
International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.4, July 2025

DOI: 10.5121/ijcnc.2025.17401 1

CONFLICT FLOW AVOIDED PROACTIVE

REROUTING ALGORITHM USING ONLINE ACTIVE

LEARNING FOR EFFICIENT TRANSMISSION OF

DATASTREAM IN SOFTWARE DEFINED NETWORKS

Kalaivani Subramaniam 1 and Sumathi Arumugam 2

1 Department of Computer Science, KPR College of Arts Science and Research,

Coimbatore-641407, Tamilnadu, India
2 Department of Information Technology, KPR College of Arts Science and Research,

Coimbatore-641407, Tamilnadu, India

ABSTRACT

Traditional or default Software-Defined Networking (SDN) generally relies on reactive or static routing,

where a new flow entry is added for a new arriving packet in a switch. This can create inefficiencies in

processing dynamic network conditions. To solve this issue, a Machine Learning-based Proactive

Rerouting Scheme (MLPRS) has been developed to dynamically balance load in real-time networks by

rerouting flow and enhancing Quality of Service (QoS) compared to the default SDN. However, SDN can

face challenges from conflicting flows occurring due to priority and action adjustments that may affect

network throughput and bandwidth. Therefore, this article introduces an Online Active ML-based Conflict

Flow Avoided Proactive Rerouting Algorithm (OAMLCFAPRA) to discriminate between normal and

conflict flows in SDN based on the behavioural changes of flows over time. To achieve this, an online

learning algorithm with a customized weighting scheme called Iterative Confidence-Weighted Learning

(ICWL) is executed in the controller plane. Initially, it preprocesses the generated flows and trains the
ICWL to identify them as normal and conflicting based on their behavioural features. Then, the priorities

of each flow are assigned by the ICWL, and the normal flows are directed to OpenFlow. Additionally, the

ICWL classifies the conflicting flows into several types based on their features such as priority, IP address,

and action. Moreover, the betweenness centrality algorithm determines each link’s significance, and the

load on each link is monitored. When the most significant link is overloaded, the flow is rerouted to prevent

congestion in real-time. Finally, experimental results show that the ICWL achieves high accuracy in

classifying conflict flow types and the OAMLCFAPRA increases network throughput and bandwidth

compared to conventional algorithms.

KEYWORDS

SDN, Flow classification, Conflict flows, Online active learning, Rerouting

1. INTRODUCTION

The demands of contemporary data centre environments and network applications cannot be fully
accommodated by conventional network design. Therefore, SDN was created to allow engineers,

cloud, and network managers to stay up to date with constantly evolving business needs through

a centralized management console [1-2]. Additionally, SDN incorporates a number of network
technologies to ensure the network is resilient and extensible, meeting the needs of storage

systems and virtualized servers seen in today's data centres [3-4]. Furthermore, the initial purpose

of SDN was to design, construct, and manage networks [5-6]. Because the network control and

https://airccse.org/journal/ijc2025.html
https://doi.org/10.5121/ijcnc.2025.17401

International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.4, July 2025

2

forwarding planes are separated, this enables direct network programmability and independence
of the basic planning of network services and applications [7-8]. SDN is perfect for the dynamic

nature of contemporary high-bandwidth applications since it is often affordable, controllable,

dynamic, and adaptable [9-10].

SDN offers a framework for virtualized execution that separates network control operations from

network forwarding traffic [11]. The SDN controller permits complicated network configuration

in addition to the integration of several network devices (such as routers, switches, and access
points) that facilitate the execution of diverse network management functions [12-14]. SDN

attempts to give users more choices over their management setup while preserving network

performance criteria [15-16]. This viewpoint has led to the development of MLPRS [17], which
dynamically balances load in real-time network topology to improve QoS. Applications were

categorized and flow priorities were assigned based on their category using ML techniques. Each

link's significance in the network was determined using the betweenness centrality algorithm, and

the connections were arranged in the betweenness set. To prevent congestion, it also tracked the
traffic on all connections and diverted it in real-time when the most crucial links were

overloaded.

1.1. Problem Statement

SDN applications can manage systems by providing load balancing, access control, and routing,
which are the most relevant features of SDN. On the other hand, SDN is impacted by a variety of

conflicting flows, which can reduce network efficiency. Furthermore, conflicts in SDN arise from

the influence and change of specified aspects, including priority and actions. Improving network
speed and bandwidth also requires detecting and classifying competing flows.

1.2. Contributions of this Study

In this manuscript, an OAMLCFAPRA is proposed for SDN. In order to improve the load

classification model, an efficient model is introduced to handle the classification of both flow
types and conflicting flow types. This model combines normal flow routing, conflict flow

removal, and rerouting of normal flows from congested paths. While standard ML techniques are

scalable, they may not be robust to changes in the statistical properties of flow variables over

time. To address this, an ICWL with a customized weighting scheme is introduced to adapt to
evolving network conditions and rule changes. The key contributions of this study are: balancing

and quality of service, this study primarily aims to distinguish between regular and conflict flows

in SDN by observing how their behaviour evolves over time. A unified ML

• First, the generated flows are pre-processed and verified by the ICWL executed in the

controller plane to obtain flow behavior features, including MAC address, IP address, and
action. Based on these features, flows are recognized as normal and conflicting.

