
International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.4, July 2025 

DOI: 10.5121/ijcnc.2025.17406                                                                                                                  95 

 
ENHANCING IOT CYBERATTACK DETECTION VIA 

HYPERPARAMETER OPTIMIZATION TECHNIQUES 

IN ENSEMBLE MODELS 
 

Otshepeng Kgote 1, Bassey Isong 1 and Tsapang Mashego 2 

 

1 Department of Computer Science, North-West University, Mafikeng, South Africa 
2 Department of Statistical Sciences, University of Cape Town,  

Rondebosch, South Africa 
 

ABSTRACT 
 

In the face of rapidly growing security threats on the Internet of Things (IoT) networks, machine learning 

(ML) integration shows promise in identifying cyberattacks. However, while the traditional ML models 

are effective in certain areas, they often fail to detect complex patterns and unusual behaviour in IoT data 
due to their difficulty adapting or generalizing. Ensemble learning models utilize the strengths of multiple 

base models to provide a promising solution but are largely influenced by the choice and proper setting 

of hyperparameters. This paper explores the impact of hyperparameter tuning on ensemble-based ML 

models for detecting IoT-related cyberattacks. We conducted a series of experiments utilizing the 

imbalanced and balanced CICToNIoT datasets, with a focus on binary and multi-class classification. The 

study assessed the Random Forest (RF) and Extreme Gradient Boosting (XGBoost) models with default 

hyperparameters after applying three tuning methods: Bayesian Optimization with Tree-structured 

Parzen Estimators, Grid Search (HGS), and Random Search. Our results reveal that HGS significantly 

enhanced performance, with XGBoost achieving an accuracy of 99.34% and an F1-score of 99.34% in 

binary classification, and RF achieving an accuracy of 93.76% and an F1-score of 93.73% in multi-class 

classification. RF demonstrated strong detection capabilities across various attack types, though it 

struggled with distinguishing certain attacks. These findings highlight the importance of hyperparameter 
tuning in enhancing the effectiveness of ML models for IoT cybersecurity. 

 

KEYWORDS 
 
IoT Security, Intrusion Detection, Ensemble Learning, Hyperparameter Tuning. 

 

1. INTRODUCTION 
 
In recent years, the Internet of Things (IoT) has been transforming industries such as healthcare, 

smart cities, agriculture, and manufacturing. With billions of connected devices, it boosts 

efficiency, enhances productivity, and enables smarter decision-making [1, 2]. However, the 

proliferation of these smart devices and sensors connected to the internet has led to significant 
security challenges [1-3]. Several IoT devices have limited resources, lack strong built-in 

security, and operate in diverse environments, making them vulnerable to cyberattacks [2, 3]. In 

most cases, these vulnerabilities result in data leaks, unauthorized access, and even large-scale 
network disruptions [1-3]. As IoT networks expand exponentially, effective intrusion detection 

and prevention systems are critical to protect sensitive data and maintain system reliability [3, 

4]. This is crucial because traditional security measures, such as firewalls and encryption, are 
often inadequate to address the dynamic and evolving threats in IoT ecosystems [2]. 

 

Intrusion detection systems (IDS) have become a vital component of IoT security, helping to 

monitor network traffic and identify malicious activities [1, 5]. However, IoT environments 

https://airccse.org/journal/ijc2025.html
https://doi.org/10.5121/ijcnc.2025.17406


International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.4, July 2025 

96 

present unique challenges for developing IDS due to factors such as high data volume, device 

heterogeneity, and real-time processing demands [5]. To address these challenges, advanced 
techniques such as machine learning (ML), deep learning (DL), blockchain, etc., have been 

integrated into IoT systems to enhance security and adapt to evolving threats [1, 3, 4].  This is 

evident in several studies [4-7], showing that ML techniques such as ensemble learning models 

that merge multiple algorithms have gained prominence in IoT security due to their improved 
detection accuracy and robustness [8]. While traditional ML models are effective in certain 

areas, they often struggle to handle the complexity of intrusion detection in IoT environments 

[4, 6]. These models often fail to detect complex patterns and unusual behaviour in IoT data 
because they struggle to adapt or generalize effectively [5]. The constantly evolving IoT 

environments, with new attack types and a wide range of devices used in various ways, make 

intrusion detection even more difficult [5-7]. Therefore, ensemble learning models, which 

leverage the strengths of multiple base models, offer a promising solution to these challenges. 
 

Despite their potential, the performance of ensemble learning models heavily relies on the 

proper setting of hyperparameters, which guide how the models learn and behave [5, 9]. 
Hyperparameter tuning plays a vital role in ML. Without properly adjusting the parameters, the 

models struggle to learn from the data or make accurate predictions, hindering their ability to 

generalize effectively [7, 9]. Currently, the two approaches for performing hyperparameter fine-
tuning or hyperparameter optimization (HPO) are: traditional or manual and automated tunings 

[5, 10]. While traditionally fine-tuning the hyperparameters of the models is time-consuming 

and subjective, automating the HPO process is considered a viable alternative approach [5, 7, 

10]. This is because it both saves time and reduces human intervention [5, 7, 9, 10]. In addition, 
it can be achieved through black-box optimization and multi-fidelity optimization (MF-HPO) 

approaches, which include different techniques such as hyperband (HB), grid-search (GS), 

random search (RS), Bayesian optimization (BO), etc. [7, 10].  
 

To maximize and enhance the performance of the ML-based intrusion detection schemes, HPO 

ought to be studied [5, 7, 9]. In the context of ensemble learning, several HPO techniques exist 
to improve their detection accuracy and robustness [7, 10]. However, deciding which technique 

to use in which application in the IoT systems is challenging. Thus, this paper empirically 

analyses the effectiveness of various black-box HPO techniques on the performance of tree-

based ensemble classifiers for detecting malicious attacks in IoT networks. The main 
contributions of this paper include: 

 

1) Proposes a novel approach to hyperparameter tuning specifically designed for ensemble 
learning models in IoT intrusion detection based on the CICTONIoT dataset [11] and 

addresses high dimensionality and imbalanced class distributions using the Synthetic 

Minority Over-Sampling Technique (SMOTE). 

