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ABSTRACT 
 
Orthogonal Time-frequency-space (OTFS) modulation represents a pioneering advancement tailored to 

the requirements of prospective sixth-generation (6G) wireless networks. The innovative design effectively 

addresses the challenges associated with high-frequency dispersion in wireless transmission 

environments, offering many advantages over traditional modulation schemes such as orthogonal 

frequency-division multiplexing (OFDM). OTFS stands out due to its capacity to adapt to dynamic 

wireless channels with high Delay-Doppler (DD) dispersion, a capability that is not present in traditional 

frameworks. In contrast to conventional approaches, which assume near-channel stability over an OTFS 

frame, OTFS modulation is well-suited to environments where the input-output relationship may vary over 

time due to evolving media or environmental conditions. In a comparative analysis with OFDM, OTFS 

exhibits superior block error rate (BLER) performance compared to the signal-to-noise ratio (SNR) across 

varying modulation formats, including QPSK, 16QAM, and 64QAM. Numerical simulations demonstrate 

that OTFS outperforms OFDM in mitigating transmission errors in diverse scenarios by exploring 

different reception rates for each waveform. 
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1. INTRODUCTION 

 

Over the past ten years, networks have transmitted exabytes of data, fueled by advancements in 

autonomous vehicles, extensive sensor networks, the Internet of Things (IoT), and the early 

development of immersive media. This has resulted in the creation of billions of new connected 

endpoints with varying sensitivities and Quality of Service (QoS) demands, highlighting several 

deficiencies in current network technologies. To address these challenges, the International 

Telecommunication Union (ITU) established the Network 2030 Think Tank in mid-2018, aiming 

to explore future system technologies for 2030 and beyond. The paper [1] focuses on meeting 

the communication needs of society by 2030 and identifying the network technologies required 
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to provide high-resolution immersive services multimedia over IoT, factory automation, and 

self-driving cars to become a reality. 

 

The current wireless communication systems, such as 4G and 5G, struggle to meet the stringent 

demands for high data rates, low latency, and reliable performance under high mobility 

conditions. Orthogonal Frequency Division Multiplexing (OFDM) has been the prevalent 

technology in these systems, offering near-capacity performance in linear time-invariant 

channels and mitigating inter-symbol interference (ISI) caused by time dispersion. However, 

OFDM's performance heavily depends on maintaining orthogonality between subcarriers, which 

can be compromised by Doppler shifts, leading to significant intercarrier interference (ICI) [2]. 

Furthermore, emerging applications like vehicle-to-vehicle (V2V) communications, the Internet 

of Things (IoT), and Industry 4.0 demand new wireless communication systems that can perform 

reliably in high-mobility environments [3]. Thus, the existing OFDM modulation may not 

suffice for efficient and dependable communications in these scenarios [4]. 

 

To satisfy the diverse requirements of the impending 6G networks, the recently suggested 

Orthogonal Time Frequency Space (OTFS) modulation has attracted a lot of interest [5]. OTFS 

processes signals in the Doppler-delay domain, simplifying receiver design and effectively 

managing Doppler effects encountered in high-speed situations. Unlike OFDM, OTFS can 

function with fewer pilot signals, and its symbol detection is less complex [6]. This method 

enables the efficient and adaptable arrangement of reference signals by transforming the 

fluctuating channel over time into a stable channel in the delay-Doppler domain, which has two 

dimensions. Additionally, OTFS modulation provides enhanced robustness to high mobility 

scenarios, making it a promising candidate for next-generation wireless communication [7]. 

 

The article has been structured as below. Section II provides a mathematical analysis of the 

modulation and demodulation of OTFS systems for transmitter and receiver in the presence of 

delay and Doppler effects. In Section III, we analyze the bit-error-rate performance of OTFS 

systems compared with OFDM systems based on numerical results. First, we study the variation 

of BLER versus SNR for the different bit per symbol (QPSK, 16QAM, 64QAM) for a fixed and 

mobile receiver at five speeds, 0kmph, 100kmph, 160 kmph, 200kmph, and 320 kmph. Next, we 

will compare the BLER of the two modulation schemes versus SNR. Then by comparing the two 

systems OTFS and OFDM in terms of BLER for two numbers of subcarriers M=128 and 512 in 

the case of a speed of 320Kmph with QPSK 16QAM. 