• Then, the priorities of each normal and conflicting flow are assigned by the ICWL in the

controller plane, and the normal flows are directed to OpenFlow. Additionally, the

conflicting flows are further categorized into several types by the ICWL in the controller
plane based on their priority, IP address, and actions.

• Moreover, the betweenness centrality scheme is utilized to determine the significance of

all links, and the load on each link is monitored. When the most significant link is
overloaded, the flow is rerouted to prevent congestion in real time.

• Thus, this ICWL demonstrates the ability to achieve superior performance in the

identification and categorization of conflicting flows in SDN, resulting in increased
throughput and bandwidth usage.

International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.4, July 2025

3

The remaining sections are prepared as follows: Section 2 covers the literature survey. Section 3
explains the OAMLCFAPRA and Section 4 illustrates its effectiveness. Section 5 concludes the

study and suggests future enhancements.

2. LITERATURE SURVEY

ML techniques are a widely acknowledged option for SDN traffic categorization since they

leverage collected statistical data to categorize data flows. Statistical data are mostly used to

categorize flows, and the various flows are divided into multiple types or groups depending on
these data [18]. For SDN network traffic classification, ML algorithms are developed at the

control layer and data layer. In the initial scenario, the SDN controller gathers data and, working

with the application layer, uses it to execute access or forwarding strategies [19]. This task is

carried out as follows: (i) the controller receives the information via OpenFlow Protocol and
mines the required characteristics, and (ii) the classifier learns those characteristics and

categorizes the traffic. Another such setup is data-level classification using the P4 programming

language to embed ML methods into flow-level switches. Most research methodologies that
address network traffic classification issues in SDN use OpenFlow protocol data to extract

relevant characteristics to feed the classification process's input. This section reviews current

studies on the ML-based traffic flow classification in SDN.

Liang and Su [20] presented the SDN flow instruction conflict recognition knowledge graph to

accumulate the system data with flow rules. Construction instructions were set according to the

definition of flow instruction conflicts, which were conflicts in one table and conflicts among
multiple tables. However, its complexity was high when considering multiple conflicts or a large

number of flows. Aqdus et al. [21] analysed Feed Forward Neural Network (FFNN), K-Means,

and Decision Tree (DT), to identify and categorize low-rate collision flows in SDN. However,
number of dropped packets and latency were high. Mohammadi et al. [22] developed a flow

category discriminator and a greedy mechanism for optimal resource distribution according to the

flow categories in SDN. However, it cannot discriminate conflicting flows, resulting in low
scalability and reliability of the network.

During the load balancing phase, Ananth [23] created a DeepQ Residue method to examine both

typical and problematic flow patterns. A hybrid Support Vector Machine (SVM) with an
improved DT was used to predict accuracy and performance. However, precision and recall were

low. Khairi et al. [24] developed an Extremely Fast Decision Tree (EFDT) classification method

to recognize and categorize multiple conflicts inside the flow table using varying numbers of
flows in SDN. However, its complexity was high and accuracy was low while using a large

amount of flow data.

Han et al. [25] developed a comprehensive flow rule conflict identification technique that
enhances real-time detection of explicit conflicts (both static and dynamic) and reduces false

positives in implicit (dependency) conflict detection. They presented a real-time explicit conflict

detection algorithm based on the Protocol-Divided Trie (PDT), which classifies flow rules by
protocol type and utilizes a prefix tree for rapid matching. However, the detection time was high.

Serag et al. [26] investigated ML techniques to categorize SDN traffic flows according to factors

such as packet size, protocol type, and application behaviour. On the contrary, the efficiency of
such techniques depends on the quality and quantity of information. For large-scale datasets,

these techniques achieved low accuracy and high detection time.Abdulqadder and Aziz [27]

investigated Q-learning techniques to categorize SDN traffic flows and provide security using

block chaining to allow any flow inside SDN network. However, this technique implemented
only for 5G network. It has to be enhanced to support 6G enabled networks. .

International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.4, July 2025

4

2.1. Research Gap

Despite significant advancements in SDN traffic classification using ML methods, existing

methods face issues in handling conflicting flows effectively, leading to a degradation in network
performance. Knowledge graphs and DT-based approaches to conflict flow identification have

been investigated before, however these approaches have issues with real-time conflict flow

categorization, scalability, and adaptability. Most methods have been shown to yield high
detection times, lower accuracy, or increased computational complexity while handling large-

scale networks with dynamic traffic. In addition, conventional ML models also often do not

possess the ability to adapt to the evolving statistical properties of network flows, hence

degrading their effectiveness in real-time proactive rerouting. To solve these limitations, this
study presents the OAMLCFAPRA aimed at enhancing SDN effectiveness by dynamically

classifying, prioritizing, and rerouting flows while also minimizing real-time conflicts.

3. PROPOSED METHODOLOGY

This section describes the OAMLCFAPRA in SDN for flow classification and rerouting. Figure 1

portrays the architecture of this proposed study. This proposed study applies the ICWL to classify

normal and conflicting flows and allocate flow priorities according to the flow types. Then, it
determines the betweenness of all routes in the network and ranks routes in decreasing order of

betweenness. Each route from the betweenness set is examined individually, and the traffic load

is assessed. If the load exceeds 50% of the link capacity, packet priority is evaluated. Flows with
packets of high priority are instantly rerouted to avoid congestion and packet loss.

