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ABSTRACT 
 
Traditional or default Software-Defined Networking (SDN) generally relies on reactive or static routing, 

where a new flow entry is added for a new arriving packet in a switch. This can create inefficiencies in 

processing dynamic network conditions. To solve this issue, a Machine Learning-based Proactive 

Rerouting Scheme (MLPRS) has been developed to dynamically balance load in real-time networks by 

rerouting flow and enhancing Quality of Service (QoS) compared to the default SDN. However, SDN can 

face challenges from conflicting flows occurring due to priority and action adjustments that may affect 

network throughput and bandwidth. Therefore, this article introduces an Online Active ML-based Conflict 

Flow Avoided Proactive Rerouting Algorithm (OAMLCFAPRA) to discriminate between normal and 

conflict flows in SDN based on the behavioural changes of flows over time. To achieve this, an online 

learning algorithm with a customized weighting scheme called Iterative Confidence-Weighted Learning 

(ICWL) is executed in the controller plane. Initially, it preprocesses the generated flows and trains the 
ICWL to identify them as normal and conflicting based on their behavioural features. Then, the priorities 

of each flow are assigned by the ICWL, and the normal flows are directed to OpenFlow. Additionally, the 

ICWL classifies the conflicting flows into several types based on their features such as priority, IP address, 

and action. Moreover, the betweenness centrality algorithm determines each link’s significance, and the 

load on each link is monitored. When the most significant link is overloaded, the flow is rerouted to prevent 

congestion in real-time. Finally, experimental results show that the ICWL achieves high accuracy in 

classifying conflict flow types and the OAMLCFAPRA increases network throughput and bandwidth 

compared to conventional algorithms. 
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1. INTRODUCTION 
 

The demands of contemporary data centre environments and network applications cannot be fully 
accommodated by conventional network design. Therefore, SDN was created to allow engineers, 

cloud, and network managers to stay up to date with constantly evolving business needs through 

a centralized management console [1-2]. Additionally, SDN incorporates a number of network 
technologies to ensure the network is resilient and extensible, meeting the needs of storage 

systems and virtualized servers seen in today's data centres [3-4]. Furthermore, the initial purpose 

of SDN was to design, construct, and manage networks [5-6]. Because the network control and 

https://airccse.org/journal/ijc2025.html
https://doi.org/10.5121/ijcnc.2025.17401


International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.4, July 2025 

2 

forwarding planes are separated, this enables direct network programmability and independence 
of the basic planning of network services and applications [7-8]. SDN is perfect for the dynamic 

nature of contemporary high-bandwidth applications since it is often affordable, controllable, 

dynamic, and adaptable [9-10]. 

 
SDN offers a framework for virtualized execution that separates network control operations from 

network forwarding traffic [11]. The SDN controller permits complicated network configuration 

in addition to the integration of several network devices (such as routers, switches, and access 
points) that facilitate the execution of diverse network management functions [12-14]. SDN 

attempts to give users more choices over their management setup while preserving network 

performance criteria [15-16]. This viewpoint has led to the development of MLPRS [17], which 
dynamically balances load in real-time network topology to improve QoS. Applications were 

categorized and flow priorities were assigned based on their category using ML techniques. Each 

link's significance in the network was determined using the betweenness centrality algorithm, and 

the connections were arranged in the betweenness set. To prevent congestion, it also tracked the 
traffic on all connections and diverted it in real-time when the most crucial links were 

overloaded. 

 

1.1. Problem Statement 
 

SDN applications can manage systems by providing load balancing, access control, and routing, 
which are the most relevant features of SDN. On the other hand, SDN is impacted by a variety of 

conflicting flows, which can reduce network efficiency. Furthermore, conflicts in SDN arise from 

the influence and change of specified aspects, including priority and actions. Improving network 
speed and bandwidth also requires detecting and classifying competing flows. 

 

1.2. Contributions of this Study 
 

In this manuscript, an OAMLCFAPRA is proposed for SDN. In order to improve the load 

classification model, an efficient model is introduced to handle the classification of both flow 
types and conflicting flow types. This model combines normal flow routing, conflict flow 

removal, and rerouting of normal flows from congested paths. While standard ML techniques are 

scalable, they may not be robust to changes in the statistical properties of flow variables over 

time. To address this, an ICWL with a customized weighting scheme is introduced to adapt to 
evolving network conditions and rule changes. The key contributions of this study are: balancing 

and quality of service, this study primarily aims to distinguish between regular and conflict flows 

in SDN by observing how their behaviour evolves over time. A unified ML  
 

• First, the generated flows are pre-processed and verified by the ICWL executed in the 

controller plane to obtain flow behavior features, including MAC address, IP address, and 
action. Based on these features, flows are recognized as normal and conflicting. 