2) Evaluation of tree-based ensemble techniques for binary and multi-classification. This 
illustrates how optimized ensemble models can significantly improve intrusion 

detection accuracy to surpass traditional ML methods. 

3) Provides practical guidance on the selection and implementation of hyperparameter 
tuning techniques such as halving grid search (HGS), RS, and BO techniques. This 

provides a valuable resource for researchers and practitioners working on IoT security. 

 
The remaining parts of this paper are organized as follows: Section 2 provides a literature 

review on IoT security, ensemble learning methods, and HPO techniques. Section 3 outlines the 

study methodology, Section 4 discusses the experimental setup, Section 5 presents the results, 

Section 6 discusses the findings and comparisons, and Section 7 concludes the paper. 
 

 

 



International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.4, July 2025 

97 

2. LITERATURE REVIEW 
 

This section presents an overview of IoT architecture, intrusion detection in IoT, ensemble 

learning methods, and hyperparameter tuning methods. 
 

2.1. IoT Architecture 
 

IoT is a network of various smart devices connected to the Internet for communication and 

information sharing [12, 13]. These devices range from everyday electronics to sensors and 

actuators, all connected through a gateway that links them to the cloud [12, 13]. The IoT 
system’s architecture is typically composed of various layers, which work together to collect, 

process, share and protect data.  

 

 
 

Fig.1.IoT gateway connectivity and communication 

 

As shown in Fig. 1, the IoT gateway facilitates communication between the sensor network and 
the Internet and performs tasks such as protocol translation, data aggregation, filtering, local 

storage, and device control to improve security [13]. The connection between devices is 

achieved through various technologies, such as 3G, RFID, Wi-Fi, Bluetooth, ZigBee, Z-wave, 

power line communication, fibre optics, and ethernet [12, 14]. While the middleware stores, 
processes, and analyzes the massive amounts of data collected from IoT devices, the security 

plane, which spans across all layers, protects the IoT system and its data from cyber threats. In 

addition, business models, policies, and decisions that drive the IoT system are managed by the 
business layer. With the improved monitoring, response, and analytics offered by the application 

layer, IoT has been implemented across many fields such as healthcare, smart cities, smart 

homes, agriculture, military, transportation, industry, and smart grids [12-15]. This is evidence 
that IoT is transforming various industries by increasing efficiency and services. 

 

2.2. Intrusion Detection in IoT 
 

IoT has introduced a paradigm shift in how devices interact and communicate, yet it has also 

opened the door to a multitude of security threats. IoT systems are especially susceptible to 
various attacks such as denial of service (DoS) and distributed denial of service (DDoS), 

malware infections, data breaches, and unauthorized access [1, 2]. This vulnerability stems from 

their decentralized nature, limited resources, lack of consistent security standards, and so on. 
These threats are further exacerbated by the sheer scale of IoT networks, which can consist of 

thousands or even millions of interconnected devices which making it more challenging to 

secure them effectively [5, 12, 15, 16]. As a result, IDSs have become essential for identifying 
and detecting malicious activities within IoT environments by helping to safeguard against 

potential threats and vulnerabilities [5, 7, 12]. This is crucial for protecting the integrity and 

security of connected devices and networks. However, when developing a security strategy, it is 



International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.4, July 2025 

98 

important to consider the limitations and challenges, such as constraints on device resources and 

the potential for data overload [1, 3, 7]. 
 

As IoT systems grow increasingly complex,implementing an effective IDS that integrates 

various techniques such as anomaly detection, ML, and network monitoring has become a top 

priority. This approach helps to safeguard against both known and emerging threats, which 
ensures a more robust defence [1, 3]. Existing approaches to intrusion detection in IoT include 

signature-based, anomaly-based methods, and hybrid-based methods [1, 7, 17, 18]. The 

signature-based IDS detectsknown threats by comparing traffic to predefined patterns but is 
ineffective against novel or evolving attacks [7, 19]. The anomaly-based IDS uses techniques 

such as ML to identify deviations from normal behaviour, making it effective for previously 

unseen attacks [1, 18, 19]. However, it often faces challenges such as high false positive rates 

(FPR) and they also require large volumes of labelled data for effective training, which can be 
cumbersome to obtain in many IoT environments [19-21]. Recent advances in ML, especially 

ensemble learning, have helped overcome these challenges. Combining the strengths of multiple 

models boosts detection accuracy and makes the system more reliable [8, 17, 22, 23]. The 
hybrid-based method combines both approaches to offer a more comprehensive defence against 

a wide range of threats. 

 

2.3. Ensemble Learning Methods 
 

Ensemble learning is an ML paradigm that utilizes the predictions of multiple base models to 
create a more accurate and stable final prediction [23-25]. It is based on the idea that a group of 

weaker models can work together to create a stronger model [23, 25]. Consequently, the 

approach helps to reduce overfitting and makes the model better at generalizing to new data 
[25]. The three primary types of ensemble learning techniques include bagging (e.g, Random 

Forest (RF)), boosting (e.g, AdaBoost and Gradient boosting (GBoost), etc,) and stacking [23, 

24]. In cybersecurity, especially within IoT ecosystems, ensemble learning has become 

increasingly popular [25]. It is valued for its ability to manage complex ML issues, such as 
missing features, imbalanced datasets, etc., which are often encountered in intrusion detection 

tasks [20, 22, 24]. Ensemble models have been effectively used to detect network intrusions, 

phishing, and malware attacks [1, 6, 24]. Their ability to combine different models and capture 
various perspectives of the data makes ensemble models especially useful for identifying 

complex and multi-faceted cyber threats [1, 6, 22]. This approach allows them to better handle 

sophisticated attacks.  

 
However, their performance depends a lot on how well their hyperparameters are configured 

[9]. Getting the right setting is critical to ensuring effectiveness and best performance. 

Moreover, optimizing these models for IoT intrusion detection is challenging due to the high-
dimensional, imbalanced dataset that can lead to overfitting. Furthermore, their complexity and 

the limited resources of IoT devices require effective optimization methods [5, 7, 9]. The lack of 

standardized benchmarks for IoT intrusion detection further complicates mode development and 
comparison [5, 7, 9]. These challenges make careful hyperparameter tuning important for 

improving performance in IoT environments. 