Figure 1. Architecture of the Proposed Study

3.1. Problem Formulation

Assume a network , where and are nodes and links or edges, respectively. Here,

, where is the link and represents a sum of links. Consider

 is the set of capacities of each , where is the link capacity.

denotes the set of flows with a source and destination, represented as , where

is the flow. is the set of routes, where every route in refers to a sequence of links joining

International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.4, July 2025

5

a source and destination nodes, denoted as , where is the route and

 indicates a sum of routes. Every route in holds a betweenness score , indicating

how frequently the route is used in the network.

The objective is to maximize network throughput by assigning priorities and paths to each flow in

. The optimization problem is defined as :

1. Flow priority: Flows with high priority are rerouted immediately when a route’s load
capacity is greater than 50%. Low-priority flows are positioned in a ranked list for later

rerouting.

2. Capacity: A sum of traffic on in should not be greater than its .

3. Routing criteria: in should be directed between its source and destination via a route

in .

4. Betweenness: Routes in the betweenness set are prioritized for routing based on their
betweenness score in decreasing order.

As a result, increasing the network's total flow is the goal of the objective function. This is
subject to constraints that prioritize and route flows effectively, while also ensuring that the

network is capacity and routing criteria are maintained.

3.2. Flow Generation and Pre-processing

This study developed an SDN dataset by generating and collecting normal and conflicting flows
from the OpenFlow table. The procedure involves three stages, as illustrated in Figure 2:

generating normal flows from the running topology, creating and implementing conflict rules in

the OpenFlow table, and generating conflicting flows.

Figure 2. Generation of Normal and Conflicting Flows

Flows are considered conflicting if they conflict with the flow instructions in the switch.

Repetition, overlap, shadowing, correlation A, correlation B, generalization, and imbrication are

the seven types of competing flows found in this dataset. The pre-processing is used to create

flows from the OpenFlow switch for classification. Relevant characteristics like action, protocol,

International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.4, July 2025

6

MAC address, and IP address are extracted to train the ICWL. Conflicts can be classified based
on these characteristics. Pre-processing deletes missing data points where missed attributes are

more than three otherwise applying mean imputation methods to handle them. Remove data

duplicates. The outliers are distorted by the Z-score normalization model.

In this study, Fat Tree Topology (FAT) is simulated for an SDN network. The experiment

employed the Ryu controller to connect with an OpenFlow switch version 1.3 for data evaluation

in both topologies. The topologies were set up in Mininet and linked to the Ryu for traffic
generation. The FAT consisted of 7 switches and 8 hosts, whereas the STT comprised 3 switches

and 4 hosts. The Ryu was connected to every switch and host using the Topo.py Python app.

Traffic generation involved creating 10000 flows, with each host initiating 10 iperf servers on
different ports (8089, 8082, 8081). A basic switch was required for flow entry creation, with the

L4 Match app serving as the foundation for this setup.

The controller used source/destination IP, source/destination port, and protocols to create various
flows. Each packet received by the controller triggered the creation of a fresh flow in the switch.

After setting up the network topologies with the Topo app, a specific quantity of flows was

chosen, and the Ryu supervisor app was launched to create normal flows. Once the desired
quantity of flows was established, the conflicts flow app was executed to introduce conflicting

rules in Ryu. After generating normal and conflict flows, the flowstat app was used to gather and

store all the flows in a CSV document.

3.3. Online Active Learning Algorithm for Classification and Priority Assignment of

Flows

The CSV file contains instances or observations , where is the characteristics (e.g., IP

address, MAC address, protocol, priority, and action) and represents the label (flow types).

3.3.1. Online Learning

The problem of flow classification is formulated as an online classification and it is executed in a

sequence of successive rounds. At round , the classifier initially gets an instance . The

classifier predicts the label based on the prediction function and calculates the loss

function . Afterward, the classifier updates the prediction rule for consecutive rounds

utilizing the present instance . The aim is to decrease the loss rate, which is crucial in

classification tasks within the learning approach.

Initially, the prediction phase of online learning is described. At round , an online algorithm uses

a binary discriminant based on a linear hypothesis having an inner product as:

 (1)

In Eq. (1), is the weight vector, and serves as feature extraction that maps

instances into the desired feature space. forecasts the flow label of the feature

 and denotes a rectilinear resolution border for features space. The magnitude

 is denoted as the confidence of this prediction. According to this hypothesis, a

Linearized Confidence-Weighted (LCW) algorithm is adopted, which applies a Gaussian
distribution over the weight vector as:

 (2)

International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.4, July 2025

7

In Eq. (2), is the mean vector and is the covariance matrix, where is the

set of symmetric positive definite matrices. Entries of signify the knowledge of features

and diagonal entries of refer to the confidence in the weights. The greater the diagonal entry,

the less confidence in the associated weight, and vice versa. Off-diagonal entries record
information about feature interactions.

Using the Gaussian distribution, the LCW algorithm predict the class label of based on the

mean value of as follows:

 (3)

In Eq. (3), . The variance of and are utilized to

define the confidence in this prediction: a smaller variance leads to higher confidence, and vice

versa. After the correct label is obtained, the classification efficiency is assessed by

determining the error value as:

 (4)

Before initiating the next round, the LCW algorithm determine the update of the linear hypothesis

for consecutive rounds by resolving a constrained optimization dilemma. The new hypothesis is

defined as:

 (5)

In Eq. (5), is the solution of this optimization dilemma. This is the learning phase

of online learning.