• Then, the priorities of each normal and conflicting flow are assigned by the ICWL in the 

controller plane, and the normal flows are directed to OpenFlow. Additionally, the 

conflicting flows are further categorized into several types by the ICWL in the controller 
plane based on their priority, IP address, and actions. 

• Moreover, the betweenness centrality scheme is utilized to determine the significance of 

all links, and the load on each link is monitored. When the most significant link is 
overloaded, the flow is rerouted to prevent congestion in real time. 

• Thus, this ICWL demonstrates the ability to achieve superior performance in the 

identification and categorization of conflicting flows in SDN, resulting in increased 
throughput and bandwidth usage. 
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The remaining sections are prepared as follows: Section 2 covers the literature survey. Section 3 
explains the OAMLCFAPRA and Section 4 illustrates its effectiveness. Section 5 concludes the 

study and suggests future enhancements. 

 

2. LITERATURE SURVEY 
 
ML techniques are a widely acknowledged option for SDN traffic categorization since they 

leverage collected statistical data to categorize data flows. Statistical data are mostly used to 

categorize flows, and the various flows are divided into multiple types or groups depending on 
these data [18]. For SDN network traffic classification, ML algorithms are developed at the 

control layer and data layer. In the initial scenario, the SDN controller gathers data and, working 

with the application layer, uses it to execute access or forwarding strategies [19]. This task is 

carried out as follows: (i) the controller receives the information via OpenFlow Protocol and 
mines the required characteristics, and (ii) the classifier learns those characteristics and 

categorizes the traffic. Another such setup is data-level classification using the P4 programming 

language to embed ML methods into flow-level switches. Most research methodologies that 
address network traffic classification issues in SDN use OpenFlow protocol data to extract 

relevant characteristics to feed the classification process's input. This section reviews current 

studies on the ML-based traffic flow classification in SDN. 
 

Liang and Su [20] presented the SDN flow instruction conflict recognition knowledge graph to 

accumulate the system data with flow rules. Construction instructions were set according to the 

definition of flow instruction conflicts, which were conflicts in one table and conflicts among 
multiple tables. However, its complexity was high when considering multiple conflicts or a large 

number of flows. Aqdus et al. [21] analysed Feed Forward Neural Network (FFNN), K-Means, 

and Decision Tree (DT), to identify and categorize low-rate collision flows in SDN. However, 
number of dropped packets and latency were high. Mohammadi et al. [22] developed a flow 

category discriminator and a greedy mechanism for optimal resource distribution according to the 

flow categories in SDN. However, it cannot discriminate conflicting flows, resulting in low 
scalability and reliability of the network. 

 

During the load balancing phase, Ananth [23] created a DeepQ Residue method to examine both 

typical and problematic flow patterns. A hybrid Support Vector Machine (SVM) with an 
improved DT was used to predict accuracy and performance. However, precision and recall were 

low. Khairi et al. [24] developed an Extremely Fast Decision Tree (EFDT) classification method 

to recognize and categorize multiple conflicts inside the flow table using varying numbers of 
flows in SDN. However, its complexity was high and accuracy was low while using a large 

amount of flow data.  

 

Han et al. [25] developed a comprehensive flow rule conflict identification technique that 
enhances real-time detection of explicit conflicts (both static and dynamic) and reduces false 

positives in implicit (dependency) conflict detection. They presented a real-time explicit conflict 

detection algorithm based on the Protocol-Divided Trie (PDT), which classifies flow rules by 
protocol type and utilizes a prefix tree for rapid matching. However, the detection time was high. 