 

2.4. Hyperparameter Tuning 
 

Hyperparameters are settings that control the model’s learning process, such as the learning rate, 
number of layers, number of epochs, or number of trees [10, 26-29]. Unlike model parameters, 

which are learned from the data, hyperparameters are set before training and significantly 

impact the model’s performance [26, 29]. Therefore, selecting the right hyperparameters is key 

to achieving high accuracy, preventing overfitting, and ensuring the model can generalize well 



International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.4, July 2025 

99 

to new data. Hyperparameter tuning or HPO involves selecting the best hyperparameters for the 

ML model to improve its performance on unseen data [26, 27]. The HPO process includes 
several components: an estimator with its respective objective function, a search space for 

possible hyperparameter values, an optimization method to find the best combinations, and an 

evaluation function to assess the performance of different hyperparameter setups [10, 26]. Many 

techniques for hyperparameter tuning have been developed, as shown in Fig. 2, each with its 
strengths and limitations. 

 

 
 

Fig.2. Categories of HPO methods 

 

The two main categories of HPO methods are black-box optimization and MF-HPO [26, 30]. 

Blackbox HPO (BHPO) methods focus on finding the optimal inputs to yield optimal output, 
without requiring the knowledge or modelling of the internal working or mechanics of the 

model to be optimized [26]. Moreover, Blackbox HPO methods can be classified into three 

categories, namely: model-based methods, model-free methods, and advanced hybrid methods 
[30-32]. Fig. 2 presents the categories of HPO methods. Model-based HPO methods construct 

probabilistic surrogate models to predict or approximate the objective function and guide the 

search process for the selection of the hyperparameters [30]. Its techniques include Bayesian 
optimization with tree-structured parzen estimators (BO-TPE), BO with Gaussian process (BO-

GP), and neural networks with surrogate models (NN-SM) [28, 30]. In contrast, model-free 

HPO methods utilize the hyperparameter space through direct evaluation, without relying on the 

objective function [10]. Its techniques include GS, RS, genetic algorithms (GA), particle swarm 
evolutionary strategies (PSES), and more [10, 30]. 

 

Similarly, hybrid HPO methods combine the strengths of both model-based and model-free 
techniques by using elements from each approach to improve performance [30, 33]. Some of the 

techniques include HGS, halving randomised search (HRS), a genetic algorithm with surrogate 

models (GA-SM), BO with evolutionary algorithms (BO-EA), and reinforcement learning with 

evolutionary algorithms (RL-EA) [26, 30, 31]. Furthermore, MF-HPO methods aim to find the 
best hyperparameter settings by using different levels of accuracy in function evaluations to 

guide the optimization process [26]. They focus on using cheaper, lower-accuracy evaluations to 

explore the hyperparameter space first, then switching to more expensive, higher-accuracy 
evaluations later [26, 30]. This helps speed up the tuning process. As shown in Fig. 2, some 

methods treat HPO as a multi-armed bandit problem, like hyperband, successive halving, and 

others. Other methods, such as freeze-thaw BO (FTBO) and learning curve extrapolation (LCE), 
use model learning curves to predict final performance [26, 30]. 

 

This paper will empirically evaluate HPO methods such as HGS, RS, and BO-TPE to improve 

the performance of ensemble learning models in IoT ecosystems. While these methods have 
been widely used in other domains, they have yet to be fully explored for IoT-based IDSs. 

Despite growing interest in ensemble learning and hyperparameter tuning, IoT-based IDS 

Hyperparameter 

Optimization Methods

Multi-

fidelity 

HPO

Black-box 

HPO

Model-

based 
Model-free 

Hybrid-

based 
Learning 

Curv-base

Bandit-

based



International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.4, July 2025 

100 

research still faces significant gaps and is often overlooked [34]. Many studies rely on default or 

generic methods that do not address the unique challenges of IoT, such as high dimensionality, 
imbalanced classes, and real-time processing needs, which often result in suboptimal model 

performance [17, 34]. In addition, existing evaluation metrics such as accuracy and precision 

may not fully capture performance, especially when false positives or negatives can have 

serious consequences [17]. Thus, to improve IDS research and security in IoT, more tailored 
evaluation frameworks are needed. 

 

2.5. Related Works 
 

This section examines related studies on ML-based intrusion detection, focusing on methods 

such as DL, ensemble learning, and hyperparameter tuning within IoT environments. Table 1 
presents a summary of these studies. Bakır and Ceviz [7] compared several ensemble and tree-

based techniques for detecting attacks. After using feature selection, XGBoost was optimized 

with a GA, leading to improved accuracy and computation time. However, they did not report 
the FPR, which is essential for assessing the model's performance.  

 
Table 1． Summary of related works 

 
Stud

y 

Techniques Used Optimiz

ation 

Method 

Attacks Key Findings Limitations 

[7] Ensemble, Tree-
based (XGBoost) 

GA Various 
attacks 

Significant 
improvement in 

accuracy and 

computational time. 

No false positive rates 
reported. 

[35] Various ML 

classifiers (RF, DT) 

GS DDoS 

attacks 

RF and DT 

outperformed other 

models after 

optimization. 

Limited to DDoS attack 

detection. 

[9] DL, ML techniques 

(RF) 

RS DDoS 

attacks 

RF showed 98.78% 

detection rate, best 

performance. 

Only DDoS attack 

detection and binary 

classification. 

[36] FL-XGBoost BO Spoofing 

attack 

The solution achieved 

an accuracy of 

96.0%. 

Limited only to spoofing 

attacks, and no false 

positive rate was reported. 

[5] DL GS, RS Various 

Attacks 

Improved 

performance 

compared to existing 
models. 

Accuracy could be further 

improved. 

[37] Traditional 

Supervised (PCA, 

KBest) 

GS - Better results in 

binary classification. 

Limited to binary 

classification and no false 

positive rate reported. 

[21] Traditional, Tree-

based ensemble 

(GBoost, XGBoost) 

BO Various 

Attacks 

GBoost and XGBoost 

had the best accuracy 

and recall. 