3.3.2. Linearized Confidence-Weighted (LCW) Algorithm

Since in this algorithm is parameterized by a weight vector following a Gaussian

distribution , it is equal to that is determined by . It is natural that the

updated hypothesis is needed to be parameterized by a new weight vector following a

new Gaussian distribution , or equivalently, that is determined by

. Therefore, the update of this algorithm is determined by the solution of the

below constrained optimization dilemma containing two Gaussian distributions:

 (6)

 s.t.

In Eq. (6), is the Kullback-Leibler (KL) divergence between two distributions and

measures the probability that relies on . Also, is a predefined
probability threshold. This optimization issue seeks to identify the new Gaussian distribution with

the least amount of distributional change while maintaining a sufficient probability of a right
prediction on the given case, since the KL divergence may be seen as a measure of the difference

between two distributions. So, Eq. (6) can be rewritten as follows:

International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.4, July 2025

8

 (7)

 s.t.

By utilizing the variance of , it seeks to identify the new Gaussian

distribution with the least amount of change to the distribution while maintaining a

sufficiently high margin. The constraint of Eq. (7) is rewritten as the following probability

constraint:

 (8)

In contrast to , the updated formula of the confidence parameter is represented as

 . If the standard deviation is more than 1 or less than 1, the LCW

algorithm will either amplify or reduce the associated variables. At last, a closed-form solution

exists for Eq. (6) and determines the update rule for this LCW algorithm:

 (9a)

 (9b)

Where (9c)

 (9d)

 (9e)

Observe that if and only if satisfies the constraint of Eq. (7). Eq. (9a) indicates

that weights with low confidence require a more aggressive update to their mean value, while Eq.

(9b) suggests that weights with higher confidence have less aggressive updates to their variance.

3.3.3. Iterative Linearized Confidence-Weighted Algorithm

LCW's aggressive weight update policy can lead to instability when there is low confidence in

some features, and thus large variations in weight values. When feature distributions change over

time in dynamic contexts, this can lead to overfitting and poor generalization. In addition,

classification performance could suffer if weight adjustments are made with a single update per
instance, which is not ideal.

In this study, a customized weight-updating scheme is introduced with the LCW, which involves
updating the weights for each instance multiple times rather than a single update, ensuring the

optimal weight value. This approach is simple and effective in minimizing loss. The weights are

trained optimally by iterating through each instance individually. The results show a lower

mistake rate at and a consistent mistake rate from onwards. The weight updating

process improves the mistake rate starting from , with some datasets achieving .

This customized weight updating scheme does not involve any changes to conventional

approaches, except for the introduction of a loop. There are no modifications to the feature vector

or projected label in all iterations. The weights are modified in all iterations, leading to improved
performance.

International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.4, July 2025

9

Consider and are the update for instance before and after iterations, respectively.

 and are the update rule value for instance before and after iteration. Generally, a

weight update is as follows:

 (10)

According to this, the weight update for iteration of instance is as follows:

 (11)

Consider is the optimal weight at ; so,

 (12)

 (13)

Simplify Eq. (13) by taking the norm and squaring both sides as follows:

 (14)

 (15)

By applying the Cauchy-Schwarz inequality, as given in Eq. (16), to simplify Eq. (15) as:

 (16)

 (17)

 If , (18)

Adding in Eq. (18) to obtain

 (19)

The ideal weight for is determined by several iterations and is constrained by Eq. (19). A

pseudocode for this weight updating mechanism is described in Algorithm 1.The algorithm

clearly mentioned how the proposed for LCW update the weight of each features dynamically.
Based on the weight updating the flow is prioritized dynamically which improve bandwidth

utilization, reduce delay and increase the throughput. Overall, the network performance is

improved.

International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.4, July 2025

10

Algorithm 1: Proposed Weight Updating Mechanism for LCW

1. Begin

2. Initialize ;

3. // is the sum of instances in the dataset

4. // in this study

5. Predict ;

6. Calculate loss as ;

7.

8. ; //Update rule depends on the LCW

9.

10.

11.

12. End

Thus, this ICWL with a customized weight updating scheme is used to classify flows as normal

or conflicting. The flows are then prioritized based on features like Flow ID, source, source port,

destination IP address, destination port, and protocol (TCP layer protocol number). Normal flows
are sent to OpenFlow while conflicting flows are further classified into seven categories

according to the priority and IP address features. The classification and prioritization of flows is

portrayed in Figure 3.

Figure 3. Processes of Classification and Priority Assignment of Flows Using ICWL

3.4. Rerouting for Congestion Avoidance

One important metric for determining the significance of nodes is centrality in . Edge

betweenness centrality quantifies the sum of shortest routes that traverse through a specific in

. Each node is assigned an edge betweenness centrality value. A maximum value suggests that

the link plays a crucial role in connecting nodes, and removing it could disrupt communication in

the network. The between centrality of an edge in is defined by

 (20)

In Eq. (20), is the sum of shortest paths between and that pass through , while

 is the sum of shortest routes between and . Thus, for each route in is

determined and the routes are positioned in the descending value of . For data transfer,

routes are considered one by one from and the load on each route is checked. When the

load on a route is greater than 50% of the link capacity, the highest priority flow is rerouted
immediately. To reroute the highest priority flows, the source and destination are identified. The

International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.4, July 2025

11

top- routes, where and denotes the sum of routes from the source and destination

nodes, are considered in increasing value of hop count. The route with the least traffic is selected

for flow rerouting.

