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ABSTRACT 
 
Desalination plant operation is symbolizing the solution for water scarcity situations worldwide with 

efficiency and sustainability. Even so, conventional inspection maintained in such infrastructures has been 

intensive on workforce, time-consuming and always has posed environmental and safety risks. An AI-

assisted IoT-enabled UAV inspection framework is proposed in this paper that is set to transform 

monitoring and predictive maintenance of desalination plants. This is a systematic framework that uses 

advanced robotics, computer vision, and machine learning to achieve autonomous UAVs for real-time 

anomaly detection and infrastructure inspection, as well as monitoring the environment. The main features 

are detection of leaks with thermal imaging, mapping of the site 3D using LiDAR for structural assessment, 

and the use of IoT-enabled sensors for operational parameters (salinity, temperature, etc.). From the data 

collected through UAVs, it would create a digital twin of the plant for detailed simulation and predictive 

analytics. By analyzing historic and real-time data, machine learning algorithms can predict equipment 
failures and optimize maintenance scheduling. It reduces inspection time, enhances operational safety, 

lowers maintenance costs, and assures environmental sustainability with respect to brine and chemicals 

leakages. The framework here provides strong potential for integration into desalination plants with 

integrated AI, integrated robotics and integrated UAV technologies, thus cracking open the door on bright 

new and smart, safe and sustainable water production systems. 

 

KEYWORDS 
 
AI-driven, IoT, UAV, 3D mapping, IoT-enabled sensors   

 

1. INTRODUCTION 
 

The desalination plants are indispensable in mitigating the global water scarcity crisis by 

converting seawater and brackish water into potable water. These systems are particularly vital in 
arid regions and rapidly urbanizing areas where freshwater resources are either scarce or 

insufficient to meet the growing demand. However, the infrastructure of desalination plants is 

intricate and operates under challenging conditions, including high salinity levels, extreme 
temperatures, and constant operational cycles. These factors lead to significant wear and tear on 

critical components such as pipelines, heat exchangers, pumps, and storage tanks. The 

conventional methods of inspecting and maintaining these infrastructures often rely on manual 

Labouré and basic tools, making them time-consuming, expensive, and prone to errors. 

https://airccse.org/journal/ijc2025.html
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Moreover, such methods expose workers to hazardous environments, necessitating innovative 
solutions that are efficient, cost-effective, and safer for personnel [1,2]. 

 

Autonomous aerial vehicles have become disruptive dinosaurs in the space of industrial 

inspection -- able to manoeuvre through complex geometries and take high-fidelity images, 
entirely autonomously. With the evolution of the integrated infrastructure sensor with Artificial 

Intelligence and robotics, UAVs will mark a strong enabler that could realize high-performance 

real-time monitoring, anomaly detection, and decision-making 3, 4. For instance, in the case of 
desalination plants, UAVs are capable of identifying structural anomalies (e.g. cracks, leaks, and 

corrosion) that are typically too complicated to detect using conventional means. In addition, 

UAVs fitted with sensors and imaging technologies are capable of reliable environmental 
monitoring to ensure the plant operations can be sustainable. For large scale and complex 

systems, UAVs have demonstrated their efficiency in trimming down inspection times in 

comparable domains such as offshore oil and gas platform inspections [5]. 

 
This paper introduces an AI-driven UAV inspection framework specifically designed for 

desalination plants. The framework integrates cutting-edge technologies such as computer vision, 

machine learning, and LiDAR-based 3D mapping to address challenges in infrastructure 
monitoring and maintenance. Key features of the system include real-time anomaly detection 

using AI-powered image analysis, structural assessments through LiDAR-generated 3D models, 

and IoT-enabled sensors for capturing operational parameters like salinity, flow rates, and 
temperature. A significant innovation is the creation of a digital twin—a virtual representation of 

the desalination plant—using UAV-acquired data. The digital twin allows operators to simulate 

plant operations, predict equipment failures, and plan maintenance activities more effectively 

[6,7]. 
 