No detailed evaluation 

results. 

[38] DTs BO Botnet 

attacks 

Improved 

performance 

compared to existing 

solutions. 

Limited to DDoS detection 

and binary classification. 

[39] Traditional ML and 

EnsembleXGBoost, 

RS DDoS 

attacks 

XGBoost achieved 

better results with 

accuracy of 97%. 

Limited to DDoS detection 

and binary classification. 

 
 



International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.4, July 2025 

101 

Similarly, Sanchez et al. [35] focused on detecting DDoS attacks with different ML classifiers. 

They used GS for hyperparameter tuning and tested various datasets. Although their work is 
limited to one type of attack, they found that RF and DT models performed better after 

optimization. In another study, Gaur et al. [9] suggested a combination of DL and traditional ML 

for DDoS detection. By utilizing an RS for optimization, they discovered that RF surpassed 

other models with a detection rate of 98.78%. However, their work only focuses on DDoS 
attacks, limiting its broader application. 

 

Furthermore, Guemebe et al. [36] employed federated BO and XGBoost techniques for 
predicting spoofing attacks in the IoMT domain, where the solution achieved a prediction 

accuracy of 96%. However, the work is limited to binary classification. In parallel, Kunang et 

al. [5] introduced a DL-based IDS for IoT attacks. Using GS and RS to optimize the models, 

their solution demonstrated improved results over existing models and reported higher overall 
accuracy. Mohy-Eddine et al. [37] also suggested a traditional supervised technique for 

detecting intrusions in IoT and utilized Principal Component Analysis (PCA) and KBest for 

feature reduction and grid search for optimization. Although their solution was unsuccessful in 
binary classification, it is limited to this area. In the same vein, Lai et al. [21] compared 

traditional tree-based and ensemble techniques for IoT attack detection and optimized the 

models with BO. Their results demonstrated that GBoost and XGBoost were superior in terms 
of accuracy and recall, but they did not provide detailed evaluation results. Injadat et al. [38] 

used Decision Trees (DT) for botnet detection in IoT which is optimized via BO. Their solution 

was not effective in detecting DDoS attacks but was limited to detecting DDoS attacks. On the 

same note, Jiyad et al. [39] proposed an ensemble ML method that utilizes explainable AI (XAI) 
to predict DDoS attacks with the solution incorporating SHAP and LIME for interpretability. 

With a 97% accuracy rate, the study showed that XGBoost-based models performed better than 

classifiers. 
 

The studies summarized in Table 1 highlight a clear trend of using ML for attack detection, 

especially DDoS. These studies focus on optimizing models utilizing hyperparameter tuning 
methods like GS, RS, BOs, and GAs. The main goals are to improve detection accuracy and 

computational efficiency by often incorporating feature selection or dimensionality reduction. 

However, several studies that implemented GS noted its time-consuming nature and challenges 

with dimensionality [10, 29]. Several studies focus on just a single attack or binary 
classification which limits their generalizability. Additionally, important evaluation metrics, 

such as the FPR, are often overlooked, and some models still need accuracy improvement. 

There is also a lack of multi-class or broader attack detection, which indicates areas for further 
research. In this paper, we aim to evaluate alternative black box HPO techniques in enhancing 

ensemble learning models for IoT IDS. Unlike most studies, we assess our proposed solutions 

via binary classification and multi-classification to demonstrate the performance against various 

attacks. 
 

3. METHODOLOGY 
 

This section outlines the methodology used in our experiment, including the steps taken to work 
with the dataset. We detail the data pre-processing techniques applied, the tree-based models 

selected, and the HPO methods employed to fine-tune the models. In addition, we describe the 

performance metrics used to assess the performance of the models and the overall process is 

shown in Fig.3. In the experiment, we worked with both imbalanced and balanced datasets, 
splitting the data into 80% for training and 20% for testing. We conducted four experiments: 

First, we trained and tested the RF and XGBoost models using their default settings. Then we 

fine-tuned the models using BO with Tree-structured Parzen Estimators (BO-TPE) in the second 
experiment, followed by HGS in the third experiment. In the fourth experiment, the RS is used 



International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.4, July 2025 

102 

for optimizing the models. The results from these fine-tuned experiments were compared with 

the results from the default baseline, with further details on the evaluation parameters provided 
in Section 5. 

 

 

 
 

Fig.3. Proposed Approach workflow 

 

 
 

Fig.4. Class distribution of benign and attacks 

 

 

CIC-ToN-IoT 

Dataset

Cleaning

Balancing

Scaling

Data Splitting

Imbalanced Data
Balanced 

Data

Model Building

Model Evaluation

Default 

Hyperparameters

Hyperparameter

 Tuning
HPO Techniques:

(BO-TPE, HGS & RS)

Ensemble Classifiers:

(RF & XGBoost)

Metrics:

(Accuracy, Recall, Precision, 
F1Score, FPR, Training & 

Testing Times)

Classification

Sampling Technique:

(Synthetic Minority Oversampling 
Technique )

Feature Scaling Technique:

(Standard Scaler )

Enconding

Enconding

Cleaning

Data 

Preprocessing

Data 

Preprocessing

Ratio:

(Train: 80% & Test: 20%) 



International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.4, July 2025 

103 

3.1. Data Collection 
 
The dataset used in this study is the CIC-ToN-IoT dataset released in 2019, which is an 

alternative version of the UNSW-ToN-IoT dataset. The TON-IoT dataset contains various 

telemetry data from IoT sensors, IoT network traffic, and operating system logs, all generated 
using an industrial network testbed [40]. The inventors employed the CICFlowMeter version 4 

tool to extract features from the TONIoT dataset, which resulted in 83 features and 5,351,760 

data samples  [11]. This dataset includes both normal traffic flow and various cyber-attack 

events such as DoS, DDoS, injection, backdoor, Man-In-The-Middle (MitM), scanning, 
ransomware, password attacks, and Cross-Site Scripting (XSS).In the context of this paper, due 

to the computational system limitations of the machine used for the experimentation, we could 

not use the full dataset, thus we utilized only 10% of the CICToNIoT dataset, which amounted 
to 484,750 data samples, as shown in Fig. 4. To sample the dataset we set the fraction to 0.10 

and the random state to 42, which enabled us to randomly select 10%  of the entire dataset and 

store it to a new CSV file. 
 