Low-priority flows are listed in a ranked order. Each route is evaluated based on traffic volume

on the link and rerouted accordingly. The most cost-effective route is selected, and static flows

are pushed to the Ryu via the REST API after communication with the load-balancing app. These
flows are refreshed every minute to ensure dynamic load balancing. Figure 4 presents a flowchart

of OAMLCFAPRA, while Algorithm 2 outlines its entire process.

Figure 4. Flowchart of OAMLCFAPRA for Rerouting in SDN

Algorithm 2: OAMLCFAPRA for Rerouting

1. Begin
2. Construct and simulate the topology;

3. Obtain the topology data from the Ryu controller to build ;

4. Classify the flow types using Algorithm 1;

5. Label the priority of flows;

6. Classify the conflict flow types using Algorithm 1;

7. Pass the normal flows into the OpenFlow;

8.

9. Compute the betweenness of all links;

10. Store the betweenness value in ;

11.

International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.4, July 2025

12

12. Rank the betweenness value in decreasing order;

13.

14.

15.

16. Reroute the flow immediately via top- routes with lowest traffic;

17.

18. Insert flow in the rank list for later rerouting;

19.

20.

21.

22. End

4. SIMULATION RESULTS

On a Windows 10 machine with 256 GB of RAM and an Intel Core i7 CPU, the OAMLCFAPRA

has been implemented as a Python module. Table 1 lists the prerequisites for running the

simulation. The simulation parameters are listed in Table 2. The specifications are listed here
after applying simulation for the parameters and obtaining best results among the simulations.

The results for different inputs are measured through the performance metrics. These parameters

are considered for FAT topology. The descriptions of topology is briefly given in section 3.2.

Table 1. Simulation Requirements

Hardware/Software Framework Specifications

Hardware

CPU Intel Core i7 – 2.4 GHz

RAM 12 GB

Hard disk 2 TB

Software

OS Windows 10-64 bit

Programming language Python 2.7

Programming IDE Spyder 3.3.3

Machine learning software Tensorflow/Python

Machine learning library Scikit-learn v0.21.3

Controller Pox 0.2.0

Table 2. Simulation Parameters

Parameters Value

No. of nodes 15

No. of links 19

Topology FAT

No. of flow requests 40

Maximum bandwidth 100 Mbps

Minimum bandwidth 10 Mbps

Minimum and maximum delay 10 and 100 ms

Link jitter 10-20 ms

Simulation time 600 sec

Packet category TCP

Packet size 64 bytes

No. of packets transferred 250

Packets interval 20 sec

Link PLR 1-7%

International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.4, July 2025

13

4.1. Performance Evaluation Metrics

The performance of classifying conflicting flows is measured based on the following metrics:

 Accuracy: It assesses a model's capability to classify conflict flows among a total number
of generated flows.

 (21)

Here, TP indicates the amount of conflicting flows exactly categorized, TN indicates the amount

of exactly classified normal flows, FP represents the amount of normal flows inexactly classified

as conflicting flows, and FN refers to the amount of conflicting flows inexactly classified as
normal flows.

 Precision: It is determined by

 (22)

 Recall: It is computed as:

 (23)

 F1-score: It is determined as:

 (24)

The performance of rerouting normal flows to prevent congestion is measured using below
measures:

 Throughput: It refers to the overall quantity of packets transferred from the source to

destination per unit time.

 Bandwidth utilization: It is the percentage of utilized bandwidth to total available

bandwidth.

 Round Trip Delay (RTT): It is the total interval spent to transfer a packet between the
source and destination nodes and vice versa.

 Delay: Duration of a packet's journey from its origin node to its final destination node. It

involves the propagation, processing, queuing, and transmission delays.

 Jitter: It is the variance of delay.

 Packet Loss Rate (PLR): It is the ratio of packets lost in unit interval.

4.2. Performance Analysis of Flow Classification

Figure 5 illustrates the performance analysis of flow classification using the proposed ICWL and
existing DT [10], SVM [12], and EFDT [13]. The precision of ICWL is increased by 8.1%,

5.75%, and 3.19% compared to DT, SVM, and EFDT, respectively. The recall is 7.81%, 5.83%,

and 3.12% higher than the same algorithms, respectively. The F1-score is increased by 7.96%,
5.79%, and 3.16% compared to the other algorithms, respectively. The accuracy is 7.95%, 5.76%,

and 3.2% greater than the same algorithms, respectively. This improvement is achieved because

ICWL continuously updates its model based on real-time network traffic, unlike DT, SVM, and
EFDT algorithms, which rely on static training datasets. In addition, ICWL updates weights

multiple times per instance, unlike existing algorithms that update only once.

International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.4, July 2025

14

Figure 5. Performance Analysis of Different Algorithms for Flow Classification

Table 3 presents the flow classification results for DT, SVM, EFDT, and the proposed ICWL.
The ICWL outperformed the other algorithms due to its enhanced performance. Therefore, ICWL

was selected for classifying conflict flow types. Flows within the range of 10,000 to 100,000

were chosen with a multiplier of 10,000 flows. The proposed ICWL achieved the best

performance in categorizing conflict flow types across different flow numbers. The performance
metric for each interval is measured and tabulated for clear understanding of both the proposed

and existing algorithms. For all intervals, proposed work always outperform then all other

methods.