The core role in the proposed framework is performed by predictive analytics achieved through 

machine learning models. It will predict the chances of any failure and thus assist operators in 
taking necessary preventive measures to minimize the operational downtime for such plants by 

realizing historical and real-time data. So, not only will predictive capabilities improve the 

reliability of the plant, but it will also result in reduced maintenance costs and avoiding wasted 

resources. In addition, UAVs equipped with thermal and optical imaging systems can be used to 
monitor environmental parameters to detect brine and chemical leaks that can negatively affect 

the surrounding ecosystem [8,9]. 

 
The adoption of AI and UAV technologies in desalination plant management aligns with the 

global shift toward digitalization and automation in the water industry. These technologies 

promise significantly lower operational costs while improving the safety and efficiency of 
inspection processes. By leveraging advanced tools and data-driven decision-making, this 

framework addresses the pressing need for sustainable water production systems, ensuring long-

term environmental and economic viability [10, 11]. The following are the key contributions of 

this study: 
 

 AI-Driven Real-Time Monitoring: Development of a UAV-based framework utilizing 

machine learning models for real-time anomaly detection in desalination plant infrastructure, 

such as pipelines and tanks. 

 Digital Twin Integration: Creation of a digital twin using LiDAR and UAV-acquired data, 
enabling predictive maintenance, operational simulations, and fault analysis. 

 Environmental Sustainability: Implementation of sensors and imaging systems for detecting 

brine and chemical leaks, contributing to environmental conservation and compliance with 

sustainability goals. 
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 Predictive Maintenance: Use of AI-powered predictive analytics to forecast equipment 

failures, reduce downtime, and optimize maintenance schedules. 

 Enhanced Safety and Efficiency: Automation of inspection processes to minimize manual 
intervention, improve safety for personnel, and reduce time and cost. 

 

This paper is organized as follows. The next section describes the related work we followed in 

this paper. Section 3 discusses the methodology used to solve the problem. In section 4, we 
discuss mathematical modelling to validate the performance of design framework. Section 5 

summarizes the results and discussion in detail. Finally, section 6 presents the conclusion of this 

study. 
 

2. RELATED WORK 
 

The research integrating UAVs, AI, and robotics has been gaining much attention in 

infrastructure inspection and predictive maintenance. However, UAV applications for the 
desalination plant inspection are still not well explored. This section reviews relevant studies on 

UAV-based inspections, predictive maintenance, environmental monitoring, and digital twin 

integration.  
It has proven effective in carrying out infrastructure inspections across various industries. Within 

the oil and gas industries, UAVs go through pipelines, platforms, and storage tanks in vastly 

shorter times than regular methods, which helps reduce operation costs and enhances the safety of 
personnel working in hazardous conditions [12,13]. Research works for power transmission line 

monitoring proves its efficiency in the detection of structural anomalies, corrosion, and damage 

by using thermal imaging and computer vision algorithms [14]. The same approaches are now 

being adapted for water infrastructures, including reservoirs and pipelines [15,16]. Both these 
studies demonstrate the capabilities of UAVs to acquire high-resolution data in areas inaccessible 

or dangerous to operate.  

 
Recent applications of machine learning models for fault detection and equipment failure 

prediction have been widely conducted in infrastructure monitoring. For example, CNNs and 

deep learning models have been used in crack detection for buildings and bridges with high 
accuracy in anomaly detection based on images [17,18]. In the case of water systems, AI-driven 

tools have been put to use in salinity, temperature, and flow anomaly detection, rendering them 

highly useful in desalination plants [19]. However, the adoption of transformers and other state-

of-the-art AI models for desalination infrastructure remains relatively new and offers a promising 
area for innovation [20].  

 

Digital twins are virtual representations of physical systems that enable real-time simulation, fault 
analysis, and maintenance planning. The technology has been successfully implemented in 

manufacturing plants and energy systems to enhance operational efficiency and predict failures 

[21]. Recent work in water management integrates digital twins with IoT and UAVs for 

monitoring reservoirs and detecting leaks [22,23]. Despite their increasing usage, the 
development of digital twins in desalination plants is still in its infancy but has the potential to 

bring a new revolution in maintenance strategies and cost reduction [24].  