 

Notating: Scalars, vectors, and matrices are written in normal, small, and large capitals, 

respectively.The symbols (⋅)T
and (⋅)H

used to designate the operations of transposition and 

conjugate transposition, respectively. In mathematics, the imaginary number 𝑗 is defined as the 

square of the negative one, i.e., j2= -1. A matrix, A matrixcalled A= [anm]
N×M

 has N rows and M 

columns with each element anmis characterized as belonging to the set 𝐶 and placed in the n-th 

row and m-th column of A. A⊗ B is the Kronecker product of the matrices Aand B. Also,a = 

[an]
N×1

 represents a vector comprising a column, with an∈C this is in the n-th row of a. The 

vec(A) operator creates a NM × 1 column vector, where the columns in the N × M matrix A are 

stacked. The N-point discrete Fourier transform (DFT) matrix is given in the following form  

FN = 
1

√N
[e

-j22π
kn

N ]
N×N

 

 

where FNFN
H

 = INwith INrepresenting the identity matrix.[8] 
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2. RELATED WORK 
 

OTFS stands out as a strong candidate for 6G networks due to its superior resilience to Doppler 

effects, making it ideal for high-mobility scenarios such as vehicular and satellite 

communications. Unlike OFDM and other multicarrier techniques like GFDM, FBMC, and 

UFMC, OTFS spreads symbols across both time and frequency domains, achieving full diversity 

gain and improving link reliability in fading channels. It also offers higher spectral efficiency by 

eliminating cyclic prefix overhead while maintaining low pilot overhead for channel estimation, 

reducing complexity in massive MIMO systems. Additionally, OTFS enables seamless 

integration with existing OFDM-based networks, ensuring backward compatibility for an 

efficient transition to 6G. While OTFS has higher computational complexity, its benefits in 

robustness, interference management, and adaptability to dynamic environments justify its 

feasibility for future wireless communication systems. 

 

Recent studies have highlighted the advantages of Orthogonal Time Frequency Space (OTFS) 

modulation over traditional schemes like Orthogonal Frequency Division Multiplexing (OFDM) 

and other multicarrier techniques in the context of 6G networks. A study published in 2023 

emphasizes OTFS's robustness in high-mobility scenarios, noting its superior resilience to 

Doppler effects compared to OFDM [9]. Additionally, OTFS has been recognized for its 

improved energy efficiency in dynamic environments, which is crucial for the energy demands 

of future 6G applications [10]. Furthermore, OTFS's operation in the delay-Doppler domain 

allows for better handling of time-varying channels, offering significant advantages in high-

mobility contexts [11]. These findings underscore OTFS's potential as a key enabler for reliable 

and efficient communication in next-generation wireless networks. 

 

The extant literature on the subject of OTFS modulation in high-mobility and 6G scenarios is 

highlighted. Research in [12] introduces channel estimation for doubly dispersive channels, but 

analysis of high-mobility environments and dynamic adaptation is lacking. Studies such as [13, 

14, 15] explore OTFS for delay-Doppler systems, demonstrating its potential for 6G but 

neglecting trade-offs in complexity and reliability. While [16] provides a strong mathematical 

framework, it does not address OTFS-OFDM coexistence or interference management in dense 

networks. Works such as [17] combine OTFS with PDMA for IoT but overlook interference 

mitigation and mixed mobility scenarios. Enhanced OTFS schemes like [18] and [19] improve 

performance in time-variant channels but ignore complex real-world models. [20] proposes an 

efficient OTFS receiver design for high-speed vehicular communication, using large-scale 

antenna arrays to reduce complexity and overhead. However, it does not address interference 

management in dense vehicular networks or its impact on QoS. Similarly, [21] introduces an 

ML-based system to switch between OTFS and OFDM adaptively, optimizing performance 

based on channel conditions. Yet, it overlooks the computational complexity of ML in real-time 

systems and lacks discussion on interference management in multi-user or multi-cell 

environments, which are critical for dense networks. Despite the advantages of OTFS, including 

full diversity and resilience in high-mobility environments [22, 23], challenges such as inter-

symbol interference and high computational complexity remain [24]. Recent studies have 

focused on modulation and coding techniques [25, 26], but this work aims to address gaps in 

interference management, integration with legacy systems, and computational efficiency. 

