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ABSTRACT 
 
Network traffic classification plays a critical role in cybersecurity, quality of service (QoS) management, 

and anomaly detection. Traditional rule-based classification methods struggle with the increasing 

complexity and volume of network traffic, necessitating the adoption of machine learning (ML) techniques. 

In this study, we explore the effectiveness of ML models in classifying network traffic using the NetML 

dataset, a benchmark dataset that captures diverse traffic patterns, including benign and malicious 

activities. We preprocess the dataset by applying feature selection, normalization, and data balancing 

techniques to optimize model performance. Several ML models, including traditional classifiers such as 

Random Forest (RF), Support Vector Machines (SVM), and K-Nearest Neighbors (KNN), as well as deep 
learning models such as Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) 

networks, are trained and evaluated. Model performance is assessed using accuracy, precision, recall, F1-

score, and AUC-ROC metrics. Experimental results demonstrate that deep learning models, particularly 

LSTM networks, achieve superior performance in capturing temporal dependencies in network traffic, 

significantly outperforming traditional classifiers. Our results indicate that LSTM, GRU, and CNN models 

all achieved an accuracy of 92.26%, highlighting their effectiveness in network traffic classification. 

Additionally, feature selection techniques improved computational efficiency without compromising 

classification performance. However, confusion matrix analysis revealed that the models tend to predict 

the most frequent class, leading to potential bias and lower accuracy for minority classes. The study also 

highlights the presence of high values in the confusion matrices, exceeding 70,000 in some cases, 

indicating dataset imbalance and model bias toward dominant classes. Despite achieving high accuracy, 

misclassification challenges persist, particularly in identifying encrypted traffic and polymorphic attacks. 
Transformer-based models demonstrated resilience to adversarial modifications but required significantly 

higher computational resources. Future work should explore adversarial training, self-supervised 

learning, and hybrid CNN-LSTM architectures to enhance robustness against evolving cyber threats. 

Additionally, feature selection optimization and hyperparameter tuning can further refine classification 

performance, ensuring more reliable deployment in real-world cybersecurity applications. 
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1. INTRODUCTION 
 

The rapid growth of the Internet and digital communications has resulted in an exponential surge 

in network traffic.[1]. As networks become more complex and data volumes grow, ensuring 
secure, efficient, and well-managed traffic flow has become a critical challenge[2]. Network 

traffic classification—the process of categorizing network flows based on their characteristics—

is a fundamental technique in cybersecurity, anomaly detection, and Quality of Service (QoS) 

management[3]. Accurate classification helps detect cyber threats, optimize bandwidth 
allocation, and improve network performance[4]. Traditional classification methods, such as 
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Deep Packet Inspection (DPI) and rule-based approaches, have been widely used in this field[5]. 
However, these methods face increasing limitations due to the rise of encrypted traffic, evolving 

attack patterns, and the need for real-time processing in large-scale networks. 

 

Machine learning (ML) has emerged as a powerful tool for network traffic classification, offering 
the ability to recognize complex patterns and adapt to new traffic behaviors without requiring 

deep packet inspection[6][7][8][9][10]. Unlike traditional approaches, ML models rely on 

statistical flow-based features, making them effective even when traffic is encrypted. Various ML 
techniques have been explored, ranging from conventional classifiers such as Random Forest 

(RF)[11] and Support Vector Machines (SVM)[12] to deep learning architectures like 

Convolutional Neural Networks (CNNs)[13] and Long Short-Term Memory (LSTM) 
networks[14]. Despite the advancements in ML-based classification, selecting the optimal model 

and feature set for real-world deployment remains a challenge. Many studies rely on outdated or 

limited datasets, making it difficult to benchmark new approaches effectively. 

 
Although ML-based classification has shown promise, there are still open questions regarding the 

scalability, adaptability, and robustness of these models in dynamic network environments. Key 

challenges include: 
 

 Identifying the most relevant features that contribute to accurate classification while 

minimizing computational overhead. 
 Understanding the trade-offs between different ML architectures in terms of accuracy, 

efficiency, and real-time applicability. 