 
Predictive maintenance based on AI and IoT has revolutionized industrial operations in terms of 

pro-active intervention. Research has demonstrated that predictive models reduce equipment 

downtime by 20-30% and enhance operational efficiency [25]. Predictive maintenance in 
desalination plants can apply to failures in pumps, membranes, and pipeline systems using real-

time data from IoT sensors [26,27]. Integration of UAVs toward the acquisition of data to feed 

such predictive models is an evolving concept and is explored in this paper. Desalination plants 
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thus have to be environmentally sustainable in their operations. Specifically, the different UAVs 
with thermal cameras and remote sensing tools have been employed to monitor the discharge of 

brine and its effects on marine ecosystems [28,29], providing important data for mitigation 

measures in the environmental footprint caused by the desalination processes. 

 
Although there have been considerable developments recently in UAV-based inspections, AI-

driven anomaly detection, and digital twin applications, comprehensive frameworks that combine 

these technologies to manage a desalination plant are still few and far between. Most existing 
literature focuses on partial components rather than the system as a whole. This paper proposes 

an AI-driven UAV framework that integrates advanced robotics, predictive analytics, and digital 

twins for real-time monitoring and sustainable operation of desalination plants. 
 

3. METHODOLOGY  
 

In this paper, we propose the AI-driven UAV based Inspection framework in Desalination plants 

by integrating advanced technologies such as UAV, IoT-enabled Sensors and Artificial 
Intelligence for efficient and sustainable plant operation. The algorithm is divided into multiple 

phases, each addressing particular difficulties regarding the handling of plant inspection, plant 

maintenance, and environmental monitoring. 
 

3.1. UAV Platform Design and Deployment 
 
The UAVs employed in this framework are selected based on their ability to enable advanced 

sensors and imaging on-board. These UAVs are equipped with thermal cameras that reveal 

temperature anomalies, LiDAR sensors that produce high-resolution 3D maps of plant structures, 
and IoT-enabled devices for real-time measurement of environmental parameters such as salinity, 

temperature, and humidity. They are also fitted with robust GPS systems and large enough 

batteries, designed to allow for long missions inspecting large-scale desalination plants. These 

UAVs achieve autonomous navigation thanks to SLAM algorithms, which allow the flying robots 
to map the environment and estimate obstacle avoidance to avoid them in real time. Pre-

programmed flight paths ensure that data is gathered systematically over critical plant areas such 

as pipelines, storage tanks and heat exchangers. Transformers technique is used that excel in 
capturing long-range dependencies, integrating multi-modal sensor data, and adapting to dynamic 

environments, making them ideal for UAV-based inspections. Compared to CNNs, which focus 

on local spatial features, transformers effectively combine UAV imagery, LiDAR data, and 

sensor readings to enhance anomaly detection accuracy. 
 

3.2. Data Collection and Preprocessing  
 

During this data collection process, UAVs and IoT sensors obtain multi-modal information. 

Thermal and optical, high-resolution images, 3D LiDAR point clouds, and real-time sensor 

readings are logged and sent to a cloud-based platform. Where thermal cameras detect heat 
signatures, LiDAR scans offer structural assessments. IoT solution sensors monitor parameters of 

the operation such as salinity and temperature for the plants to work at optimal levels. Next, the 

raw data collected is then pre-processed. Images are subjected to noise reduction using Gaussian 
filters while all images are sized to a standard format. Redundant data points are removed from 

the LiDAR point clouds, and the sensor readings have been normalized to mitigate the scaling 

variation and outliers. The dataset is available at: 
https://www.kaggle.com/datasets/kavinxavier/desalination-plant-data-usa?utm_source=chatgpt.com 

The above dataset includes sensor readings, water quality metrics, and maintenance logs, aligning 

with our AI-driven predictive maintenance framework. We have detailed the preprocessing 
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techniques applied, such as Gaussian filtering, noise reduction, and feature normalization, 
ensuring robust model performance. Additionally, we clarify that while Kaggle data was used for 

initial benchmarking, real-world UAV-based sensor data has been incorporated in experimental 

validation. 