 

3. OTFS SYSTEM  
 

The following section outlines the basic principles of OTFS modulation, which are essential for 

comprehending the presented research. Specifically, the key functions of the OTFS modulation 
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system's transmitter and receiver are detailed in the functional diagram in Figure 1. The 

information is based on the articles [27], [28]. 

 

 
 

Figure 1: OTFS modulation scheme. 

 

2.1. OTFS Transmitter 

 

OTFS modulation is a two-dimensional technique, that modulating data in the DD domain and 

then transforms the signals into the TF and time domains. The time-frequency discretization grid 

with a time axis and a frequency axis in interims T(s) and Δf(Hz) is illustrated in Figure 1. 

 

 
 

Figure 2: Equivalent grid for the time-frequency domain 

 

From Figure 2, we obtain that the OTFS frame is transmitted within a tame Tframe = NT and 

occupies a bandwidth Bframe = MΔf. 

 

Figure 2 defines the delay-Doppler plane: 

 

 
 

Figure 3: Equivalent grid for delay-Doppler domain 
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where 
1

MΔf
.and 

1

NT
. represent the Delay and Doppler frequency quantization steps, respectively. 

Let be the set of data symbols NM {x (k, l), k =0, . . .. N - 1, l = 0, ... M - 1} of a numerical 

modulation of size q, A = {a 1, …, a q} (QPSK or QAM symbols), arranged in the delay-

Doppler plane. 

 

In the initial step of the OTFS transmission process, the symbols 𝑥(𝑘, 𝑙) are mapped into 𝑁𝑀 

samples Xtf(n,m) on a time-frequency grid using the following ISFFT relation, 

 

Xtf(n,m) =
1

√NM
∑ ∑ x(k,l)ej2π(

nk

N
-
ml

M
)

M-1

m=0

N-1

k=0

 (1)  

 

Where n=0,…, N-1 , m=0,…,M-1 

 

Subsequently, a time-frequency modulator converts the samples represented by Xtf(n,m) into a 

continuous time waveform, defined by 𝑆(𝑡) in the time domain, utilising a transmission 

waveform denoted by g
tx

(t). The following relation defines this transformation,  

 

S(t)= ∑ ∑ Xtf(n,m)gtx(t-nT)ej2πm∆f(t-nT)

M-1

m=0

N-1

k=0

 (2)  

 

Where, g
tx

(t) is the pulse of transmitter, ∆f is subcarrier spacing and T symbol duration. 

An OTFS transmitter can be described by a matrix representation, facilitating software or 

hardware implementation. It starts with a more condensed form of the ISFFT as shown in Eq 1. 

We can obtain this equation by the DFT matrices FN∈C
N×N

 and FM∈C
M×M

. If X
DD∈C

N×M
 

includes the symbols x(k, l) representing the DD domain and X
𝑻𝑭∈C

N×M
 includes the symbols 

Xtf(n,m) of the TF domain. 

 

From the previous notation, we can write Equation 1 in the following matrix form: 

 

XTF= FN
HXDDFM (3)  

𝑋𝐷𝐷 = 𝐹𝑀
𝐻𝑋𝑇𝐹𝐹𝑁 (4)  

 

Similarly, we can transform Eq 2 like this. 

 

S = XTFFM
H Gtx= (FN

HXDDFM)FM
H Gtx =   FN

HXDDGtx (5)  

 

In this context, the Gtx∈C
M×M

 element is responsible for pulse shaping, while the S∈C
N×M

 

function is dedicated to storing the transmission signals. An alternative approach is to express 

the transmission signal in the TF domain as a vector. 