 Evaluating model performance on diverse datasets that capture realistic network conditions, 

particularly those with a mix of benign and malicious traffic. 
 The NetML dataset provides a comprehensive and up-to-date benchmark for addressing 

these challenges. However, existing studies have not fully explored its potential in 

comparing different ML techniques for network traffic classification. 
 

In this study,We utilize the NetML dataset [14] to systematically assess various machine learning 

models for network traffic classification. We preprocess the dataset using feature selection and 

normalization techniques, then train and compare multiple ML models, including RF, SVM, 
CNN, and LSTM architectures. Our results highlight the effectiveness of deep learning 

approaches, particularly LSTM, in capturing temporal dependencies in network traffic. 

Additionally, we examine the impact of feature selection on classification performance and 
computational efficiency. These findings provide insights into the deployment of ML models for 

real-world cybersecurity applications, contributing to the development of more scalable and 

accurate traffic classification systems. 
 

2. RELATED WORK 
 

Traditional network traffic classification methods have relied on rule-based techniques such as 

Deep Packet Inspection (DPI) and port-based analysis[15][16][17]. While DPI provides high 
accuracy by examining packet payloads for predefined signatures, it is computationally expensive 

and ineffective for encrypted traffic. Similarly, port-based classification, which associates traffic 

types with well-known port numbers, has become unreliable due to dynamic port allocation and 
the widespread use of port obfuscation techniques. These limitations have driven the adoption of 

machine learning (ML) approaches, which analyze flow-based statistical features rather than 

packet contents, making them more adaptable to evolving network conditions. 

 
Machine learning techniques for traffic classification range from traditional models, such as 

Random Forest (RF), Support Vector Machines (SVM), and Decision Trees (DT), to advanced 
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deep learning architectures, including Convolutional Neural Networks (CNNs) and Long Short-
Term Memory (LSTM) networks. Traditional ML models require manual feature selection and 

often struggle with capturing temporal dependencies in network flows. Deep learning 

models[18][19][20][21], on the other hand, can automatically learn hierarchical patterns from raw 

network data. CNNs are effective in recognizing spatial feature correlations, while LSTMs are 
well-suited for analyzing sequential dependencies in time-series network flows. However, deep 

learning approaches require significant computational resources and large, diverse datasets for 

effective training. 
 

While the study evaluates ML-based approaches for network traffic classification, a direct 

comparison with existing methods is essential. Traditional traffic classification techniques, such 
as Deep Packet Inspection (DPI), rule-based filtering, and port-based analysis, have been widely 

used but face significant limitations, particularly when dealing with encrypted traffic. Machine 

learning-based classification has gained popularity due to its ability to analyze flow-based 

features rather than inspecting raw payloads. Traditional ML models such as Random Forest 
(RF), Support Vector Machines (SVM), and Decision Trees (DT) have been extensively studied, 

but they often require manual feature selection and fail to capture sequential dependencies in 

network traffic. Deep learning models, including Convolutional Neural Networks (CNNs) and 
Long Short-Term Memory (LSTM) networks, provide significant improvements by learning 

hierarchical and temporal patterns. Transformer-based models have emerged recently as a 

promising alternative, offering robustness against adversarial modifications. A comparative 
analysis with studies using datasets such as CICIDS 2017, UNSW-NB15, or ISCX VPN-

NonVPN would further highlight the advantages of the NetML dataset and the deep learning 

models evaluated in this work. 

 
Several benchmark datasets have been used to evaluate ML models for network traffic 

classification, each with its own strengths and limitations. The CICIDS 2017 and UNSW-NB15 

datasets provide a variety of normal and malicious traffic samples but lack comprehensive real-
world diversity and contain imbalanced attack distributions. The ISCX VPN-NonVPN dataset 

focuses on distinguishing VPN traffic but does not represent broader network threats. In contrast, 

the NetML dataset offers a more comprehensive and feature-rich traffic dataset, including both 

benign and malicious flows, making it a valuable resource for evaluating modern ML-based 
classification models. Despite its potential, NetML remains underutilized in network traffic 

classification research. 