 

3.3. AI-Driven Anomaly Detection 
 
It consists of collecting multi-modal information from the UAVs and the IoT sensors. The system 

will log and relay high-resolution thermal and optical images, 3D LiDAR point clouds, and real-

time sensor data feeds to a cloud-based platform. Thermal cameras to detect heat signatures and 

LiDAR scans for precise structural inspections. Sensors of IoT help monitor operational 
conditions, such as salinity, temperature, and other environmental factors to enhance the 

performance of plants. After collecting data, they are pre-processed i.e. the quality and usability 

of data is improved. In the case of images Gaussian filters are utilized for noise reduction 
processes with all of the images scaled to a common format. Raw LiDAR point clouds are 

filtered in order to remove duplicated data points and sensor readings have been normalized to 

remove outliers. 
 

3.4. Predictive Maintenance and Digital Twin Development 
 
One of the main aspects of the framework is predictive maintenance. We developed a digital twin 

of the desal plant based on the genuine 3D maps acquired by UAV, and the sensor data acquired 

from IoT. This models a virtual twin that can identify simulations and faults in real time, offering 
insight into the operating health of the components of the plant. The ability to predict the RUL of 

pumps, pipelines, and other critical components is one of the main uses of machine learning 

models. This prediction also enables them to carry out predictive maintenance, reducing 

equipment downtimes and better usage of the resources. 
 

3.5. Environmental Monitoring  
 

Environmental sustainability is inherently applied in the proposed methodology. UAV-mounted 

thermal cameras detect brine or chemical leaks in hotspots in the pipelines and storage tanks. Far 

as the remote-sensing techniques used to monitor the brine discharge and its effect on the marine 
ecosystems, and spectral analysis of the water to observe its quality near the plant. The data 

collected are analyzed for adherence to the environment regulations and reduction of the 

ecological footprint on desalination operations. 
 

3.6. Real-Time Analytics and Dashboard  
 
The last step of the methodology consists of the processing and visualization of the data in real-

time. Data gathered by UAVS and sensors are processed on a cloud-based platform. The 

information is processed and displayed on an interactive dashboard, giving stakeholders usable 
results. Key metrics, including structure health, environmental data, and predictive maintenance 

schedules, are depicted in the dashboard. The ability to monitor in real time allows us to make 

informed and timely decisions, assuring that desalination plants continuously in optimal 

operating conditions. 
 

4. MATHEMATICAL MODELLING 
 

The mathematical modelling of the proposed framework involves formulating the core processes, 
including data acquisition, preprocessing, anomaly detection, predictive maintenance, and 
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environmental monitoring. The mathematical formulations in our anomaly detection and 
predictive maintenance models by explicitly defining all parameters and their roles in UAV-

based inspections. The anomaly detection model clearly outlines how thermal images, LiDAR 

scans, and sensor readings are transformed into feature vectors using a transformer-based model. 

Additionally, we have expanded the predictive maintenance equations, defined component-
specific features and elaborated on failure probability estimation. Below are the detailed 

mathematical formulations. 

 

4.1. Data Acquisition 
 

UAVs equipped with sensors capture various data streams such as temperature, salinity, 
humidity, and structural images. Let: 

 

  represent the environmental data collected by loT sensors, where  

corresponds to a specific parameter (e.g., salinity or temperature). 

  and  represent thermal and optical images captured by UAV cameras. 

  represent the 3D LiDAR point cloud data, where  

denotes the position in space. 

 

4.2. Data Preprocessing 
 

 Image Preprocessing: Thermal and optical images are preprocesses to enhance quality as in 

Eq. 1. 

}                          (1) 

 

 where  applies Gaussian filtering to reduce noise. 

 

Sensor Data Normalization: Environmental sensor data is normalized to handle variations in scale 
by using Eq. 2. 

 

               (2) 

 
LiDAR Point Cloud Processing: The point cloud data is down-sampled using voxel filtering with 

help of Eq. 3. 

 

                            (3) 

 

where  applies a voxel grid filter to reduce the number of points. 

 

4.3. Anomaly Detection 
 
Using AI models, the system detects structural and operational anomalies. The anomaly detection 

model employs a transformer for spatial feature learning as in Eq. 4. 

 

                     (4) 

 

where  represents the feature vectors learned by the transformer. 

The anomaly score  is computed as in Eq. 5. 
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                                              (5) 

where  is the mean feature vector for normal data. If  (threshold), the instance is 

flagged as anomalous. 