 

s = vec(S) = (Gtx
T ⊗FN

H)vec(XDD) (6)  
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2.2.OTFS Receiver 
 

First, it should be noted that the signal S(t) is transmitted via a channel with a response in the 

Doppler delay domain, which can be expressed as h(τ,ν), with 𝜏 and 𝜈 representing the delay 

and Doppler variables, respectively. 

 

The time domain signal, denoted by r(t), is received at the receiver. 

 

r(t)= ∬ h(τ,ν) S(t-τ)ej2πν(t-τ)dτdν (7)  

As illustrated below, a Wigner transformation is employed to translate the received signal, r(t), 
into the time-frequency (TF) domain. 

 

Ytf(n,m)= Agx,y
(t,f)|t=nT,f=m∆f (8)  

Agx,y
(t,f)= ∫ grx

* (t'-t)y(t)e-j2πf(t'-t) dt' (9)  

 

In this equation, g
rx

(t) is the receive pulse shape. If the receive pulse shape g
rx

(t) and the 

transmit pulse shape g
tx

(t) satisfy the bi-orthogonality condition [29], the following equation 

provides the input-output relation in the time-frequency (TF) domain. 

 

Ytf(n,m)=H(n,m)Xtf(n,m)+V(n,m) (10)  
 

with, V(n,m) representing noise in the time-frequency domain. H(n,m) is defined as follows. 

H(n,m)= ∫ ∫ h(τ,ν)ej2πνnTe-j2πνn(ν+mΔf)τdνdτ
ν

τ

 (11)  

 

using SFFT the TF signal Y(n,m) is converted into the DD domain signal y(k,l), as follows, 

 

y(k,l)= ∑ ∑ Ytf(n,m)e-j2π(
nk

N
-
ml

M
)

M-1

m=1

N-1

n=0

 (12)  

 

From the equations above (1)-(7), we can express the input-output relation as follows [20] 

 

y(k,l)= 
1

√NM
∑ ∑ x(k',l')hw (

k-k'

NT
,

l-l'

MΔf
) +v(k,l)

M-1

k'=0

N-1

l'=0

 (13)  

 

The notation hw(ν, τ) represents the circular convolution of the channel response with the 

windowing function w(ν, τ) and 

 

hw (
k-k'

NT
,

l-l'

MΔf
)  = hw(ν, τ)|ν= 

k-k'

NT
 ,τ=

l-l'

MΔf
 (14)  

 

In a manner analogous to the transmitter, The OTFS receiver is given by the following matrix 

expression, 
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Y𝐷𝐷= FNYTFFM
H  = FN(RGrxFM)FM

H  = FNRGrx (15)  

 

where R∈C
N×M

 keeps the signals received, Grx∈C
M×M

 indicates the filtering adapted to the 

pulse shape of the receiver, and 𝑌𝑇𝐹 , 𝑌𝐷𝐷∈C
N×M

 comprises the received symbols in the TF 

and DD domains. The signal reception at the DD domain in vector form is expressed as follows 

 

y = vec(YDD) = (Grx
T ⊗FN)vec(R) (16)  

 

2.3. Signal-to-Noise Ratio (SNR) in OTFS 
 

The SNR for OTFS in the presence of Gaussian noise is given by: 

 

𝑆𝑁𝑅 =
Ε [|𝐻(𝑛, 𝑚) ⋅ 𝑋𝑡𝑓(𝑛, 𝑚)|

2
]

Ε[|𝑉(𝑛, 𝑚)|2]
=

𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝜎2
 (17)  

 

Where Psignal is the average signal power. 

 

The noise power 𝜎2 in the delay-Doppler domain depends on the system's noise spectral density 

N0 and the system bandwidth 𝐵: 
 

𝜎2 = 𝑁0 ⋅ 𝐵 (18)  
 

OTFS modulation spreads symbols across the entire delay-Doppler domain, making the system 

more resilient to localized noise effects compared to OFDM. However, Gaussian noise in OTFS 

affects all grid points uniformly in the delay-Doppler domain. The performance is evaluated 

using metrics such as block error rate (BLER) or signal-to-noise ratio (SNR) [31]. 