 
Existing research faces several challenges, including the lack of diverse and up-to-date datasets, 

inefficient feature selection processes, and the need for scalable ML models suitable for real-time 

classification. Many studies focus on either traditional ML models or deep learning approaches 
without systematically comparing them under uniform experimental conditions. Furthermore, 

while deep learning has shown promise, its real-world deployment feasibility remains an open 

question due to computational constraints. This study aims to bridge these gaps by utilizing the 

NetML dataset to systematically compare traditional ML classifiers and deep learning models, 
refine feature selection, and assess their performance for real-time network traffic classification 

in contemporary cybersecurity applications. 

 

3. DATASET DESCRIPTION 
 

3.1. Overview of the NetML Dataset 
 
The NetML dataset is a benchmark dataset designed to support machine learning-based network 

traffic classification[14]. It provides a diverse collection of real-world network traffic, including 
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both normal and malicious flows, making it particularly useful for evaluating the performance of 
ML models. Unlike older datasets that primarily focus on specific types of cyber threats, NetML 

offers a broad range of traffic types, allowing for more comprehensive analysis. The dataset is 

structured to facilitate both supervised and unsupervised learning approaches, making it suitable 

for various classification tasks, including anomaly detection and intrusion detection. 
 

3.2. Data Sources and Collection Methods 
 

The dataset was generated from real-world network environments, capturing both legitimate and 

attack traffic from different sources. Network traffic was collected using packet capture tools, 

including Wireshark and tcpdump, which recorded raw packet-level information. The collected 
data underwent preprocessing to extract statistical flow features, reducing the reliance on deep 

packet inspection while ensuring compatibility with ML-based classification methods. The 

dataset includes a mixture of traffic types from various applications, including web browsing, file 
transfers, streaming, and botnet activities. The diversity of data sources ensures that the dataset 

reflects realistic traffic patterns, enhancing its applicability to cybersecurity and network 

management research. 
 

3.3. Types of Network Traffic Classes 
 
The NetML dataset includes both benign and malicious traffic classes, categorized based on 

behavioral patterns and known attack signatures. Benign traffic consists of normal user activities 

such as HTTP and HTTPS browsing, email communication, and video streaming. Malicious 
traffic includes various cyber threats, such as DDoS attacks, botnet activities, port scanning, and 

exploitation attempts. Each traffic class is labeled based on its characteristics, allowing 

researchers to train and evaluate ML models on different types of threats and normal activities. 

The dataset supports both binary classification (benign vs. malicious) and multi-class 
classification, where specific attack types can be identified. 

 

3.4. Feature Description 
 

The dataset provides a rich set of features extracted from packet-level and flow-level data. The 

NetML dataset comprises over 60 distinct features, categorized into multiple groups, including 
network attributes, packet-level features, statistical flow features, DNS features, HTTP features, 

TLS features, and session & ID features. Statistical flow features and TLS-related attributes form 

the majority, enabling models to analyze network behavior without relying on payload 
inspection. This categorization ensures that machine learning models can effectively classify 

network flows based on statistical patterns rather than inspecting packet payloads, making the 

approach scalable and privacy-preserving. Rather than relying on raw payloads, the NetML 

dataset includes statistical flow features, which are crucial for classifying encrypted and 
obfuscated traffic. Features include: 

 

 Basic network attributes: Source/destination IP addresses, ports, and protocols. 
 Packet-level features: Packet size, inter-arrival time, and duration. 

 Statistical flow features: Mean, variance, and standard deviation of packet sizes, flow 

duration, and byte counts per session. 
 Behavioral metrics: Connection frequency, burst rates, and anomaly scores. 
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Figure 1.  Feature Classification Distribution in NetML Dataset  

 
This bar chart illustrates the distribution of classified features in the NetML dataset, categorizing 

them into Network Attributes, Packet-Level Features, Statistical Flow Features, DNS Features, 

HTTP Features, TLS Features, and Session & ID Features. The Statistical Flow Features and TLS 

Features categories contain the highest number of features, highlighting their importance in 
network behavior analysis and encrypted traffic monitoring. Conversely, Session and ID Features 

have the lowest count, indicating fewer attributes related to session tracking. The diverse feature 

distribution ensures that machine learning models trained on this dataset can effectively capture 
network behaviors, security threats, and performance metrics. Network Attributes and Packet-

Level Features contribute to identifying traffic flow, while DNS and HTTP Features aid in 

detecting web-based anomalies. The prominence of TLS Features underscores the growing need 
for encrypted traffic analysis in cybersecurity. This classification supports the development of 

intrusion detection, anomaly detection, and performance monitoring systems, making the dataset 

valuable for modern network security applications. 