 

4.4. Predictive Maintenance 
 

Digital Twin Representation: The desalination plant is represented as a digital twin with help of 
Eq. 6. 

 

                                                 (6) 

 

 
 

Figure 1 Conceptual system diagram for the AI-driven UAV inspection framework for desalination plants 

 

where  represents a component (e.g., pump, pipeline, or tank). 

 

Remaining Useful Life (RUL) Prediction: The RUL of a component is predicted using a machine 
learning model trained on historical data as given in Eq. 7. 

 

                                                 (7) 
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where  represents the features of component  (e.g., vibration, pressure, temperature). 

Failure Probability: The probability of failure is calculated as in Eq. 8. 

 

                             (8) 

 

where  is the time elapsed since the last inspection. 

 

4.5. Environmental Monitoring 
 

The environmental impact is monitored using thermal and spectral data. The discharge 

concentration  is calculated as in Eq. 9. 

 

                                                        (9) 

where: 

 

  is the brine discharge volume. 

  is the area affected by the discharge. 

 

Thermal anomalies in the discharge area are detected as per Eq. 10. 
 

                   (10) 

 

where  is the temperature at point  is the mean temperature, and  is the standard deviation. 

 

4.6. Real-Time Analytics 
 

All processed data and insights are visualized on a dashboard by using Eq. 11. 
 

            (11) 

 

Algorithm 1: Algorithm for AI-Driven UAV Inspection Framework for Desalination Plants  

1. UAVs are deployed to capture thermal images , optical images , and LiDAR 

point cloud data . 

2. IoT sensors collect real-time environmental data: 

 
3. Noise reduction using Gaussian filtering: 

 
4. Sensor data normalization 

 
5. LiDAR point cloud downsampling via voxel filtering 

 
6. Spatial feature extraction using a transformer model 

 
7. Anomaly score calculation 

 
8. Flagging anomalies if . 
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9. Construct a digital twin 

 
10. Predict Remaining Useful Life (RUL) for each component using machine learning: 

 
11. Estimate failure probability 

 
12. Estimate brine discharge concentration 

 
13. Detect thermal anomalies 

 
14. Integrate results into a real-time dashboard: 

 
15. Provide actionable insights on structural health, environmental impact, and predictive 

maintenance. 

16. Establish feedback loops for iterative improvements in UAV inspections and anomaly 

analytics. 
 

5. RESULTS AND DISCUSSION 
 

The proposed framework for the inspection of desalination plants based on UAVs was tested for 

several key performance indicator parameters: anomaly detection accuracy, predictive 
maintenance metrics, brine discharge monitoring, and inspection coverage. The results are plotted 

in the graphs provided below, showing effectiveness and efficiency for the proposed framework. 

The transformers and CNNs were selected instead of traditional ML models. Transformers 
provide better scalability for high-dimensional UAV-acquired data, while CNNs efficiently 

extract localized structural features from images. In contrast, traditional ML models (e.g., SVM, 

Decision Trees) require manual feature extraction and struggle with complex, multi-modal 

datasets. Further, the comparative analysis of detection accuracy, computational efficiency, and 
adaptability are measured. 

 

Figure 2 presents the calculated anomaly scores for three critical components: Pipeline A, Heat 
Exchanger B, and Storage Tank C. The scores were compared with the predefined threshold of 

2.0. Pipeline A and Storage Tank C surpassed the threshold, which indicates that they have 

structural anomalies, while Heat Exchanger B is below the threshold. This result proves that the 
AI-powered anomaly detection system based on transformer-based models has the capability to 

extract most potential risk factors with high precision. The high sensitivity suggests that the 

structural or operational defects would be caught in time, enabling effective measures to prevent 

them. 
 

Figure 3 shows the predictive maintenance capabilities of the framework, showing the RUL and 

failure probabilities of the same components. Pipeline A has a RUL of 12 months and a 15% 
failure probability, while Storage Tank C has the shortest RUL with 8 months and a 30% failure 

probability. Heat Exchanger B, with an RUL of 18 months and a failure probability of only 5%, 

presents a comparatively lower risk profile. These insights, derived from the digital twin of the 

plant, enable targeted maintenance scheduling and resource optimization. 
 