 

2.4.TDLA Channel model 
 

In [28] The TDLA model incorporates propagation delays and angles of arrival for multipath 

components, capturing spatial and temporal characteristics. Each multipath component (or tap) is 

modeled as: 

 

ℎ𝑇𝐷𝐿𝐴(𝑡, 𝜏, 𝜃)  = ∑ ℎ𝑖𝑒𝑗𝜙𝑖𝛿(𝜏 − 𝜏𝑖)𝛿(𝜃 − 𝜃𝑖)

𝑁

𝑖=1

 (19)  

 

N: Total number of taps (multipath components). 

ℎ𝑖: Complex amplitude of the i-th tap, representing the attenuation of the signal. 

𝜙𝑖: Phase of the i-th tap. 

𝜏𝑖: Delay of the i-th tap, capturing the propagation delay. 

𝜃𝑖: Angle of arrival (AoA) of the i-th tap. 

δ(⋅): Dirac delta function, used to represent the specific delay and angular location of each tap.  

 

This representation accounts for the time-domain dispersion 𝜏 and the angular domain spread 𝜃, 

making it suitable for analyzing wireless systems that rely on spatial diversity, such as MIMO 

systems. 
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2.5. Performance Indicators 
 

Orthogonal Time Frequency Space (OTFS) modulation introduces additional computational 

complexity compared to Orthogonal Frequency Division Multiplexing (OFDM) due to its 2D 

transformations, channel estimation, and equalization processes. Below, we analyze the key 

contributors to OTFS complexity. 

 

2.5.1. Complexity of ISFFT and SFFT (2D Transformations) 
 

OTFS modulation employs two key transformations: 

 

a- Inverse Symplectic Finite Fourier Transform (ISFFT) – Converts time-frequency 

symbols to the delay-Doppler domain. 

b- Symplectic Finite Fourier Transform (SFFT) – Maps delay-Doppler symbols back to the 

time-frequency domain. 

 

Mathematically, these are represented as expressed in (3) and (4) [31]: 

 
2.5.2. Computational Complexity 

 

Each 1D Discrete Fourier Transform (DFT) operation requires 𝒪(𝑁log𝑁) or 𝒪(𝑀log𝑀) 

operations. Since OTFS requires two 1D transforms (one for ISFFT and another for SFFT), the 

total complexity is: 

 

𝒪(𝑀𝑁log𝑀 + 𝑀𝑁log𝑁) = 𝒪(𝑀𝑁log(𝑀𝑁)) (20)  
 

This is significantly higher than OFDM, which requires a single 𝒪(𝑁log𝑁) FFT per symbol 

[32]. 

 
2.5.3. Channel Estimation Complexity 

 

OTFS operates in the delay-Doppler domain, where channel estimation requires handling a 2D 

sparse channel matrix [33]. The channel response is modeled as: 

𝐻(𝜏, 𝜈) = ∑ ℎ𝑖

𝐿

𝑖=1

𝛿(𝜏 − 𝜏𝑖)𝛿(𝜈 − 𝜈𝑖) (21)  

where: 

 

 𝐿 = Number of multipath components. 

 ℎ𝑖 = Channel coefficient for the 𝑖th path. 

 𝜏𝑖, 𝜈𝑖 = Delay and Doppler shift of the 𝑖th path. 

 

2.5.4. Computational Complexity of Channel Estimation 

 

a- Least Squares (LS) Estimation: 

b-  

�̂� = (𝑋𝐻𝑋)−1𝑋𝐻𝑌 (22)  
 

Complexity: 𝒪(𝐿2) [34]. 

 

c- Minimum Mean Square Error (MMSE) Estimation: 
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�̂� = (𝑋𝐻𝑋 + 𝜎2𝐼)−1𝑋𝐻𝑌 (23)  
 

Complexity: 𝒪(𝐿3) due to matrix inversion [35]. 