 
Table 1.  Detailed Feature Classification in NetML Dataset. 

 
Feature Type Features 

Network Attributes sa, pr, dst_port, src_port, da, dns_answer_ip 

Packet-Level Features rev_hdr_distinct, hdr_ccnt, bytes_in, rev_hdr_ccnt, hdr_mean, 

rev_hdr_bin_40, num_pkts_in, num_pkts_out, bytes_out, 

hdr_bin_40, hdr_distinct 

Statistical Flow Features intervals_ccnt, rev_pld_max, rev_pld_mean, pld_mean, 

rev_pld_ccnt, pld_bin_inf, rev_intervals_ccnt, rev_pld_distinct, 

pld_median, rev_pld_var, pld_distinct, pld_max, rev_pld_bin_128, 

time_length, pld_ccnt 

DNS Features dns_query_type, dns_query_class, dns_query_name_len, 

dns_query_name, dns_query_cnt, dns_answer_ip, dns_answer_ttl, 

dns_answer_cnt 

HTTP Features http_method, http_uri, http_host, http_code, http_content_len, 
http_content_type 

TLS Features tls_len, tls_key_exchange_len, tls_svr_ext_cnt, tls_svr_len, 

tls_svr_cs_cnt, tls_ext_cnt, tls_cnt, tls_svr_cs, tls_cs_cnt, 

tls_ext_types, tls_svr_key_exchange_len, tls_svr_ext_types, 

tls_svr_cnt, tls_cs 

Session and ID Features id 
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This table provides a structured categorization of selected features from the NetML dataset, 
grouping them into different feature types based on their roles in network traffic analysis. Each 

row represents a feature type, and the corresponding column lists the specific features that belong 

to that category. 

 
 Network Attributes: Includes features related to network-level identifiers such as source 

and destination IP addresses, ports, and protocol types. These features help in identifying 

traffic sources and destinations. 
 Packet-Level Features: Represents attributes related to packet structure, including header 

information, packet sizes, and byte counts. These features are essential for analyzing 

individual packet behaviors. 
 Statistical Flow Features: Encompasses aggregated statistical properties of traffic flows, 

such as payload characteristics, time intervals, and flow durations. These help in 

detecting anomalies and traffic patterns. 

 DNS Features: Covers fields related to DNS queries, such as query type, class, name, and 
response details. These are useful in detecting malicious domain-based activities. 

 HTTP Features: Contains features related to HTTP requests and responses, including 

method types, hostnames, and content details, which aid in web traffic analysis and 
security monitoring. 

 TLS Features: Includes TLS-specific attributes, such as key exchange details, cipher suite 

counts, and server extensions, helping in analyzing encrypted traffic and identifying 
security threats. 

 

This classification enhances the clarity and usability of the dataset for machine learning-based 

network traffic classification, making it easier to apply appropriate preprocessing, feature 
selection, and model training techniques. 

 

These features allow ML models to classify network flows based on statistical patterns rather 
than inspecting packet payloads, making the approach scalable and privacy-preserving. 

 

4. METHODOLOGY 
 

4.1. Machine Learning Models Used 
 

4.1.1. Description of Selected ML Models 

 
To effectively classify network traffic using the NetML dataset, we evaluate both traditional 

machine learning models and deep learning architectures. These models are selected based on 

their ability to capture different aspects of network traffic patterns, balancing interpretability, 
computational efficiency, and classification performance. 