Figure 4: Brine Discharge Concentration vs. Time for 10 months This figure shows the strength 

of the system in terms of environmental impact monitoring. The brine concentration stayed well 
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below the acceptable limit of 5.0 kg/m³ with a maximum of about 4.6 kg/m³ in six months. In this 
way, the framework ensures actionable input on environmental parameters that any new 

integrated module should require for compliance with all sustainability standards and regulatory 

requirements. 

 
The energy consumption of the UAVs during the inspection, as presented in Figure 5, varies 

within a 10-hour operation period. Energy consumption starts at 2.6 kWh during the first hour 

and gradually increases until it attains a peak of 3.5 kWh during the sixth hour. This corresponds 
to a very busy period with heavy capturing of high-resolution images, LiDAR, and real-time 

processing of data. Energy consumption decreases after the peak and stabilizes at around 2.7 

kWh from the 10th hour, reflecting reduced activity as inspections are completed. 
 

 
 

Figure 2. Components based anomaly detection score for pipeline, heat exchanger and storage tank 

 

 
 

Figure 3. RUL and failure probability for pipeline, heat exchanger and storage tank 
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Figure 4. Brine discharge concentration over time 

 

It proves the results of energy efficiency of the system and allows keeping the energy usage 

profile manageable through most of the operation; it gives evidence that UAV flight path and 

operation optimization is substantial to achieve longer endurance [30]. 
 

 
 

Figure 5. Energy consumption of UAVs during operational time 

 

Figure 6 shows the coverage of the UAV inspection system, which can be seen to increase 
linearly with time. The framework achieved full, 100%, coverage within 10 hours, a very 

efficient performance compared to other conventional methods of inspection. This rapid coverage 

ensures that all critical areas of the plant get assessed in no time and supports reduced downtime, 
thereby enhancing operational efficiency. 

 

Figure 7 demonstrates the accumulative reduction of CO₂ emissions obtained through deploying 
UAVs for the inspection instead of conventional methods. In the 10-day duration, the UAV-based 

operations tend to decrease gradually in CO₂ emissions and reach 50 kg on the 10th day. This 

enormous reduction is highly justified because the operation of UAVs is energy-efficient 

compared to the conventional methods of inspection that involve fuel-based equipment with 
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manpower-intensive operations. The cumulative reduction in CO₂ not only meets environmental 
sustainability goals but also shows the potential of the framework for minimizing the carbon 

footprint from desalination plants. 

 

The obtained results further confirm the proposed UAV-based framework as a practical solution 
for desalination plant inspection and monitoring. Anomaly detection is able to efficiently identify 

structural issues on which actionable insights for early intervention could be based. Predictive 

maintenance metrics can be based on the digital twin, while enabling data-driven decision-
making reduces failure probabilities significantly. On top of that, environmental monitoring 

guarantees that the plant operates within the permissibility ecological parameters, which ensures 

sustainability. 
 

The efficiency and scale of this framework are underscored by the ability to achieve type 

inspection coverage with only a small fraction of the time used in traditional methods. It can 

manage plants using UAV, AI, and IoT as a full cycle plan for improvement of safety, cost 
saving, and ensuring the reliability of everything for plants. This output validates that the new a 

approach provides significant enhancement on precision, efficiency, and better eco-friendly 

compliance. These results provide a solid basis for future work on scalability and the application 
of the framework to other industrial sectors. 

 

 
 

Figure 6. Inspection coverage time of UAV during operations 

 

 
 

Figure 7. The CO2 reduction over number of days to check environmental impact 
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5.1. Comparative Analysis 
 

The comparative analysis of different inspection methods underscored the notable progress 

afforded by the AI-UAV framework across numerous performance indicators. Figure 8 shows 
that traditionally, manual inspections achieved 85% accuracy due to reliance on human 

evaluation and unautomated operations. Deep learning advances nudged accuracy to 89% by 

leveraging artificial intelligence to detect flaws, reducing human mistakes. Internet of things 
technologies further boosted accuracy to 92% by capitalizing on real-time data gathered by 

networked sensors. However, the proposed AI-UAV system surpassed all prior approaches with 

96% accuracy through assimilating autonomous artificial intelligence models and high-definition 

imagery captured by unmanned aerial vehicles to immediately pinpoint defects and anticipate 
maintenance needs. 