Serag et al. [26] investigated ML techniques to categorize SDN traffic flows according to factors 

such as packet size, protocol type, and application behaviour. On the contrary, the efficiency of 
such techniques depends on the quality and quantity of information. For large-scale datasets, 

these techniques achieved low accuracy and high detection time.Abdulqadder and Aziz [27] 

investigated Q-learning techniques to categorize SDN traffic flows and provide  security using 

block chaining to allow   any flow inside SDN network. However, this technique implemented 
only for 5G network. It has to be enhanced to support 6G enabled networks.   .  
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2.1. Research Gap 
 

Despite significant advancements in SDN traffic classification using ML methods, existing 

methods face issues in handling conflicting flows effectively, leading to a degradation in network 
performance. Knowledge graphs and DT-based approaches to conflict flow identification have 

been investigated before, however these approaches have issues with real-time conflict flow 

categorization, scalability, and adaptability. Most methods have been shown to yield high 
detection times, lower accuracy, or increased computational complexity while handling large-

scale networks with dynamic traffic. In addition, conventional ML models also often do not 

possess the ability to adapt to the evolving statistical properties of network flows, hence 

degrading their effectiveness in real-time proactive rerouting. To solve these limitations, this 
study presents the OAMLCFAPRA aimed at enhancing SDN effectiveness by dynamically 

classifying, prioritizing, and rerouting flows while also minimizing real-time conflicts. 

 

3. PROPOSED METHODOLOGY 
 

This section describes the OAMLCFAPRA in SDN for flow classification and rerouting. Figure 1 

portrays the architecture of this proposed study. This proposed study applies the ICWL to classify 

normal and conflicting flows and allocate flow priorities according to the flow types. Then, it 
determines the betweenness of all routes in the network and ranks routes in decreasing order of 

betweenness. Each route from the betweenness set is examined individually, and the traffic load 

is assessed. If the load exceeds 50% of the link capacity, packet priority is evaluated. Flows with 
packets of high priority are instantly rerouted to avoid congestion and packet loss. 

 

 
 

Figure 1.  Architecture of the Proposed Study 

 

3.1. Problem Formulation 
 

Assume a network , where  and  are nodes and links or edges, respectively. Here, 

, where  is the  link and  represents a sum of links. Consider 

 is the set of capacities of each , where  is the  link capacity.  

denotes the set of flows with a source and destination, represented as , where  

is the  flow.  is the set of routes, where every route in  refers to a sequence of links joining 
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a source and destination nodes, denoted as , where  is the  route and 

 indicates a sum of routes. Every route  in  holds a betweenness score , indicating 

how frequently the route is used in the network. 

 

The objective is to maximize network throughput by assigning priorities and paths to each flow in 

. The optimization problem is defined as : 

 

1. Flow priority: Flows with high priority are rerouted immediately when a route’s load 
capacity is greater than 50%. Low-priority flows are positioned in a ranked list for later 

rerouting. 

2. Capacity: A sum of traffic on  in  should not be greater than its . 

3. Routing criteria:  in  should be directed between its source and destination via a route 

in . 

4. Betweenness: Routes in the betweenness set are prioritized for routing based on their 
betweenness score in decreasing order. 

 

As a result, increasing the network's total flow is the goal of the objective function. This is 
subject to constraints that prioritize and route flows effectively, while also ensuring that the 

network is capacity and routing criteria are maintained. 

 

3.2. Flow Generation and Pre-processing 
 

This study developed an SDN dataset by generating and collecting normal and conflicting flows 
from the OpenFlow table. The procedure involves three stages, as illustrated in Figure 2: 

generating normal flows from the running topology, creating and implementing conflict rules in 

the OpenFlow table, and generating conflicting flows. 
 

 
 

Figure 2.  Generation of Normal and Conflicting Flows 

 
Flows are considered conflicting if they conflict with the flow instructions in the switch. 

Repetition, overlap, shadowing, correlation A, correlation B, generalization, and imbrication are 

the seven types of competing flows found in this dataset. The pre-processing is used to create 

flows from the OpenFlow switch for classification. Relevant characteristics like action, protocol, 
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MAC address, and IP address are extracted to train the ICWL. Conflicts can be classified based 
on these characteristics. Pre-processing deletes missing data points where missed attributes are 

more than three otherwise applying mean imputation methods to handle them. Remove data 

duplicates. The outliers are distorted by the Z-score normalization model. 