3.2. Data Pre-processing 
 
To prepare the dataset for analysis, several pre-processing steps are applied, as we worked with 

both imbalanced and balanced datasets. First, handle missing values by removing the affected 

entries with missing values and extra whitespaces. Consequently, irrelevant columns were also 
dropped, leaving us with 79 useful features. Then we also handled categorical data by applying 

the label encoding technique to transform categorical features into numerical values (usually 

integers) for both binary (Bening = 0, attack = 1) and multi-class classifications. Furthermore, 

we applied SMOTE to address the imbalance in the data [11]. SMOTE resamples the data by 
oversampling the minority class and undersampling the majority class, leading to a more 

balanced dataset for training. As depicted in Fig. 4, for binary classes, the prior class distribution 

was 212332 and 272418 samples for benign and attacks, respectively. After applying SMOTE, 
the minority class was synthetically oversampled to balance the distribution, resulting in 272418 

samples for both benign and attack classes, respectively.  

 
Similarly, for multi classes, the benign class had 212332 samples, followed by xss with 206057, 

password with 32610, injection with 26823, scanning with 3574, backdoor with 2784, 

ransomware with 494, MITM with 49, DDos with 20, lastly Dos class with 7 samples. After 

applying SMOTE, each minority class was synthetically oversampled to match the 212332 
samples of the majority class, thus, resulting in equal class distribution across all classes. 

Finally, we applied feature scaling or standardization to make sure that all features were of equal 

importance during model training.  In this case, we standardized the features with the Standard 
Scaler method to ensure that they all have comparable scales for more effective modeling. 

Additionally, the feature selection method was used to reduce the number of features and 

eliminate those that are redundant or irrelevant. These highlighted measures are essential for 

enhancing model performance and reducing computational complexity. 
 

3.3. Selected Ensemble Learning Models 
 

This subsection discusses the two widely known tree-based ensemble learning models, based on 

bagging and boosting, adopted for predicting attacks. 

 

3.3.1. Random Forest  

 

This is a bagging ensemble learning model that combines multiple DTs to make predictions [8]. 
Each tree in the forest provides a classification, and the algorithm works in two stages: first, it 



International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.4, July 2025 

104 

creates the classifiers, DTs, and then it makes predictions by taking the majority vote from all 

the trees. This process helps reduce variance and prevent overfitting to the training data [23, 41]. 
The final prediction is the one on which most of the trees agree. As shown in equation (1), the 

model represents the most common prediction from all the trees, and B is the total number of 

DTs in the forest [41]. Ti(x) is a prediction of DTs for a given input x and the final prediction y ̂ 
for the input x,is obtained by majority voting: 
 

𝑦 ̂= 𝑚𝑜𝑑𝑒([𝑇1(𝑥), 𝑇2(𝑥), … , 𝑇𝐵(𝑥)])                                                                           (1) 

 

3.3.2. Extreme Gradient Boosting  
 

This is an ensemble learning model that also uses DTs and operates within the GBoosting 

machine architecture [42]. The technique utilizes boosting, which combines the predictions of 
multiple poor learners to create a strong learner through additive training strategies [41, 42]. It 

helps reduce overfitting by simplifying the target functions and improves computational 

efficiency by using parallel calculations [7, 42]. The final prediction is achieved using the 
sigmoid function to summarize all the DTs' predictions. Equations (2) to (3) represent the 

formula of the XGBoost classifier.  

 

�̂�𝑖 = 
1

1+𝑒−𝐹(𝑥𝑖)  
                           (2) 

    

Where 𝐹(𝑥𝑖) is the model’s output for the ith instance given by: 

 

𝐹(𝑥𝑖)= ∑ 𝑓𝑡
𝑇
𝑡=1 (𝑥i)                                                                                                    (3) 

 

Where 𝑓𝑡(𝑥𝑖) is the prediction of the tth tree for the ith instance. 

 
In essence, RF is chosen for its strength and the ability to scale while handling complex data. 

Also, creating multiple DTs and combining their predictions helps reduce overfitting and 

improve generalization [41]. Likewise, XGBoost, a faster and more efficient version of 
GBoosting, is selected for its speed and top-tier performance in ML competitions [42]. These 

models were selected for their effectiveness in classification tasks, particularly in cybersecurity. 

They handle imbalanced datasets, capture complex patterns, and offer interpretable results, 

making them suitable for IoT intrusion detection [8, 23, 41, 42]. The wide range of adjustable 
hyperparameters also allows fine-tuning to optimize performance, aligning with the objectives 

of this study. 

 

3.4. Hyperparameter Tuning Methods 
 
This subsection discusses the different black-box HPO methods selected for this study to 

optimize the ensemble learning models considered in this paper.  

 

3.4.1. Halving Grid Search 
 

This is an HPO technique that improves the traditional GS by adding a strategy called 

successive halving [27, 43]. In this method, instead of testing every possible hyperparameter 
combination, it begins with a broad range and gradually eliminates more promising options [27, 

43]. This results in minimizing both computational costs and time, without sacrificing model 

performance, making it suitable for large search spaces or costly-to-train models [27]. 
 

 

 



International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.4, July 2025 

105 

3.4.2. Bayesian Optimization-TPE 

 
This is an effective model-based HPO technique that uses a probabilistic model to divide the 

hyperparameter space into promising and less promising regions [26, 44]. By constructing 

separate models for configurations that are likely to improve performance versus those that are 

not, BO-TPE provides computational resources where they will have the most impact [26, 44]. 
This combination of exploration and exploitation makes searches more efficient than traditional 

methods. 

 

3.4.3. Random Search 

 

This is one of the most widely used model-free techniques that provides a practical alternative 

to GS by randomly sampling hyperparameter combinations from a predefined space [10, 26, 
44]. Instead of testing every option systematically, it evaluates a subset of configurations, 

resulting in faster insights and results [10, 43, 44]. 