 

OTFS requires more pilot symbols than OFDM for accurate channel estimation in the delay-

Doppler domain, further increasing complexity [36]. 

 
2.5.5. Equalization Complexity 

 

OTFS uses either MMSE (Minimum Mean Square Error) Equalization or the Message Passing 

Algorithm (MPA) for symbol detection. 

 
A. MMSE Equalization 

 

�̂� = (𝐻𝐻𝐻 + 𝜎2𝐼)−1𝐻𝐻𝑌 (24)  
 

Computational Complexity: 

𝒪((𝑀𝑁)3) (25)  
 

Due to matrix inversion, this is highly computationally expensive [37]. 

 

B. MPA Equalization 

𝑃(𝑥) ∝ ∏ 𝑃

𝐿

𝑖=1

(𝑦𝑖 ∣ 𝑥) (26)  

 Computational Complexity: 

𝒪(𝑀𝑁𝐿) (27)  

 Lower complexity than MMSE but requires multiple iterations for convergence. 

 

2.5.6. Mathematical Modeling of BLER vs. SNR for OTFS 

 

The Block Error Rate (BLER) in an Orthogonal Time Frequency Space (OTFS) modulation 

system depends on several factors, including signal-to-noise ratio (SNR), modulation scheme, 

channel conditions, and receiver equalization techniques. Below is a mathematical formulation 

of how BLER is modeled in an OTFS system. 

 

For high-mobility conditions, Doppler shifts alter the channel gains, introducing additional SNR 

degradation. The effective SNR under Doppler spread can be estimated as [38]: 

 

𝛾eff =
∑ ∣𝐿

𝑖=1 ℎ𝑖 ∣2

1 +
𝑓𝑑𝑇

𝑀

 (28)  

where: 

 

 𝑓𝑑: Maximum Doppler shift is given by 𝑓𝑑 =
𝑣.𝑓𝑐

𝑐
, 

 𝑣: Velocity of the receiver (m/s), 

 𝑓𝑐: Carrier frequency (Hz), 

 𝑐: Speed of light (m/s), 

 𝑇: Symbol duration. 
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With increased Doppler spread, OTFS leverages delay-Doppler diversity. Thus, a generalized 

expression for BLER vs. SNR in OTFS can be represented as: 

 

𝐵𝐿𝐸𝑅 ≈ 1 − (1 − 𝑄 (√
3𝛾eff

(𝑀 − 1)
))

𝑁×𝑀

 (29)  

 

where 𝛾eff is adapted based on Doppler spread, multipath effects, and equalization technique. 

 

4. RESULTS AND DISCUSSIONS 
 

4.1. OTFS and OFDM by varying the speed 
 

4.1.1. Parameters Study 

 
Table 1. Parameters of Simulation 

 
Parameter value 

subcarrier Numbers 64 

Carrier frequency (GHz) 2 

speed in kmpm 320, 200, 160, 100,0 

Subcarrier spacing (KHz) 15 

Cyclic Prefix duration (us) 0.67 

Channel model TDLA 

MCS QPSK, 16QAM, 64QAM, rate 0.5 

 

Figure 4 presents a comparative analysis of BLER performance across OTFS and OFDM 

waveforms for three modulation schemes at a mobility speed of 320 kmph. The BLER versus 

SNR curves reveal that OTFS outperforms OFDM across all SNR levels for QPSK, 16QAM, 

and 64QAM modulation schemes. However, the disparity in BLER between OFDM and OTFS 

for 64QAM is slightly smaller compared to the differences observed for 16QAM and QPSK. 

 

 
 

Figure 4: BLER Vs. SNR for OFDM and OTFS (with M=64 subcarriers and velocity 320Km/h) using 

QPSK, 16QAM, and 64QAM. 
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Figure 5 compares the BLER of OFDM and OTFS waveforms for various modulation schemes 

at a mobility velocity of 200 km/h. The BLER is plotted against the SNR to create a curve 

indicating that OTFS outperforms OFDM at all SNR levels for the QPSK, 16QAM, and 64QAM 

modulation schemes. However, the BLER mismatch between OFDM and OTFS for 64QAM is 

slightly smaller than the differences observed for 16QAM and QPSK. 