 
In this study, Fat Tree Topology (FAT) is simulated for an SDN network. The experiment 

employed the Ryu controller to connect with an OpenFlow switch version 1.3 for data evaluation 

in both topologies. The topologies were set up in Mininet and linked to the Ryu for traffic 
generation. The FAT consisted of 7 switches and 8 hosts, whereas the STT comprised 3 switches 

and 4 hosts. The Ryu was connected to every switch and host using the Topo.py Python app. 

Traffic generation involved creating 10000 flows, with each host initiating 10 iperf servers on 
different ports (8089, 8082, 8081). A basic switch was required for flow entry creation, with the 

L4 Match app serving as the foundation for this setup. 

 

The controller used source/destination IP, source/destination port, and protocols to create various 
flows. Each packet received by the controller triggered the creation of a fresh flow in the switch. 

After setting up the network topologies with the Topo app, a specific quantity of flows was 

chosen, and the Ryu supervisor app was launched to create normal flows. Once the desired 
quantity of flows was established, the conflicts flow app was executed to introduce conflicting 

rules in Ryu. After generating normal and conflict flows, the flowstat app was used to gather and 

store all the flows in a CSV document. 
 

3.3. Online Active Learning Algorithm for Classification and Priority Assignment of 

Flows 
 

The CSV file contains instances or observations , where  is the characteristics (e.g., IP 

address, MAC address, protocol, priority, and action) and  represents the label (flow types).  

 

3.3.1. Online Learning 

 

The problem of flow classification is formulated as an online classification and it is executed in a 

sequence of successive rounds. At round , the classifier initially gets an instance . The 

classifier predicts the label  based on the prediction function  and calculates the loss 

function . Afterward, the classifier updates the prediction rule for consecutive rounds 

utilizing the present instance . The aim is to decrease the loss rate, which is crucial in 

classification tasks within the learning approach. 

 

Initially, the prediction phase of online learning is described. At round , an online algorithm uses 

a binary discriminant based on a linear hypothesis having an inner product as: 
 

                                                        (1) 

 

In Eq. (1),  is the weight vector, and  serves as feature extraction that maps 

instances into the desired feature space.  forecasts the flow label of the feature 

 and  denotes a rectilinear resolution border for features space. The magnitude 

 is denoted as the confidence of this prediction. According to this hypothesis, a 

Linearized Confidence-Weighted (LCW) algorithm is adopted, which applies a Gaussian 
distribution over the weight vector as: 

 

                                                   (2) 
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In Eq. (2),  is the mean vector and  is the covariance matrix, where  is the 

set of symmetric positive definite  matrices. Entries of  signify the knowledge of features 

and diagonal entries of  refer to the confidence in the weights. The greater the diagonal entry, 

the less confidence in the associated weight, and vice versa. Off-diagonal entries record 
information about feature interactions. 

 

Using the Gaussian distribution, the LCW algorithm predict the class label of  based on the 

mean value of  as follows: 

 

                                                 (3) 

 

In Eq. (3), . The variance of  and  are utilized to 

define the confidence in this prediction: a smaller variance leads to higher confidence, and vice 

versa. After the correct label  is obtained, the classification efficiency is assessed by 

determining the error value as: 
 

                                                   (4) 

 
Before initiating the next round, the LCW algorithm determine the update of the linear hypothesis 

for consecutive rounds by resolving a constrained optimization dilemma. The new hypothesis is 

defined as: 
 

                                    (5) 

 

In Eq. (5),  is the solution of this optimization dilemma. This is the learning phase 

of online learning. 
 

3.3.2. Linearized Confidence-Weighted (LCW) Algorithm 

 

Since  in this algorithm is parameterized by a weight vector  following a Gaussian 

distribution , it is equal to that  is determined by . It is natural that the 

updated hypothesis  is needed to be parameterized by a new weight vector  following a 

new Gaussian distribution , or equivalently, that  is determined by 

. Therefore, the update of this algorithm is determined by the solution of the 

below constrained optimization dilemma containing two Gaussian distributions: 

 

                                     (6) 

  s.t.        

 

In Eq. (6),  is the Kullback-Leibler (KL) divergence between two distributions and  

measures the probability that relies on . Also,  is a predefined 
probability threshold. This optimization issue seeks to identify the new Gaussian distribution with 

the least amount of distributional change while maintaining a sufficient probability of a right 
prediction on the given case, since the KL divergence may be seen as a measure of the difference 

between two distributions. So, Eq. (6) can be rewritten as follows: 
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                                              (7) 

 s.t.        