Table 3. Flow Classification Results of Different Algorithms

Dataset Accuracy (%) Precision (%) Recall (%) F1-score (%)

DT

10000 83.37 83.32 83.34 83.28

20000 82.91 82.82 82.90 82.86

30000 82.05 81.97 82.04 82.00

40000 81.53 81.48 81.52 81.50

50000 81.01 80.90 80.99 80.94

60000 80.62 80.55 80.60 80.57

70000 80.10 80.02 80.09 80.05

80000 79.35 79.27 79.33 79.30

90000 78.80 78.69 78.78 78.73

100000 78.09 77.95 78.05 78.00

SVM

10000 85.10 85.07 84.90 84.99

20000 84.61 84.56 84.60 84.58

30000 84.03 83.95 84.02 83.98

40000 83.52 83.41 83.50 83.45

50000 82.94 82.87 82.93 82.90

60000 82.30 82.24 82.30 82.27

70000 81.86 81.78 81.85 81.81

80000 81.11 81.05 81.10 81.07

90000 80.63 80.59 80.64 80.61

100000 80.27 80.20 80.27 80.23

EFDT

10000 87.21 87.18 87.13 87.16

20000 86.60 86.51 86.59 86.55

30000 85.98 85.86 85.97 85.91

International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.4, July 2025

15

Dataset Accuracy (%) Precision (%) Recall (%) F1-score (%)

EFDT

40000 85.17 85.09 85.17 85.13

50000 84.55 84.49 84.56 84.52

60000 84.00 83.92 83.99 83.95

70000 83.41 83.35 83.40 83.37

80000 82.84 82.73 82.82 82.77

90000 82.33 82.27 82.34 82.30

100000 81.85 81.78 81.85 81.81

ICWL

10000 90.00 89.96 89.85 89.91

20000 89.12 89.04 89.11 89.07

30000 88.55 88.38 88.52 88.45

40000 87.89 87.71 87.85 87.78

50000 87.01 86.89 87.00 86.94

60000 86.54 86.43 86.51 86.47

70000 85.97 85.90 85.94 85.92

80000 85.23 85.12 85.21 85.26

90000 84.70 84.59 84.66 84.62

100000 84.06 83.94 84.03 83.98

4.3. Performance Analysis of Flow Rerouting

To evaluate the efficiency of flow rerouting for congestion avoidance, the OAMLCFAPRA is
compared to the MLPRS [7] and default SDN in terms of network metrics. Here, default SDN

stands for SDN in its standard configuration, which does not include advanced traffic handling or

ML optimization.

Figure 6. Throughput and Bandwidth Analysis of OAMLCFAPRA against MLPRS and Default SDN

International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.4, July 2025

16

Figure 7. RTT Analysis of OAMLCFAPRA against MLPRS and Default SDN

In this setup, a centralized controller manages network flows using static or traditional routing
methods without proactive re-routing based on dynamic traffic patterns. Figure 6 compares the

throughput and bandwidth between OAMLCFAPRA, MLPRS, and default SDN.

OAMLCFAPRA achieves a throughput of 32.5 Gbps, which is 12.07% and 4.7% higher than the
default method and MLPRS, respectively. Additionally, the bandwidth of OAMLCFAPRA is

33.8 Gbps, representing a 5.16% and 1.32% improvement over the default SDN and MLPRS.

This is due to prioritizing links with decreasing betweenness values for packet re-routing rather

than packet routing in random manner.

Figure 8. Delay and Jitter Analysis of OAMLCFAPRA against MLPRS and Default SDN

Figure 7 compares the RTT of OAMLCFAPRA, MLPRS, and default SDN while packets are

rerouted in descending betweenness score. The minimum RTT of OAMLCFAPRA is 23.18%

and 15.26% lower than default SDN and MLPRS algorithm, respectively. The average RTT of

OAMLCFAPRA is 45.65% and 20.21% lower than the same algorithms. The maximum RTT of
OAMLCFAPRA is 32.14% and 19.49% lower than the same algorithms. This shows that

OAMLCFAPRA significantly reduces minimum, maximum, and average RTT compared to

efault SDN and MLPRS.

International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.4, July 2025

17

Figure 9. PLR Analysis of OAMLCFAPRA against MLPRS and Default SDN

Figure 8 compares the delay and jitter between OAMLCFAPRA, MLPRS, and default SDN.

OAMLCFAPRA achieves a delay of 5.1 ms, which is 58.87% and 38.55% lower than the default

SDN and MLPRS, respectively. The jitter of OAMLCFAPRA is 1.3 ms, representing a 71.74%

and 48% reduction over the default SDN and MLPRS. Additionally, Figure 9 illustrates the PLR
for OAMLCFAPRA, MLPRS, and default SDN methods. The OAMLCFAPRA reduces the PLR

by 69.01% and 51.11% compared to the MLPRS and default SDN methods. This is achieved by

prioritizing links for packet re-routing rather than packet routing in weight updating method.