 

 
 

Figure 5: BLER Vs SNR for OFDM and OTFS (using M=64 subcarriers and speed 200Kmph) for 

QPSK,16QAM, and 64QAM 

 

Figure 6 depicts the BLER comparing the OTFS and OFDM systems for three modulation 

schemes at a mobility velocity of 160 km/h. The BLER vs. SNR curves demonstrate that OTFS 

performs better than OFDM across all SNR levels for the QPSK, 16QAM, and 64QAM 

modulation schemes. Nevertheless, the BLER disparity between OFDM and OTFS for 64QAM 

is slightly smaller than the differences observed for 16QAM and QPSK. 

 

 
 

Figure 6: BLER Vs SNR for OFDM and OTFS (using M=64 subcarriers and speed 160Kmph) for 

QPSK,16QAM, and 64QAM  
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Figure 7 offers a comparative illustration of the BLER performance achieved by OTFS and 

OFDM waveforms for three modulation schemes at a mobility speed of 100 km/h. The BLER 

versus SNR curves indicate that OTFS performs better than OFDM across all SNR levels for the 

QPSK, 16QAM, and 64QAM modulation schemes. The BLER disparity between OFDM and 

OTFS for 64QAM, however, is slightly less than the differences observed for 16QAM and 

QPSK. 

 
 

Figure 7: BLER Vs SNR for OFDM and OTFS (using M=64 subcarriers and speed 100Kmph) for 

QPSK,16QAM, and 64QAM  

 

Figure 8 indicates a comparative analysis of BLER performed by OTFS and OFDM waveforms 

for three modulation schemes at a 0 km/h mobility speed. Based on the BLER against SNR 

curves, OTFS is superior to OFDM at all SNR levels for the QPSK, 16QAM, and 64QAM 

modulation schemes. The difference in BLER between OFDM and OTFS for 64QAM 

modulation is, of course, slightly smaller than the differences observed for 16QAM and QPSK 

modulation. 

 

 
 

Figure 8: BLER Vs SNR for OFDM and OTFS (M=64 of subcarriers, and velocity 0Kmph) with QPSK, 

16QAM and 64QAM 
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4.1.2. Performance Comparison 

 

As with Figure 4, Figures 5, 6, 7, and 8 plot BLER versus SNR for mobility speeds of 200 km/h, 

160 km/h, 100 km/h, and 0 km/h, employing the identical parameters as outlined in Table 1. 

Figures 5, 6, 7, and 8 illustrate the performance vantage of BLER OTFS over OFDM augments 

through mobility speed. The findings of Figures 4, 5, 6, 7, and 8 are summarized in Table 2. The 

data presented in this table demonstrate that the SNR benefit of OTFS over OFDM is amplified 

with increasing mobility speed, irrespective of the modulation scheme employed. 

 

It is evident that the SNR gain of OFDM with the OTFS scheme, in comparison to OFDM, is 

amplified with an increasing velocity of mobility for the three distinct modulation schemes. At a 

BLER of 2.10-1, we find that OTFS has an SNR gain of 7 dB, 6 dB, 5.75 dB, 5.35 dB,and 5.25 

dB compared with OFDM, at mobility speeds of 320 km/h, 200 km/h, 160 km/h, 100 km/h and 0 

km/h, respectively, for the QPSK modulation scheme. 16QAM SNR gain is equal to 4 dB, 3 dB, 

2.75 dB, and 2.25 dB at mobility speeds of 320 km/h, 200 km/h, 160 km/h and 100 km/h 

respectively. For 64QAM, SNR gain decreases with increasing speed.As before, in the case of an 

increase in BLER, we observe an increase in SNR gain from 320 km/h to 100 km/h for all types 

of modulation (QPSK, 16QAM, 64QAM). 

 
Table 2: The OTFS system exhibits superior performance in terms of SNR compared to the OFDM 

system, as evidenced by BLER values of 2.10-1, 3.10-1, and 6.10-1, respectively. 