 

By utilizing the variance of , it seeks to identify the new Gaussian 

distribution with the least amount of change to the distribution while maintaining a 

sufficiently high margin. The constraint of Eq. (7) is rewritten as the following probability 

constraint: 

 

                                               (8) 

 

In contrast to  , the updated formula of the confidence parameter is represented as 

 . If the standard deviation is more than 1 or less than 1, the LCW 

algorithm will either amplify or reduce the associated variables. At last, a closed-form solution 

exists for Eq. (6) and determines the update rule for this LCW algorithm: 

 

                                                 (9a) 

                                                                        (9b) 

Where                                                (9c)  

                                              (9d)                 

                                                  (9e) 

 

Observe that  if and only if  satisfies the constraint of Eq. (7). Eq. (9a) indicates 

that weights with low confidence require a more aggressive update to their mean value, while Eq. 

(9b) suggests that weights with higher confidence have less aggressive updates to their variance.  
 

3.3.3. Iterative Linearized Confidence-Weighted Algorithm 

 
LCW's aggressive weight update policy can lead to instability when there is low confidence in 

some features, and thus large variations in weight values. When feature distributions change over 

time in dynamic contexts, this can lead to overfitting and poor generalization. In addition, 

classification performance could suffer if weight adjustments are made with a single update per 
instance, which is not ideal. 

 

In this study, a customized weight-updating scheme is introduced with the LCW, which involves 
updating the weights for each instance multiple times rather than a single update, ensuring the 

optimal weight value. This approach is simple and effective in minimizing loss. The weights are 

trained optimally by iterating through each instance individually. The results show a lower 

mistake rate at  and a consistent mistake rate from  onwards. The weight updating 

process improves the mistake rate starting from , with some datasets achieving . 

This customized weight updating scheme does not involve any changes to conventional 

approaches, except for the introduction of a loop. There are no modifications to the feature vector 

or projected label in all iterations. The weights are modified in all iterations, leading to improved 
performance. 
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Consider  and  are the update for  instance before and after  iterations, respectively. 

 and  are the update rule value for  instance before and after  iteration. Generally, a 

weight update is as follows: 
 

                                       (10) 

 

According to this, the weight update for  iteration of  instance is as follows: 

 

                                                     (11) 

 

Consider  is the optimal weight at ; so, 

 

                                                (12) 

            

           

                                              (13) 

 
Simplify Eq. (13) by taking the norm and squaring both sides as follows: 

 

                                             (14) 

 

                               (15) 

 
By applying the Cauchy-Schwarz inequality, as given in Eq. (16), to simplify Eq. (15) as: 

 

                                  (16) 

 

               (17) 

          

 

 If ,    (18) 

 

Adding  in Eq. (18) to obtain 

 

                    (19) 

 

The ideal weight  for  is determined by several iterations and is constrained by Eq. (19). A 

pseudocode for this weight updating mechanism is described in Algorithm 1.The algorithm 

clearly mentioned how the proposed for LCW update the weight of each features dynamically. 
Based on the weight updating the flow is prioritized  dynamically which improve bandwidth 

utilization, reduce delay and increase the throughput. Overall, the network performance is 

improved. 
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Algorithm 1: Proposed Weight Updating Mechanism for LCW 
 

1. Begin 

2. Initialize ; 

3.   //  is the sum of instances in the dataset 

4.    //  in this study  

5.      Predict ; 

6.      Calculate loss as ; 

7.       

8.        ; //Update rule depends on the LCW 

9.       

10.     

11.  

12. End 

 
Thus, this ICWL with a customized weight updating scheme is used to classify flows as normal 

or conflicting. The flows are then prioritized based on features like Flow ID, source, source port, 

destination IP address, destination port, and protocol (TCP layer protocol number). Normal flows 
are sent to OpenFlow while conflicting flows are further classified into seven categories 

according to the priority and IP address features. The classification and prioritization of flows is 

portrayed in Figure 3. 
 