 

A. Traditional Machine Learning Models 
 

Traditional machine learning refers to supervised learning algorithms that rely on handcrafted 

feature engineering and structured data representations for classification. These models include 

Random Forest (RF), Support Vector Machines (SVM), and K-nearest neighbors (KNN), which 
have been widely used in network traffic analysis, In contrast to deep learning models, which 

autonomously learn hierarchical feature representations, traditional ML models depend on 

predefined statistical features, requiring extensive preprocessing, feature selection, and domain 
knowledge. Traditional ML models offer greater interpretability and are computationally 

efficient, making them suitable for real-time classification in resource-constrained environments. 
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However, they often struggle with high-dimensional and sequential data, limiting their ability to 
capture complex temporal dependencies in network flows. While RF and SVM are effective in 

general classification, they lack the capability to model long-term dependencies in network 

traffic. Consequently, deep learning models such as CNNs and LSTMs have emerged as more 

powerful alternatives, offering improved accuracy and adaptability, particularly for encrypted 
traffic classification and multi-class network behavior analysis. Traditional machine learning 

classifiers are widely used in network traffic analysis due to their efficiency and interpretability. 

The models selected for this study include: 

 

Random Forest (RF): A robust ensemble learning method that constructs multiple decision trees 

and aggregates their predictions. RF is effective in handling high-dimensional network traffic 
data and is resistant to overfitting. 

 

Support Vector Machine (SVM): A powerful classification algorithm that finds an optimal 

hyperplane to separate traffic classes. SVM is particularly effective for binary classification and 
can be extended to multi-class problems using kernel functions. 

 

Nearest Neighbors (KNN): A non-parametric, instance-based learning algorithm that classifies 
network traffic based on the majority class of its closest neighbors. KNN is simple and effective 

for datasets with well-defined clusters but can be computationally expensive for large datasets.  

 
Table 2.  Comparison of Theoretical Characteristics of Traditional  Machine Learning Models. 

 

Model Accuracy Training 

Time 

Complexity Interpreta

bility 

Scalabi

lity 

Best For 

Random 
Forest (RF) 

High Moderate High Moderate High General 
Classification, 

Large Datasets 

Support 

Vector 

Machine 

(SVM) 

High High Very High Low Modera

te 

High-

Dimensional 

Data, 

Text/Image 

Classification 

K-Nearest 

Neighbors 

(KNN) 

Moderate Low Low High Low Small Datasets, 

Pattern 

Recognition 

 
The theoretical characteristics of Random Forest (RF), Support Vector Machine (SVM), and K-

Nearest Neighbors (KNN) highlight their strengths and limitations in machine learning 

applications. RF is an ensemble learning method that builds multiple decision trees, offering high 
accuracy and scalability, but with moderate training time and complexity. It is effective for 

general classification but requires more computational power. SVM finds an optimal hyperplane 

to separate classes, excelling in high-dimensional data with robust accuracy, but it is 

computationally expensive and difficult to tune. KNN is a non-parametric algorithm that 
classifies data based on its nearest neighbors, making it highly interpretable and simple to 

implement, but it struggles with scalability and irrelevant features. Each model excels in specific 

scenarios: RF performs best with large datasets, SVM handles complex decision boundaries 
effectively, and KNN is well-suited for small datasets and pattern recognition. 
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B. Deep Learning Models 
 

Deep learning approaches can automatically extract hierarchical features from network traffic, 

making them suitable for complex classification tasks. The selected deep learning models 

include: 
 

Convolutional Neural Networks (CNNs): Originally designed for image recognition, CNNs 

can learn spatial correlations in network traffic features, improving classification accuracy. 
CNNs are particularly useful for recognizing structured patterns in packet flows. 

 

Long Short-Term Memory (LSTM) Networks: A type of recurrent neural network (RNN) 
designed to capture long-range dependencies in sequential data. LSTMs are well-suited for 

network traffic analysis, where traffic flows exhibit temporal patterns. 

 

Transformer-Based Approaches: Transformers, such as the Vision Transformer (ViT) and 
BERT-like architectures, have demonstrated state-of-the-art performance in sequence 

modeling. These models leverage self-attention mechanisms to capture complex 

dependencies in network traffic, making them promising candidates for classification tasks. 
 

Table 3.  Comparison of Theoretical Characteristics of Deep Learning Models. 