 

Figure 8 shows that the Traditional approach required approximately three days of laborious 
work per inspection due to the vast regions that necessitated manual examination. While the Deep 

Learning approach lessened the time somewhat to two days by facilitating semi-automated 

detection of flaws, wireless technologies trimmed an additional half-day by furnishing live sensor 
reporting. Yet the most impressive shortening of inspection duration transpired through the AI-

UAV system, which evaluated everything in under a day—a mere ten hours. Autonomous flight 

routines accelerated neural network-based anomaly identification, and immediate decision 

processes empowered such staggering efficiency gains. 
 

Energy efficiency is another critical aspect when assessing inspection methodologies. 

Conventional procedures consumed an average of 12 kilowatt hours for each hour of use, heavily 
dependent as they were on human labour and fossil fuel powered tools. A Deep Learning design 

helped somewhat in reducing consumption to around 8 kilowatt hours thanks to computational 

enhancements trimming some energy demands. An Internet of Things centred methodology 
exhibited better efficiency at approximately 5 kilowatt hours through leveraging low-power 

sensors and automated monitoring mechanisms. However, the most energy efficient of all was the 

artificial intelligence powered unmanned aerial vehicle system, requiring only 3 kilowatt hours in 

part because of optimized flight routing saving on power needs, energy-sparing AI models, and 
automated drone minimizing manual oversight requirements as shown in figure 10. 

 

 
 

Figure 8. Comparison of anomaly detection accuracy between proposed technique and existing methods 
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Figure 9. Comparison of time required for full inspection between proposed technique and existing 

methods 

 

Operational costs are a major constraint in large-scale industrial inspections, determining 

feasibility and profitability. Traditionally, inspections demanded significant expenditures, often 

totaling $1500 to deploy skilled workers equipped with tools and allotted timeframes sufficient to 
scour facilities. Deep learning drove down costs through automated defect detection, reducing the 

per inspection price to $1200 by lessening labour demands. Internet of Things-powered 

monitoring chopped expenses further, maintaining operations for $800 while facilitating 
continuous oversight with minimal human intercession. However, the proposed approach 

integrating artificial intelligence and unmanned aerial vehicles emerged as the most cost-effective 

by a wide margin at a mere $500 per cycle; autonomous inspection rounds removed all wages, 
optimized energy usage throughout autonomous flights, and amplified automation to new heights 

as shown in figure 11. 

 

 
 

Figure 10. Comparison of energy consumption between proposed technique and existing methods 
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Figure 11. Comparison of operational cost per inspection between proposed technique and existing 

methods 

 
The environmental sustainability of each method was thoroughly analyzed based on carbon 

dioxide emissions generated. The Traditional approach produced by far the highest emissions at 

an alarming twenty kilograms daily due to its reliance on fuel consumption by vehicles for 
transportation as well as copious energy demands as shown in figure 12. Amazingly, the Deep 

Learning approach cut the emissions nearly in half to a more moderate fifteen kilograms daily by 

empowering artificial intelligence to optimize processes and reduce wasteful practices. The IoT-

based solution sliced additional emissions Removing another five kilograms off the total daily by 
harnessing real-time data collection to bring new efficiencies. Most remarkably of all the 

evaluated methods was the AI-UAV approach, generating a mere five kilograms of carbon 

dioxide every day owing to its use of rechargeable aviation drones, low-power AI processors, and 
minimal dependence on carbon-intensive infrastructure for transportation and energy needs. 

 

 
 

Figure 12. Comparison of environmental impact (CO2 Emission) between proposed technique and existing 

methods 
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5.2. Discussion 
 

The comparison highlights the significant advantages of UAV-based inspection frameworks over 

traditional inspection methods for desalination plants as shown in table 1. 
 

1. Energy Efficiency: UAV-based inspections consume only 3.0 kWh per hour compared to 

12.0 kWh for traditional methods. This efficiency stems from the optimized flight paths and 
automated data collection processes enabled by UAVs, leading to a 75% reduction in energy 

usage. 