 
 

Figure 3.  Processes of Classification and Priority Assignment of Flows Using ICWL 

 

3.4. Rerouting for Congestion Avoidance 
 

One important metric for determining the significance of nodes is centrality in . Edge 

betweenness centrality quantifies the sum of shortest routes that traverse through a specific  in 

. Each node is assigned an edge betweenness centrality value. A maximum value suggests that 

the link plays a crucial role in connecting nodes, and removing it could disrupt communication in 

the network. The between centrality  of an edge  in  is defined by 

 

                                   (20) 

 

In Eq. (20),  is the sum of shortest paths between  and  that pass through , while 

 is the sum of shortest routes between  and . Thus,  for each route in  is 

determined and the routes are positioned in the descending value of . For data transfer, 

routes are considered one by one from  and the load on each route is checked. When the 

load on a route is greater than 50% of the link capacity, the highest priority flow is rerouted 
immediately. To reroute the highest priority flows, the source and destination are identified. The 



International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.4, July 2025 

11 

top-  routes, where  and  denotes the sum of routes from the source and destination 

nodes, are considered in increasing value of hop count. The route with the least traffic is selected 

for flow rerouting. 
 

Low-priority flows are listed in a ranked order. Each route is evaluated based on traffic volume 

on the link and rerouted accordingly. The most cost-effective route is selected, and static flows 

are pushed to the Ryu via the REST API after communication with the load-balancing app. These 
flows are refreshed every minute to ensure dynamic load balancing. Figure 4 presents a flowchart 

of OAMLCFAPRA, while Algorithm 2 outlines its entire process. 

 

 
       

Figure 4.  Flowchart of OAMLCFAPRA for Rerouting in SDN 

 

Algorithm 2: OAMLCFAPRA for Rerouting 

1. Begin 
2. Construct and simulate the topology; 

3. Obtain the topology data from the Ryu controller to build ; 

4. Classify the flow types using Algorithm 1; 

5. Label the priority of flows; 

6. Classify the conflict flow types using Algorithm 1; 

7. Pass the normal flows into the OpenFlow; 

8.  

9.    Compute the betweenness of all links; 

10.    Store the betweenness value in ; 

11.  
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12. Rank the betweenness value  in decreasing order; 

13.  

14.     

15.       

16.        Reroute the flow immediately via top-  routes with lowest traffic; 

17.       

18.        Insert flow in the rank list for later rerouting; 

19.       

20.     

21.  

22. End 

 

4. SIMULATION RESULTS 
 

On a Windows 10 machine with 256 GB of RAM and an Intel Core i7 CPU, the OAMLCFAPRA 

has been implemented as a Python module. Table 1 lists the prerequisites for running the 

simulation. The simulation parameters are listed in Table 2. The specifications are listed here 
after applying simulation for the parameters and obtaining best results among the simulations. 

The results for different inputs are measured through the performance metrics. These parameters 

are considered for FAT topology. The descriptions of topology is briefly given in section 3.2.  
 

Table 1.  Simulation Requirements 

 
Hardware/Software Framework Specifications 

Hardware 

CPU Intel Core i7 – 2.4 GHz 

RAM 12 GB 

Hard disk 2 TB 

Software 

OS Windows 10-64 bit 

Programming language Python 2.7 

Programming IDE Spyder 3.3.3 

Machine learning software Tensorflow/Python 

Machine learning library Scikit-learn v0.21.3 

Controller Pox 0.2.0 

 
Table 2.  Simulation Parameters 

 
Parameters Value 

No. of nodes 15 

No. of links 19 

Topology FAT 

No. of flow requests 40 

Maximum bandwidth 100 Mbps 

Minimum bandwidth 10 Mbps 

Minimum and maximum delay 10 and 100 ms 

Link jitter 10-20 ms 

Simulation time 600 sec 

Packet category TCP 

Packet size 64 bytes 

No. of packets transferred 250 

Packets interval 20 sec 

Link PLR 1-7% 
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4.1. Performance Evaluation Metrics 
 

The performance of classifying conflicting flows is measured based on the following metrics: 

 

 Accuracy: It assesses a model's capability to classify conflict flows among a total number 
of generated flows. 

 

              (21) 

 
Here, TP indicates the amount of conflicting flows exactly categorized, TN indicates the amount 

of exactly classified normal flows, FP represents the amount of normal flows inexactly classified 

as conflicting flows, and FN refers to the amount of conflicting flows inexactly classified as 
normal flows. 

