumulative errors on the INS. In the initial phase of the 
trajectory, the close alignment between the reference and INS-estimated paths indicates minimal 

error. However, as the trajectory progresses, the divergence becomes significant, particularly in 

the north and east directions. This growing disparity highlights the inherent limitation of INS in 

long-duration operations, where small sensor errors accumulate over time, leading to substantial 
positional drift. These findings underscore the need for robust error correction mechanisms, such 

as sensor fusion with external data sources or the integration of machine learning models, to 

enhance INS accuracy and reliability in real-world applications. 
 

6.4. Validation  
 
To validate the accuracy of our simulation platform, we compared the simulated INS trajectory 

with real-world INS data obtained from a similar setup documented in previous work. Figure 12 

illustrates a divergence between the reference trajectory and the trajectory estimated by the INS 
in the real world, which closely mirrors the behavior observed in our simulation results. This 

comparison demonstrates that our simulation platform effectively replicates the error patterns 
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seen in real-world INS systems, providing confidence in the platform's ability to accurately 
model the behavior of actual inertial sensors under various conditions. 

 

 
 

Figure 12: Real-world reference trajectory and INS solution trajectory, kindly taken from [27] 

 

7. CONCLUSION  
 

In this paper, we introduced the Inertial Navigation System as a pivotal system in various 

applications due to its high availability and reliability, even in environments where other 
navigation systems may fail. The modeling of INS sensors, along with their inherent errors, was 

thoroughly discussed to provide a comprehensive understanding of the factors that influence 

system accuracy. We developed a MATLAB-based simulation platform to quantify the impact of 

the most common errors encountered in inertial sensors on the localization information provided 
by such a system. Our experiments demonstrate that these errors increase and accumulate over 

time, significantly affecting navigation information, including position, velocity, and attitude. 

Specifically, the maximum error in the upward position direction reached 65 meters by the end of 
the estimated trajectory, indicating a substantial impact on position accuracy. Additionally, the 

velocity exhibited a slight deviation, reaching 0.8 m/s in the upward direction. These findings 

underscore the critical need for error modeling and mitigation in INS to maintain accuracy, 
especially over extended periods of operation.  

 

8. FUTURE WORK 
 

In future work, we plan to mitigate these errors by employing artificial intelligence approaches to 
develop a predictive model capable of accurately identifying and quantifying various sources of 

error in the inertial sensor information. This model will implement correction algorithms 

designed to minimize these errors in real-time at the output of such systems. A brief review of 
potential error mitigation techniques highlights several methods currently available in the 

literature. These include integrating inertial navigation systems (INS) with satellite-based systems 

like GPS or GNSS using Kalman filters, which help both to correct INS errors and to overcome 

GPS outages. The use of different types of Kalman filters, from standard KF to more advanced 
variants like the Unscented Kalman Filter (UKF), is well documented. Additionally, integrating 

INS with odometry or LiDAR systems provides further error correction capabilities. Another 

promising avenue involves AI-based techniques, where models such as Convolutional Neural 
Networks (ConvNet) and Gated Recurrent Units (GRU) are trained using labeled data from a 

trusted system, such as reference trajectories from high-grade INS or GPS. These models are then 
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employed to correct INS errors, offering a powerful tool for enhancing the accuracy and 
reliability of navigation systems in complex environments. 
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