 
These techniques were selected because HGS efficiently narrows the search space and is 

scalablewhile RS is simple, fast, and effective for large or uncertain search spaces. Similarly, 

BO-TPE is highly efficient in finding optimal solutions by intelligently exploring the 
hyperparameter space and is ideal for complex, costly-to-train models. 

 

3.5. Evaluation Metrics 
 

The performance of the models in this experiment is evaluated using a variety of metrics to 

ensure a thorough assessment [1, 45]: Accuracy measures how often the model accurately 
predicts attacks and benign traffic, while precision and recall focus on the model's ability to 

accurately identify attacks and minimize false positives and false negatives, respectively. The 

F1score balances precision and recall, providing a useful metric for imbalanced datasets. The 

FPR highlights how often normal traffic is misclassified as an attack. Conversely, the confusion 
matrix provides a summary of both correct and incorrect predictions. It helps to derive key 

values such as true positives (TP), true negatives (TN), false positives (FP), and false negatives 

(FN). Moreover, the training and testing times are tracked to measure the model's efficiency.  
 

A𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                    (4) 

 

Precision =  
𝑇𝑃

𝑇𝑃  + 𝐹𝑃 
                                       (5) 

 

Recall =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                (6) 

 

F1-score =  
2×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                          (7) 

 

FPR =  
𝐹𝑃

𝑇𝑃 + 𝑇𝑁
                                                      (8) 

 

As illustrated in Equations (4) to (8), TP represents attacks that are correctly classified, TN 
represents normal traffic correctly classified, FP represents normal (benign) traffic incorrectly 

classified as attacks, and FN represents attacks that are incorrectly classified as normal traffic. 

We chose these metrics due to their importance in intrusion detection tasks, where both FPs and 
FNs can have serious consequences. A high FPR can cause unnecessary alerts and wasted 

resources, while a high FNR rate may result in undetected attacks [1, 45]. Therefore, by 

combining these metrics, our study ensures a thorough evaluation of the model's performance. 



International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.4, July 2025 

106 

4. EXPERIMENTAL SETUP 
 

The experiments in this study were conducted using a combination of open-source tools and 

frameworks on a system with specific hardware and software. The hardware setup includes an 
HP EliteOne 840 23.8-inch all-in-one desktop PC, running on Windows 11 Pro, powered by a 

12th Gen Intel® Core i5-12500 processor and 8GB of RAM. The hardware configuration 

includes a high-performance system with a multi-core processor, a large RAM, and GPU 
support for training and tuning ensemble models. The software includes Python 3, executed 

within a Jupyter Notebook (version 6.5.4) environment with key libraries such as Pandas, 

Numpy, SciKit-learn, Seaborn, Matplotlib, and Hyperopt, among others. These libraries provide 
a wide range of ML algorithms and tools for data preprocessing, model evaluation, and 

hyperparameter tuning, thereby ensuring efficiency and aligning with the objectives of this 

study. This ensures effective handling of large datasets and complex models. 

 

5. RESULTS AND ANALYSIS 
 

This section presents the evaluation results of the ensemble learning models with both default 

and tuned hyperparameters. Furthermore, we provide details about the hyperparameter tuning 
configurations and Table 2 shows the results of the default hyperparameter used as the baseline 

and obtained hyperparameter values used to optimize the performance of the models. We 

conducted tuning on two scenarios: the imbalanced CICToN-IoT dataset and the balanced 

dataset using SMOTE. Moreover, binary and multi-class classification were performed across 
all experiments. In experiment 1, we used the default hyperparameters for the RF and XGBoost 

models as a baseline for comparison with results from other experiments. In experiment 2, we  

 
Table 2． Default and optimized hyperparameter values 

 
                     Imbalanced 

Dataset 

                    Balanced Dataset 

Experi

ment 

Techni

que 

Model Hyperparam

eter Settings 

for Binary 

Classificatio

n 

Hyperparam

eter Settings 

For multi-

classification 

Hyperparam

eter Settings 

for Binary 

Classificatio

n 

Hyperparam

eter Settings 

For multi-

classification 

 

 

1 

 

 

Default 

RF 

 

 

 

 
 

 

 

 

XGBo

ost 

 

max_depth: 

none, 

min_samples

_split: 2, 

min_samples
_leaf: 1, 

n_estimators: 

100 

 

learning_rate: 

none, 

max_depth: 

none, 

n_estimators: 

100, 

subsample: 
none 

max_depth: 

none, 

min_samples 

_split: 2, 

min_samples
_leaf: 1, 

n_estimators: 

100 

 

learning_rate: 

none, 

max_depth: 

none, 

n_estimators: 

100, 

subsample: 
none 

 

 

 

max_depth: 

none, 

min_samples

_split: 2,  

min_samples
_leaf: 1, 

n_estimators: 

100 

 

learning_rate: 

none, 

max_depth: 

none, 

n_estimators: 

100 

max_depth: , 

min_samples 

_split: 2,  

min_samples

_leaf: 1, 
n_estimators: 

100 

 

learning_rate: 

none, 

max_depth: 

none, 

n_estimators: 

100 



International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.4, July 2025 

107 

                     

 

                    Imbalanced 

Dataset 

                    Balanced Dataset 

Experi

ment 

Techni

que 

Model Hyperparam

eter Settings 

for Binary 

Classificatio

n 

Hyperparam

eter Settings 

For multi-

classification 

Hyperparam

eter Settings 

for Binary 

Classificatio

n 

Hyperparam

eter Settings 

For multi-

classification 

 

 

2 

 

 

BO 

TPE 

RF 

 

 

 

 
 

 

 

 

XGBo

ost 

 

max_depth: 

19, 

min_samples

_split: 7, 

min_samples
_leaf: 1, 

n_estimators: 

100  

 

learning_rate: 

0.8426, 

max_depth: 9, 

n_estimators: 

100 

max_depth: 

18, 

min_samples

_split: 5, 

min_samples
_leaf: 7, 

n_estimators: 

200  

 

learning_rate: 

0.1347, 

max_depth: 

15, 

n_estimators: 

50 

max_depth: 

20, 

min_samples

_split: 3, 

min_samples
_leaf: 1, 

n_estimators: 

300  

 

learning_rate: 