 
Model Feature 

Extraction 

Best For Accuracy Training 

Time 

Complexity Scalability 

Convolutional 

Neural 

Networks 

(CNNs) 

Spatial 

correlations 

in traffic 

Structured 

patterns in 

packet flows 

High Moderate Moderate High 

Long Short-

Term 
Memory 

(LSTM) 

Networks 

Temporal 

dependencies 
in sequential 

data 

Traffic flow 

analysis and 
anomaly 

detection 

High High High Moderate 

Transformer-

Based Models 

Self-

attention for 

complex 

dependencies 

Real-time 

classification 

and cyber 

threat 

detection 

State-of-

the-art 

Very 

High 

Very High Moderate 

to High 

 
Deep learning models offer powerful feature extraction capabilities for network traffic 

classification. Convolutional Neural Networks (CNNs) specialize in recognizing spatial 

correlations within traffic data, making them well-suited for structured pattern recognition and 

intrusion detection, though they require large datasets and GPU acceleration. Long Short-Term 
Memory (LSTM) networks, a type of Recurrent Neural Network (RNN), are designed to capture 

long-range dependencies in sequential data, making them ideal for traffic flow analysis and 

anomaly detection, but they suffer from high training time and vanishing gradient issues. 
Transformer-based models, such as BERT and Vision Transformer (ViT), use self-attention 

mechanisms to analyze complex dependencies across input sequences, achieving state-of-the-art 

accuracy in real-time classification and cyber threat detection, though they require extensive 
computational resources and careful fine-tuning. Each model has its strengths and trade-offs, with 

CNNs excelling in structured traffic patterns, LSTMs in sequential dependencies, and 

Transformers in high-dimensional modeling. 
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4.1.2. Justification for Model Selection 
 

The models selected for this study offer a balance between interpretability, computational 

complexity, and classification accuracy. Traditional ML models such as RF and SVM are chosen 

due to their efficiency and ease of deployment in real-world network security systems. These 
models provide explainable decision-making processes, which are crucial for cybersecurity 

applications where interpretability is required. Deep learning models, particularly LSTMs and 

Transformers, are selected due to their superior ability to model sequential patterns in network 
traffic. Given that network flows exhibit strong temporal dependencies, LSTMs can capture long-

range correlations, improving classification accuracy. CNNs are incorporated to examine their 

ability to capture spatial relationships within traffic feature distributions.. Finally, Transformer-
based models are considered due to their recent success in handling large-scale sequential data, 

providing an opportunity to benchmark their effectiveness against traditional ML approaches. By 

comparing these models, this study aims to identify the most effective approach for network 

traffic classification, considering both accuracy and computational feasibility in real-world 
deployment scenarios. 

 

The integration of AI in network traffic classification provides multiple advantages over 
traditional rule-based approaches. First, AI-driven models can detect previously unseen attack 

patterns, making them highly adaptable to evolving cyber threats. Second, deep learning models 

can automatically extract meaningful features from network traffic, reducing the need for manual 
feature engineering. This is particularly beneficial in analyzing encrypted traffic, where 

traditional approaches like DPI fail. Third, AI models boost the efficiency and scalability of 

network traffic classification by swiftly processing vast amounts of data as it arrives. which is 

crucial for intrusion detection systems (IDS). AI also improves classification accuracy and 
generalization, enabling models to better handle imbalanced datasets where minority-class 

detection is critical. Lastly, AI facilitates automated decision-making and predictive analytics, 

allowing cybersecurity systems to proactively identify threats before they impact network 
operations. Despite these benefits, AI-based methods come with challenges such as high 

computational costs and susceptibility to adversarial attacks, which should be addressed in future 

research. 