5. CONCLUSIONS

This paper introduced the OAMLCFAPRA, a model for classifying, prioritizing, and rerouting

traffic flows in SDN based on their behavior characteristics. It involved generating and pre-
processing traffic flows to extract features, classifying them as normal or conflicting using ICWL

with a customized weight updating scheme, and prioritizing them into the highest and lowest

categories. Conflicting flows were further categorized into seven types based on priority and IP
address features, whereas normal flows were passed to OpenFlow. Furthermore, it determined the

significance of each path using betweenness centrality and monitored load capacity. In case of

overload, the highest priority flow was rerouted immediately, while lower priority flows were
stored for later rerouting. This approach helps prevent congestion, leading to improved

throughput and bandwidth. Experimental results proved that the ICWL achieved 90% accuracy,

89.96% precision, 89.85% recall, and 89.91% F1-score for flow classification compared to the

DT, SVM, and EFDT. Additionally, the OAMLCFAPRA achieved 32.5 Gbps throughput, 33.8
Gbps bandwidth, 0.411ms minimum RTT, 7.5ms average RTT, and 0.95ms maximum RTT

compared to the default SDN and MLPRS algorithm.

CONFLICTS OF INTEREST

The authors declare no conflict of interest

REFERENCES

[1] M.A. Al-Shareeda, A.A. Alsadhan, H.H. Qasim, and S. Manickam, “Software defined networking

for internet of things: review, techniques, challenges, and future directions,” Bulletin of Electrical

Engineering and Informatics, Vol.13, No.1, pp.638-647, 2024,

https://doi.org/10.11591/eei.v13i1.6386

International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.4, July 2025

18

[2] S. Maulana, S.A. Anjani, Y.P.A. Sanjaya, and P. Sithole, “Software-defined networking:

Revolutionizing network management and optimization,” Journal of Computer Science and

Technology Application, Vol.1, No.2, pp.164-171, 2024, https://doi.org/10.33050/g1as4162

[3] R. Chaudhary, G.S. Aujla, N. Kumar, and P.K. Chouhan, “A comprehensive survey on

software‐defined networking for smart communities,” International Journal of Communication
Systems, Vol.38, No.1, p. e5296, 2025, https://doi.org/10.1002/dac.5296

[4] A. Mwangi, R. Sahay, E. Fumagalli, M. Gryning, and M. Gibescu, “Towards a software-defined

industrial IoT-edge network for next-generation offshore wind farms: State of the art, resilience, and

self-X network and service management,” Energies, Vol.17, No.12, pp.2897, 2024,

https://doi.org/10.3390/en17122897

[5] U.A. Bukar, and M. Othman, “Architectural design, improvement, and challenges of distributed

software-defined wireless sensor networks,” Wireless Personal Communications, Vol.122, No.3,

pp.2395-2439, 2022, https://doi.org/10.1007/s11277-021-09000-2

[6] N. Gupta, M.S. Maashi, S. Tanwar, S.Badotra, M. Aljebreen, and S. Bharany, “A comparative study

of software defined networking controllers using mininet,” Electronics, Vol.11, No.17, p.2715,

2022, https://doi.org/10.3390/electronics11172715

[7] D. Kafetzis, S. Vassilaras, G. Vardoulias, and I. Koutsopoulos, “Software-defined networking meets
software-defined radio in mobile ad hoc networks: state of the art and future directions,” IEEE

Access, Viol.10, pp. 9989-10014, 2022, https://doi.org/10.1109/ACCESS.2022.3144072

[8] D. Carrascal, E. Rojas, J.M. Arco, D. Lopez-Pajares, J. Alvarez-Horcajo, and J.A. Carral, “A

comprehensive survey of in-band control in sdn: Challenges and opportunities,” Electronics,

Vol.12, No.6, p.1265, 2023, https://doi.org/10.3390/electronics12061265

[9] C. Ezechi, M.O. Akinsolu, A.O. Sangodoyin, F.T. Akinsolu, and W. Sakpere, “Software-defined

networking in cyber-physical systems: benefits, challenges, and opportunities,” Cyber Physical

System 2.0, 44-69, 2025.

[10] P.A. Baziana, “Optical Data Center Networking: A Comprehensive Review on Traffic, Switching,

Bandwidth Allocation, and Challenges,” IEEE Access, Vol.12, p.186413-186444, 2024,

https://doi.org/10.1109/ACCESS.2024.3513214
[11] J. Cunha, P. Ferreira, E.M. Castro, P.C. Oliveira, M.J. Nicolau, I. Núñez, and C. Serôdio,

“Enhancing network slicing security: machine learning, software-defined networking, and network

functions virtualization-driven strategies,” Future Internet, Vol.16, No.7, p.226, 2024,

https://doi.org/10.3390/fi16070226

[12] G. Kirubasri, S. Sankar, D. Pandey, B.K. Pandey, V.K. Nassa, and P. Dadheech, “Software-defined

networking-based ad hoc networks routing protocols,” In Software defined networking for Ad Hoc

networks, pp. 95-123, 2022, https://doi.org/10.1007/978-3-030-91149-2_5

[13] A.M. Abdulghani, A. Abdullah, A.R. Rahiman, N. A. W. A.Hamid, B.O. Akram, H. Raissouli,

“Navigating the Complexities of Controller Placement in SD-WANs: A Multi-Objective Perspective

on Current Trends and Future Challenges,” Computer Systems Science & Engineering, Vol.49,

No.1,pp. 123-157, 2025, https://doi.org/10.32604/csse.2024.058314

[14] J.A. Rahim, R. Nordin, and O.A. Amodu, “Open-Source Software Defined Networking Controllers:
State-of-the-Art, Challenges and Solutions for Future Network Providers,” Computers, Materials &

Continua, Vol.80, No.1, ,pp.1-10, 2024, https://doi.org/10.32604/cmc.2024.047009

[15] Fogli, C. Giannelli, and C. Stefanelli, “Software-Defined Networking in wireless ad hoc scenarios:

Objectives and control architectures,” Journal of Network and Computer Applications, Vol.203,

p.103387, 2022, https://doi.org/10.1016/j.jnca.2022.103387.