0.7798, 

max_depth: 

12, 

n_estimators: 

100 

max_depth: 

20, 

min_samples

_split: 9, 

min_samples
_leaf: 9, 

n_estimators: 

50  

 

learning_rate: 

0.6211, 

max_depth: 7, 

n_estimators: 

150 

 

 

3 

 

 

HGS 

RF 

 

 
 

 

 

 

 

 

XGBo

ost 

 

max_depth: 

20, 

min_samples
_split: 2, 

min_samples

_leaf: 1, 

n_estimators: 

200  

 

learning_rate: 

0.1, 

max_depth: 7, 

n_estimators: 

200. 

max_depth: 

20, 

min_samples
_split: 10, 

min_samples

_leaf: 2, 

n_estimators: 

100  

 

learning_rate: 

0.3, 

max_depth: 7, 

n_estimators: 

200 

max_depth: 

20, 

min_samples
_split: 5, 

min_samples

_leaf: 1, 

n_estimators: 

200 

 

learning_rate: 

0.1, 

max_depth: 7, 

n_estimators: 

200 

max_depth: 

none, 

min_samples
_split: 1, 

min_samples

_leaf: 2, 

n_estimators: 

200 

 

learning_rate: 

0.3, 

max_depth: 7, 

n_estimators: 

200 

 
 

4 

 
 

RS 

RF 
 

 

 

 

 

 

 

 

XGBo

ost 

 

max_depth: 
none, 

min_samples

_split: 5, 

min_samples

_leaf: 1, 

n_estimators: 

100.  

 

learning_rate: 

0.3, 

max_depth: 5, 

n_estimators: 
200 

max_depth: 
20, 

min_samples

_split: 10, 

min_samples

_leaf: 2, 

n_estimators: 

100 

 

learning_rate: 

0.3, 

max_depth: 5, 

n_estimators: 
200 

max_depth: 
none, 

min_samples

_split: 5 ,  

min_samples

_leaf: 1, 

n_estimators: 

100 

 

learning_rate: 

0.3, 

max_depth: 5, 

n_estimators: 
200 

max_depth: 
none, 

min_samples

_split: 5, 

min_samples

_leaf: 1, 

n_estimators: 

100 

 

learning_rate: 

0.3, 

max_depth: 5, 

n_estimators: 
200 

 

utilized the Hyperopt library for BO using TPE as a search method that yielded BO-TPE to 

explore the search space and minimize the loss function. The maximum number of trials was set 
to 50 for binary and 10 for multi-class classification. This process was repeated on both 

imbalanced and balanced datasets to capture the best hyperparameters and the accuracy as an 

evaluation metric. 



International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.4, July 2025 

108 

 
As shown in Table 2, for experiments 3 and 4, we used HalvingGridSearchCV and 
RandomSearchCV as search methods, respectively, with a 5-fold cross-validation and accuracy 

as a metric to find the best hyperparameter combination for both classification methods on 

imbalanced and balanced datasets. Additionally, for experiment 3 the factor was set to 2 for each 

iteration and for experiment 4 the number of iterations for random combinations was set to 10. 
Finally, the hyperparameters used for tuning RF include: the number of trees, the maximum 

depth of the tree (max_depth), the minimum number of samples required for splitting 

(min_samples_split), and the minimum number at a leaf node (min_samples_leaf). For 
XGBoost, we use the learning rate (learning_rate), the number of boosting rounds 

(n_estimators) and the maximum tree depth (max_depth). Table 2, presents the best 

hyperparameter results for the models after optimization. 
 

5.1. Default Hyperparameter Baseline 
 
Fig. 5. presents the results obtained using default hyperparameters and Fig. 6. shows the 

computation time where IMBD is the imbalanced dataset and BLD is the balanced dataset. As 

shown, XGBoost slightly outperformed RF on the imbalanced dataset, achieving 99.23% 
accuracy, 99.32% F1-score, and a 1.34% FPR, compared to RF’s 86.13%, 48.87%, and 40.13%. 

XGBoost also had faster prediction times, taking 0.510s for binary classification and 0.949s for 

multi-classification as shown in Fig. 5. After balancing the dataset, XGBoost still outperformed 

RF in binary classification with 99.32% accuracy. However, for multi-classification, RF 
outperformed with 93.72% accuracy, 93.69% F1-score, and a lower FPR of 6.27%. Despite this, 

RF took longer to predict, requiring 71.974s. These results reveal that XGBoost performed 

better on the imbalanced dataset with higher accuracy, F1-score, and faster prediction times. 
After balancing the dataset, XGBoost remained superior in binary classification, while RF 

remained superior in multi-classification despite slower predictions. 

 

 
 

Fig.5. Model performance with default hyperparameters 
 



International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.4, July 2025 

109 

 
 

Fig.6. Testing time for default and tuned hyperparameters 
 

5.2. Models Tuned with BO-TPE 
 

Fig. 7 presents the performance of the models after tuning with BO-TPE. The RF model was 
slightly outperformed by XGBoost, achieving 99.18% accuracy for binary classification and 

86.09% for multi-classification. RF also had a higher F1-score of 99.28% for binary 

classification and a lower FPR of 3.94% in multi-classification, but slower prediction times with 

5.368s for binary and 15.205s for multi-classification as shown in Fig. 6.  
 

 
 

Fig.7. Model performance after tuning with BO-TPE 

 

Accordingly, after balancing the dataset, XGBoost outperformed RF with an accuracy of 
98.96% for binary classification and 93.51% for multi-classification. It also achieved an F1-

score of 98.97% for binary and 93.46% for multi-classification. Moreover, XGBoost had an 

FPR of 1.35% for binary classification and 6.47% for multi-classification with a lower 
prediction time of 8.873s. As presented, the findings indicate that RF performed better on the 

imbalanced dataset, achieving higher accuracy and F1-score but slower prediction times. After 

balancing, XGBoost achieved superior results in accuracy, F1-score, and prediction time, 

especially in multi-classification. 