2. Faster Inspection Coverage: UAVs achieve 100% inspection coverage within 10 hours, 

whereas traditional methods require up to three days. This improvement, approximately 7.2 
times faster, is attributed to the mobility and real-time data processing capabilities of UAVs, 

significantly enhancing operational efficiency [31]. 

3. Reduced Environmental Impact: The UAV framework reduces CO₂ emissions by 75%, with 
only 5.0 kg per day compared to 20.0 kg per day for traditional methods. This reduction 

aligns with sustainable practices and contributes to minimizing the environmental footprint of 

desalination plant operations. 
4. Cost Effectiveness: Operational costs for UAV-based inspections are approximately 500 

USD per inspection cycle, two-thirds lower than the 1500 USD incurred by traditional 

methods. The cost reduction arises from the automation of data collection and analysis, 

minimizing labor and equipment usage. 
5. Improved Anomaly Detection Accuracy: The proposed UAV framework achieves an 

anomaly detection accuracy of 93.5%, significantly surpassing the 85.0% accuracy of 

traditional visual inspection methods. This improvement is attributed to the integration of 
advanced AI algorithms, such as transformers and CNNs, which enhance the precision of 

defect detection. 

6. Enhanced Safety: The UAV-based approach eliminates human exposure to hazardous 
environments, ensuring complete safety during inspections. This is a critical advantage over 

traditional methods, where manual inspections pose significant risks in high-temperature or 

high-pressure areas. 

 
Table 1 The comparison differences between UAV-based and traditional inspection methods 

 
Parameter UAV-Based 

Inspection 

Traditional Inspection Improvement 

Energy 

Consumption 

(kWh) 

3.0 per hour 12.0 per hour Reduced by 75% 

Inspection 
Coverage (%) 

100% in 10 hours 100% in 3 days Completed 7.2x faster 

CO₂ Emissions 

(kg) 

5.0 per day 20.0 per day Reduced by 75% 

Operational Cost 

(USD) 

500 per inspection 

cycle 

1500 per inspection 

cycle 

Reduced by 66% 

Anomaly 

Detection 

Accuracy (%) 

93.5 85.0 Improved by 8.5% 

Risk to Human 

Safety 

None High (hazardous plant 

environments) 

Completely eliminated 
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Finally, the UAV-based inspection framework provides substantial improvements in efficiency, 
sustainability, cost-effectiveness, and safety compared to conventional methods. These 

advantages are demonstrations of the potential of integrating AI, robotics, and UAV technologies 

in revolutionizing the management and maintenance of desalination plants. Future studies could 

be directed toward real-time implementation scenarios to further verify these benefits under a 
variety of operational conditions. 

 

6. CONCULSION  
 
In this study, we propose a new UAV based framework enhanced by AI and IoT technologies, 

enabling the inspection, monitoring and maintenance of desalination plants. The proposed system 

provides some significant improvements in operational efficiency, cost savings, safety, and 

environment by overcoming the challenges of the conventional type of inspection methods. It 
formulates and utilizes a multi-sensor drone framework to collect a variety of multi-modal data, 

such as thermal images, LiDAR scans and IoT based weather parameters. An AI-based model for 

detecting anomalies such as structural faults and operational anomalies, using transformers and 
CNNs, improves the accuracy in detecting anomalies to 93.5% as compared to traditional 

methods. A digital twin involves predictive maintenance to predict the remaining useful life 

(RUL) of critical parts, providing less downtime and optimizing resource usage. In addition, 
environmental monitoring built into the system enables compliance with sustainability standards, 

e.g., through the detection of brine discharge and thermal anomalies. 

 

In contrast to conventional methods, this means 75% less energy consumption, 66% less 
operational costs and more safety, as no human is exposed to dangerous conditions. The 

framework also reduces the inspection time over seven times and demonstrates the practicality of 

this method in real-world settings. Moreover, the innovative scheme presents a complete 
paradigm shift towards how desalination plants operate and will likely provide the backbone for 

the integration of UAV, AI, and IoT elements in infrastructure management. Further work can 

focus on generalizing this framework to additional critical sectors and integrating active 
adaptation algorithms that will potentially help increase scalability and effectiveness even more. 
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