[16] M.D. Tache, O. Păscuțoiu, and E. Borcoci, “Optimization algorithms in SDN: Routing, load

balancing, and delay optimization,” Applied Sciences, Vol.14, No.14, p.5967, 2024,

https://doi.org/10.3390/app14145967

[17] M.A. Gunavathie, and S. Umamaheswari, “MLPRS: a machine learning-based proactive re-routing

scheme for flow classification and priority assignment,” Journal of Engineering Research, Vol.11,

No.3, pp.114-122, 2023, https://doi.org/10.1016/j.jer.2023.100075
[18] A.O. Salau, and M.M. Beyene, “Software defined networking based network traffic classification

using machine learning techniques,” Scientific Reports, Vol.14, No.1, p.20060, 2024,

https://doi.org/10.1038/s41598-024-70983-6

[19] F.A. Yaseen, N.A. Alkhalidi, and H.S. Al-Raweshidy, “She networks: Security, health, and

emergency networks traffic priority management based on ml and sdnM,” IEEE Access, Vol.10,

pp.92249-92258, 2022, https://doi.org/10.1109/ACCESS.2022.3203070

International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.4, July 2025

19

[20] S. Liang, and J. Su, “Detection of SDN flow rule conflicts based on knowledge graph,” In

International Conference on Emerging Networking Architecture and Technologies, pp. 93-104,

2022, https://doi.org/10.1007/978-981-19-9697-9_8

[21] A. Aqdus, R. Amin, S. Ramzan, S.S. Alshamrani, A. Alshehri, and E.S.M. El-kenawy, “Detection

collision flows in SDN based 5G using machine learning algorithms,” Computers, Materials &
Continua, Vol.75, No.1, pp.1413-1435, 2023, https://doi.org/10.32604/cmc.2023.031719

[22] R. Mohammadi, S. Akleylek, A. Ghaffari, and A. Shirmarz, “Automatic delay-sensitive applications

quality of service improvement with deep flows discrimination in software defined networks,”

Cluster Computing, Vol.26, No.1, pp.437-459, 2023, https://doi.org/10.1007/s10586-022-03729-6

[23] B. Ananth, “Hybrid support vector machine for predicting accuracy of conflict flows in software

defined networks,” Salud, Ciencia y Tecnología, Vol.4, pp.797-797, 2024,

https://doi.org/10.56294/saludcyt2024797

[24] M.H. Khairi, B.M.A. Abdalla, M.K. Hassan, S.H. Ariffin, and M. Hamdan, “Utilizing extremely

fast decision tree (EFDT) algorithm to categorize conflict flow on a software-defined network

(SDN) controller. Engineering,” Technology & Applied Science Research, Vol.14, No.2, pp.13261-

13265, 2024, https://doi.org/10.48084/etasr.6793

[25] B. Han, Y. Liu, Y.Zhou, and Y. Gao, “An efficient flow rule conflict comprehensive detection
scheme for SDN networks,” In IEEE International Symposium on Parallel and Distributed

Processing with Applications, pp. 1895-1902, 2024, https://doi.org/10.1109/ISPA63168.2024.00258

[26] R.H. Serag, M.S. Abdalzaher, H.A.E.A. Elsayed, M. Sobh, M. Krichen, and M.M. Salim,

“Machine-learning-based traffic classification in software-defined networks,” Electronics, Vol.13,

No.6, p.1108, 2024, doi: https://doi.org/10.3390/electronics13061108

[27] I.H. Abdulqadder and I.T. Aziz, “Load balanced attack defense system with lightweight

authentication and modified blockchain in SDN for B5G,” International Journal of Computer

Networks & Communications,Vol.13, No.6, p.1108, 2024, https://doi.org/10.5121/ijcnc.2025.17106

AUTHORS

Kalaivani S is an Assistant Professor at Dr. GR Damodaran College of Science and a

Ph.D. research scholar at KPR Institute of Engineering and Technology. She holds an

MCA and an M.Phil. in Computer Science. Her research focuses on networking and

network security. She has published papers in journals and presented at conferences.

She is passionate about teaching and mentoring students.

Dr. A. Sumathi serves as the Associate Professor and Head of the Department of

Information Technology at KPR College of Arts Science and Research in Coimbatore.

She holds M.Sc., M.Phil., and Ph.D. degrees, all completed at Bharathiar University.

With over 21 years of teaching experience, Dr. Sumathi has contributed significantly to

academia since 2004. Her leadership continues to foster growth and innovation within

the department.

	Abstract
	Keywords
	SDN, Flow classification, Conflict flows, Online active learning, Rerouting