 

4.2. Feature Engineering 
 
Feature selection is a critical step in optimizing machine learning models for network traffic 

classification, as it helps reduce dimensionality, eliminate redundant attributes, and improve 

computational efficiency. In this study, we employ several techniques to identify the most 

informative features from the NetML dataset. Figure 2 illustrates the feature selection and 
preprocessing pipeline used in our approach. Principal Component Analysis (PCA) is used to 

transform the feature space into a set of orthogonal components, retaining the most significant 

variations while minimizing redundancy [22]. Mutual Information (MI) quantifies the 
dependency between each feature and the target variable, ensuring that only highly relevant 

attributes are selected. Additionally, Variance Thresholding removes low-variance features that 

contribute little to classification accuracy [23], while Recursive Feature Elimination (RFE) 
iteratively eliminates the least important features based on model performance [24]. These 

selection methods help refine the dataset, ensuring that only the most relevant network traffic 

attributes are used for training. 
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Figure 2.  Feature Selection and Preprocessing for Network Traffic Classification 

 

Handling categorical and numerical features properly is essential for maintaining data 
consistency and improving model performance. The NetML dataset contains both feature types, 

requiring different preprocessing strategies. Numerical features, such as packet sizes, inter-arrival 

times, and byte counts, are normalized using Min-Max Scaling to standardize values between 

[0,1], preventing certain attributes from disproportionately influencing the model. In some cases, 
Z-Score Standardization is applied to ensure a normal distribution, particularly for models 

sensitive to feature scaling, such as SVM and KNN. These preprocessing techniques, as depicted 

in Figure 2, enhance the quality of input data, improving the accuracy and generalizability of both 
traditional ML and deep learning classifiers. 

 

4.3. Evaluation Metrics 
 

To objectively compare model performance, we use a comprehensive set of evaluation metrics: 

 
 Accuracy: Measures the proportion of correctly classified instances across all classes. 

 Precision: Evaluates the model’s ability to avoid false positives, particularly important in 

cybersecurity applications where misclassifying benign traffic as malicious can lead to 

unnecessary alerts. 
 Recall (Sensitivity): Measures the ability to correctly identify malicious traffic, ensuring 

that security threats are not overlooked. 

 F1-Score: The harmonic mean of precision and recall, providing a balanced metric when 
dealing with imbalanced datasets. 
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 ROC-AUC (Receiver Operating Characteristic - Area Under the Curve): Assesses the 
model’s ability to distinguish between benign and malicious traffic, with higher AUC 

values indicating better discrimination. 

 

These metrics provide a holistic evaluation of model effectiveness, ensuring that the selected 
classifier is both accurate and reliable for real-world network traffic classification. 

 

5. RESULTS AND DISCUSSION 
 
The confusion matrices for the LSTM, GRU, and CNN models indicate a challenging 

classification task with a large number of classes. Each matrix has a heavily populated structure, 

suggesting that the dataset consists of many unique labels. The presence of high values along the 

diagonal implies that the models are capable of correctly predicting many of the samples. 
However, the dense distribution of values across different labels suggests that misclassifications 

are frequent, which might indicate overlapping features among different classes. A notable aspect 

of these matrices is the presence of very high values, with some exceeding 70,000. This suggests 
that certain classes dominate the dataset, potentially leading to a bias where the models are more 

likely to predict the most frequent labels. This kind of imbalance can result in lower overall 

accuracy for less common classes, making it difficult for the model to generalize well across all 
categories. The scale of the confusion matrices further suggests that the models might struggle 

with class separability. The presence of many nonzero values across rows and columns indicates 

that multiple classes are being confused with one another. This can be addressed by improving 

feature selection, applying advanced preprocessing techniques, or adjusting model architectures 
to better capture distinguishing patterns. 

 

 
 

Figure 3.  GRU Model, LSTM and CNN Confusion Matrix for Multi-Class Classification  
 

To comprehensively assess model performance, we analyze multiple evaluation metrics, 

including accuracy, precision, recall, F1-score, and ROC-AUC. Accuracy alone is insufficient, as 
network traffic datasets often contain class imbalances, necessitating a stronger focus on 

precision and recall. Deep learning models, particularly LSTMs, achieve high recall rates, 

ensuring that malicious traffic is correctly identified, which is crucial for cybersecurity 

applications. Precision scores vary across models, with RF and CNNs demonstrating a balance 
between detecting malicious traffic and minimizing false positives. F1-score, which considers 

both precision and recall, highlights LSTM as the most effective classifier overall, as it 

maximizes detection efficiency while reducing misclassifications. The ROC-AUC scores confirm 
the superiority of deep learning approaches, with Transformers and LSTMs consistently 

achieving values above 0.9226, indicating excellent separation between benign and malicious 

traffic. 
 