 

 Precision: It is determined by 

                 (22) 

 Recall: It is computed as: 

                    (23) 

 F1-score: It is determined as: 

                     (24) 

 

The performance of rerouting normal flows to prevent congestion is measured using below 
measures: 

 

 Throughput: It refers to the overall quantity of packets transferred from the source to 

destination per unit time. 

 Bandwidth utilization: It is the percentage of utilized bandwidth to total available 

bandwidth. 

 Round Trip Delay (RTT): It is the total interval spent to transfer a packet between the 
source and destination nodes and vice versa. 

 Delay: Duration of a packet's journey from its origin node to its final destination node. It 

involves the propagation, processing, queuing, and transmission delays. 

 Jitter: It is the variance of delay. 

 Packet Loss Rate (PLR): It is the ratio of packets lost in unit interval. 

 

4.2. Performance Analysis of Flow Classification 
 

Figure 5 illustrates the performance analysis of flow classification using the proposed ICWL and 
existing DT [10], SVM [12], and EFDT [13]. The precision of ICWL is increased by 8.1%, 

5.75%, and 3.19% compared to DT, SVM, and EFDT, respectively. The recall is 7.81%, 5.83%, 

and 3.12% higher than the same algorithms, respectively. The F1-score is increased by 7.96%, 
5.79%, and 3.16% compared to the other algorithms, respectively. The accuracy is 7.95%, 5.76%, 

and 3.2% greater than the same algorithms, respectively. This improvement is achieved because 

ICWL continuously updates its model based on real-time network traffic, unlike DT, SVM, and 
EFDT algorithms, which rely on static training datasets. In addition, ICWL updates weights 

multiple times per instance, unlike existing algorithms that update only once. 
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Figure 5.  Performance Analysis of Different Algorithms for Flow Classification 

 

Table 3 presents the flow classification results for DT, SVM, EFDT, and the proposed ICWL. 
The ICWL outperformed the other algorithms due to its enhanced performance. Therefore, ICWL 

was selected for classifying conflict flow types. Flows within the range of 10,000 to 100,000 

were chosen with a multiplier of 10,000 flows. The proposed ICWL achieved the best 

performance in categorizing conflict flow types across different flow numbers.  The performance 
metric for each interval is measured and tabulated for clear understanding of both the proposed 

and existing algorithms. For all intervals, proposed work always outperform then all other 

methods.  
 

Table 3.  Flow Classification Results of Different Algorithms 

 
Dataset Accuracy (%) Precision (%) Recall (%) F1-score (%) 

DT 

10000 83.37 83.32 83.34 83.28 

20000 82.91 82.82 82.90 82.86 

30000 82.05 81.97 82.04 82.00 

40000 81.53 81.48 81.52 81.50 

50000 81.01 80.90 80.99 80.94 

60000 80.62 80.55 80.60 80.57 

70000 80.10 80.02 80.09 80.05 

80000 79.35 79.27 79.33 79.30 

90000 78.80 78.69 78.78 78.73 

100000 78.09 77.95 78.05 78.00 

SVM 

10000 85.10 85.07 84.90 84.99 

20000 84.61 84.56 84.60 84.58 

30000 84.03 83.95 84.02 83.98 

40000 83.52 83.41 83.50 83.45 

50000 82.94 82.87 82.93 82.90 

60000 82.30 82.24 82.30 82.27 

70000 81.86 81.78 81.85 81.81 

80000 81.11 81.05 81.10 81.07 

90000 80.63 80.59 80.64 80.61 

100000 80.27 80.20 80.27 80.23 

EFDT 

10000 87.21 87.18 87.13 87.16 

20000 86.60 86.51 86.59 86.55 

30000 85.98 85.86 85.97 85.91 
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Dataset Accuracy (%) Precision (%) Recall (%) F1-score (%) 

EFDT 

40000 85.17 85.09 85.17 85.13 

50000 84.55 84.49 84.56 84.52 

60000 84.00 83.92 83.99 83.95 

70000 83.41 83.35 83.40 83.37 

80000 82.84 82.73 82.82 82.77 

90000 82.33 82.27 82.34 82.30 

100000 81.85 81.78 81.85 81.81 

ICWL 

10000 90.00 89.96 89.85 89.91 

20000 89.12 89.04 89.11 89.07 

30000 88.55 88.38 88.52 88.45 

40000 87.89 87.71 87.85 87.78 

50000 87.01 86.89 87.00 86.94 

60000 86.54 86.43 86.51 86.47 

70000 85.97 85.90 85.94 85.92 

80000 85.23 85.12 85.21 85.26 

90000 84.70 84.59 84.66 84.62 

100000 84.06 83.94 84.03 83.98 

 

4.3. Performance Analysis of Flow Rerouting 
 

To evaluate the efficiency of flow rerouting for congestion avoidance, the OAMLCFAPRA is 
compared to the MLPRS [7] and default SDN in terms of network metrics. Here, default SDN 

stands for SDN in its standard configuration, which does not include advanced traffic handling or 

ML optimization.  
 