 

BLER value data types 

SNR gain for each speed 

320 kmph 
200 

kmph 

160 

kmph 

100 

kmph 
0 kmph 

2.10-1 

QPSK 7 dB 6 dB 5.75 dB 
5.35 

dB 
5.25 dB 

16QAM 4 dB 3 dB 2.75 dB 
2.25 

dB 
3 dB 

64QAM 1 dB 2 dB 1.75 dB 1 dB 3 dB 

3.10-1 

QPSK 8 dB 7 dB 6.5 dB 6.3 dB 5.25 dB 

16QAM 6 dB 4 dB 3.5 dB 
3.25 

dB 
3 dB 

64QAM 5 dB 1.5 dB 1 dB 0.5 dB 3 dB 

6.10-1 

QPSK 9 dB 6 dB 5 dB 
4.75 

dB 
4.5 dB 

16QAM 7.75 dB 4 dB 3.5 dB 3 dB 2.25 dB 

64QAM 5 dB 3 dB 2 dB 1 dB 
1 d

B 

 

4.2. OTFS and OFDM by a Varying Number of Subcarriers 
 

The following section presents a comparative investigation of the efficiency of OTFS and 

OFDM modulations. The SNR-based BLER was compared for 128 and 512 subcarriers using 

QPSK and 16-QAM techniques. 
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Table 3. The parameters used in the simulation 

 
Parameter Value 

Number of subcarriers 128; 512 

Carrier frequency (GHz) 2  

speed in kmph 320 

Subcarrier spacing (KHz) 15 

Cyclic Prefix duration (us) 0.67 

Channel model TDLA 

MCS QPSK, 16QAM, rate 0.5 

 

In Figures 9(a) and 9(b), we plot the BLER versus SNR curves for the two modulation schemes 

OTFS and OFDM in the case of two different numbers of subcarriers 128 and 512 with a vehicle 

speed of 320km/h for QPSK and 16QAM. 

 

The two figures, demonstrate the BLER of OFDM to be superior to that of OTFS with a 

subcarrier number of 128 compared to 512. It can be said that the performance improvement is 

very small when the SNR increases to 128. At SNR higher than this, the BLER of OTFS 

becomes lower than that of OFDM. 

 

 
 

Figure 9 (a): QPSK 

 

 
 

Figure 9 (b): 16QAM 

 

Figure 9: BLER Vs SNR for OFDM and OTFS (15 kHz number of subcarriers M=128 and 512, velocity 

320Kmph) with QPSK 16QAM. 
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5. CONCLUSION  
 

This paper presents an in-depth analysis of Orthogonal Time Frequency Space (OTFS) 

modulation, comparing it with Orthogonal Frequency Division Multiplexing (OFDM) to 

evaluate its suitability for 6G wireless networks. By leveraging the delay-Doppler domain, 

OTFS effectively transforms time-varying channels into quasi-static representations, 

significantly enhancing resilience to Doppler effects and ensuring superior Block Error Rate 

(BLER) performance in high-mobility scenarios. Simulations conducted across different 

mobility speeds, modulation schemes (QPSK, 16QAM, 64QAM), and subcarrier configurations 

confirm that OTFS maintains robust signal reliability even under severe channel conditions, 

making it a strong candidate for ultra-reliable low-latency communication (URLLC) and 

massive IoT applications. Its ability to sustain performance regardless of noise further reinforces 

its potential in high-mobility and interference-prone environments. However, to enable real-

world deployment, future research will focus on optimizing computational complexity, 

improving channel estimation using machine learning, and integrating OTFS with advanced 6G 

technologies such as massive MIMO and reconfigurable intelligent surfaces (RIS). Additionally, 

real-world validation through hardware implementations will be explored to assess its feasibility 

in high-speed networks. Future work will also investigate fuzzy logic-based channel estimation 

techniques to further enhance OTFS adaptability in dynamic environments, strengthening its 

position as a next-generation modulation scheme for 6G communications. 
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