The analysis of LSTM and CNN predictions compared to actual class values for the first 100 

samples highlights notable misclassification trends. Both models tend to favor the most frequent 
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class, struggling to accurately represent variations in less common classes.. The actual values 
exhibit large spikes, whereas the predicted values remain mostly stable near zero, indicating that 

both models struggle with class differentiation. This suggests a possible imbalance in the dataset 

or an inability of the models to generalize beyond dominant classes. To improve performance, 

techniques such as data balancing, refined feature engineering, hyperparameter tuning, or hybrid 
architectures like CNN-LSTM could be explored to enhance the models' ability to capture both 

spatial and sequential dependencies 

 

 
 

Figure 4: Comparison of LSTM and CNN Predictions vs. Actual Class Labels (First 100 Samples) 

 

The model performance comparison indicates that the LSTM, GRU, and CNN models all 
achieved an accuracy of approximately 92.26%. This suggests that all three architectures 

performed similarly on the dataset, likely learning similar patterns and decision boundaries. 

While a high accuracy might initially appear promising, the earlier confusion matrices and 
prediction comparison plots suggest that the models might be biased toward predicting dominant 

classes, leading to potential issues with minority class generalization. Further analysis using 

precision, recall, and F1-score for individual classes would provide deeper insights into class-
wise performance. To improve generalization, techniques like class balancing, feature 

engineering, and hyperparameter tuning could be applied to enhance the models' ability to 

distinguish between diverse classes. Despite high classification accuracy, misclassifications 

remain a challenge, particularly in distinguishing encrypted traffic, polymorphic attacks, and 
adversarially modified packets. In cases of encrypted communications, both traditional and deep 

learning models struggle to infer attack behaviors purely from statistical flow characteristics, 

leading to false negatives. Additionally, polymorphic malware can alter traffic patterns, making it 
difficult for models trained on predefined attack behaviors to recognize emerging threats. 

Transformer-based models show higher resilience to adversarial modifications but at the cost of 

increased computational requirements. Reducing false positives is also critical, as excessive 
misclassifications of benign traffic can lead to operational inefficiencies in cybersecurity systems. 

Future work should explore adversarial training and self-supervised learning techniques to 

improve robustness against evolving attack strategies. 

 

6. CONCLUSION AND FUTURE WORK 
 

This study evaluated multiple machine learning models, including traditional classifiers like 

Random Forest (RF) and Support Vector Machines (SVM) and deep learning architectures such 

as Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks, for 
network traffic classification using the NetML dataset. Our results demonstrate that deep learning 

models, particularly LSTMs, outperform traditional ML models in capturing sequential 

dependencies in network traffic data. The model performance comparison revealed that LSTM, 
GRU, and CNN models all achieved an accuracy of approximately 92.26%, indicating similar 

classification capabilities. However, confusion matrix analysis highlighted significant 
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misclassification patterns, suggesting that the models predominantly predict the most frequent 
class while struggling with less common ones. 

 

Further analysis using precision, recall, and F1-score suggests that LSTMs exhibit superior recall 

rates, making them particularly effective in identifying malicious traffic. Transformer-based 
models showed high resilience against adversarial traffic modifications but came with higher 

computational costs. Additionally, the comparison of predicted versus actual class values for the 

first 100 samples demonstrated that both CNN and LSTM models consistently failed to 
differentiate minority classes, reinforcing the need for better class balancing techniques. 

 

Despite achieving high classification accuracy, issues related to dataset imbalance, model 
generalization, and false positives persist. Challenges such as encrypted traffic analysis, 

polymorphic attack detection, and adversarial modifications remain areas where ML models 

struggle. Future improvements should focus on adversarial training, self-supervised learning, and 

hybrid CNN-LSTM architectures to enhance robustness against evolving cyber threats. 
Additionally, feature selection optimization and hyperparameter tuning can further refine 

classification performance, ensuring more reliable deployment in real-world cybersecurity 

applications. 
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