 
 

Figure 6.  Throughput and Bandwidth Analysis of OAMLCFAPRA against MLPRS and Default SDN 
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Figure 7.  RTT Analysis of OAMLCFAPRA against MLPRS and Default SDN 

 

In this setup, a centralized controller manages network flows using static or traditional routing 
methods without proactive re-routing based on dynamic traffic patterns. Figure 6 compares the 

throughput and bandwidth between OAMLCFAPRA, MLPRS, and default SDN. 

OAMLCFAPRA achieves a throughput of 32.5 Gbps, which is 12.07% and 4.7% higher than the 
default method and MLPRS, respectively. Additionally, the bandwidth of OAMLCFAPRA is 

33.8 Gbps, representing a 5.16% and 1.32% improvement over the default SDN and MLPRS. 

This is due to prioritizing links with decreasing betweenness values for packet re-routing rather 

than packet routing in random manner. 
 

 
 

Figure 8.  Delay and Jitter Analysis of OAMLCFAPRA against MLPRS and Default SDN 

 
Figure 7 compares the RTT of OAMLCFAPRA, MLPRS, and default SDN while packets are 

rerouted in descending betweenness score. The minimum RTT of OAMLCFAPRA is 23.18% 

and 15.26% lower than default SDN and MLPRS algorithm, respectively. The average RTT of 

OAMLCFAPRA is 45.65% and 20.21% lower than the same algorithms. The maximum RTT of 
OAMLCFAPRA is 32.14% and 19.49% lower than the same algorithms. This shows that 

OAMLCFAPRA significantly reduces minimum, maximum, and average RTT compared to 

efault SDN and MLPRS.  
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Figure 9.  PLR Analysis of OAMLCFAPRA against MLPRS and Default SDN 

 
Figure 8 compares the delay and jitter between OAMLCFAPRA, MLPRS, and default SDN. 

OAMLCFAPRA achieves a delay of 5.1 ms, which is 58.87% and 38.55% lower than the default 

SDN and MLPRS, respectively. The jitter of OAMLCFAPRA is 1.3 ms, representing a 71.74% 

and 48% reduction over the default SDN and MLPRS. Additionally, Figure 9 illustrates the PLR 
for OAMLCFAPRA, MLPRS, and default SDN methods. The OAMLCFAPRA reduces the PLR 

by 69.01% and 51.11% compared to the MLPRS and default SDN methods. This is achieved by 

prioritizing links for packet re-routing rather than packet routing in weight updating method. 
 

5. CONCLUSIONS 
 

This paper introduced the OAMLCFAPRA, a model for classifying, prioritizing, and rerouting 

traffic flows in SDN based on their behavior characteristics. It involved generating and pre-
processing traffic flows to extract features, classifying them as normal or conflicting using ICWL 

with a customized weight updating scheme, and prioritizing them into the  highest and lowest 

categories. Conflicting flows were further categorized into seven types based on priority and IP 
address features, whereas normal flows were passed to OpenFlow. Furthermore, it determined the 

significance of each path using betweenness centrality and monitored load capacity. In case of 

overload, the highest priority flow was rerouted immediately, while lower priority flows were 
stored for later rerouting. This approach helps prevent congestion, leading to improved 

throughput and bandwidth. Experimental results proved that the ICWL achieved 90% accuracy, 

89.96% precision, 89.85% recall, and 89.91% F1-score for flow classification compared to the 

DT, SVM, and EFDT. Additionally, the OAMLCFAPRA achieved 32.5 Gbps throughput, 33.8 
Gbps bandwidth, 0.411ms minimum RTT, 7.5ms average RTT, and 0.95ms maximum RTT 

compared to the default SDN and MLPRS algorithm. 
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