International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.4, July 2025 

110 

 
 

Fig.8. Model performance after tuning with HGS 

 

5.3. Models Tuned with HGS 
 
Fig.8 presents the results of the performance of the models after tuning with HGS. On the 

imbalanced dataset, XGBoost demonstrates improved performance in several areas. It achieved 

a higher accuracy, with 99.24% for binary classification and 85.58% for multi-classification and 

produced a higher F1-score of 99.32% for binary classification. In addition, as presented in Fig. 
6, XGBoost showed faster prediction times, taking only 0.293s for binary classification and 

2.121s for multi-classification but had a higher FPR of 99.32% for binary classification.  

 
After balancing the dataset, XGBoost outperformed RF in binary classification with 99.34% 

accuracy, a 99.34% F1-score, and a FPR of 1.02%, along with faster prediction times with 

0.089s. RF excelled in multi-classification, achieving 93.76% accuracy, a 93.73% F1-score, and 
an FPR of 6.22%, but it had a longer prediction time of 146.265s. Overall, the result reveals that 

XGBoost performed better on the imbalanced dataset with higher accuracy, F1-score, and more 

accurate predictions. After balancing, XGBoost remained superior in binary classification, while 

RF was more advantageous for multi-classification, though slower. This suggests that XGBoost 
could be ideal for efficient binary classification tasks, while RF may be better for multi-

classification when prediction time is less of a concern. 

 

5.4. Models Tuned with RS 
 

Fig. 9 shows the performance of the models after tuning with RS. On the imbalanced dataset, 
the RF model slightly outperformed XGBoost in binary classification, achieving an accuracy of 

99.21% and an F1-score of 99.30%. However, XGBoost had a lower FPR of 1.38% and a faster 

prediction time of 0.598s as shown in Fig. 6. In multi-classification, XGBoost achieved an 
accuracy of 86.01% and an F1-score of 49.79%, while RF had a higher FPR of 38.79% while 

both models had the same prediction time of 0.598s. Similarly, after balancing the dataset, both 

models achieved accuracy and an F1-score of 99.30% in binary classification. XGBoost had a 

lower FPR of 1.04% and a faster prediction time at 0.383s. In multi-classification, RF 
outperformed XGBoost with an accuracy of 93.65%, an F1-score of 93.61%, and an FPR of 

6.33%, but took longer to predict with 0.383s. Overall, RF slightly outperformed XGBoost in 

binary classification, while XGBoost was faster with a lower FPR on the imbalanced dataset 
while XGBoost led in accuracy and F1-score in multi-classification. Nevertheless, after 

balancing the dataset, both models performed similarly in binary classification, but RF was 

better in multi-classification, despite taking longer to predict.  



International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.4, July 2025 

111 

 
 

Fig.9. Model performance after tuning with RS 

 
The findings shown in Fig. 5 to 9 are important for enhancing IoT IDS. By utilizing an approach 

such as HGS, practitioners can create more accurate, efficient, and reliable IDS suited to the 

unique needs of IoT environments. Furthermore, these insights can guide future research on 

better tuning methods, hybrid models, and real-time detection frameworks. 
 

6. DISCUSSIONS 
 

In this section, we examine and provide some key insights into optimizing ensemble learning 
models for IoT intrusion detection. The findings focus on the effectiveness of HPO methods, 

their impact on attack types, the challenges faced, and comparison with the state-of-the-art 

methods. The findings of the default hyperparameters were compared with the other three tuned 

with BO-TPE, HGS, and RS. The analysis shows that hyperparameter tuning with HGS on the 
balanced dataset produced promising results. As shown in Table 3, the performance showed 

modest improvements. 

 

Table 3． Effectiveness of HGS on a balanced dataset 

 
Model Accuracy (%) Precision (%) Recall (%) F1-score (%) FPR (%) 

XGBoost >0.02 >0.02 >0.03 >0.02 <0.02 

RF >0.04 >0.05 >0.04 >0.04 <0.05 

 

For binary classification, the XGBoost model saw a minor increase in accuracy, precision, and 

F1score by 0.02%. The model’s recall also improved by 0.03%, while the FPR decreased by 

0.02%. Similarly, for multi-classification, the RF showed a slight improvement in accuracy, 
precision, and F1-score by 0.04%, with recall increasing by 0.05% and FPR decreasing by 

0.05%. In conclusion, hyperparameter optimization using HGS on a balanced dataset proved to 

be more effective than other techniques, BO-TPE and RS considered in this study. Furthermore, 
the confusion matrix shown in Fig.10 presents the performance of the XGBoost and RF models 

after applying the HGS HPO technique and its impact on detection models against attacks. 

 



International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.4, July 2025 

112 

 
 

Fig.10. Model performance against attacks 

 

Accordingly, for binary classification, the XGBoost model correctly classified 98.98%, about 
53.927 instances of the attacks and 99.70% about 54.320 instances of the benign traffic. It 

misclassified only 1.02%, approximately 557 instances of malicious traffic as attacks and 

0.30%, approximately 164 instances of attacks as malicious. In the same vein, for multi-
classification, the RF model achieved perfect predictions for DoS and Ransomware attack 

classes and nearly perfect predictions for Backdoor, DDoS, and MitM attacks with 99.99% 

correct. It also classified malicious traffic and scanning attacks correctly in 98.66%, 
approximately 41.898 instances, and 98.04%, approximately 41.698 instances of cases, 

respectively. However, 1.34% of 568 instances of malicious traffic and 1.96%, approximately 

847 instances of scanning attacks were misclassified as other attack types. 

 
Despite these successes, the RF model faced difficulties in distinguishing between XSS, 

password, and injection attack classes, which share similar features. For the XSS attack class, 

the model correctly identified 85.23% (36.195 instances), but misclassified some as password 
attacks (7.61%), injection attacks (5.41%), scanning attacks (1.28%), and benign traffic 

(0.47%). For password attacks, the model correctly classified 80.61% (34.234 instances), but 

misidentified 9.41% (3.998 instances) as XSS attacks, 7.52% (3.198 instances) as injection 
attacks, and smaller percentages as scanning attacks and benign traffic. Similarly, for the 

injection attack class, the model identified 75.14% (31.910 instances) correctly but misclassified 

significant portions as password attacks (13.88%), XSS attacks (8.82%), scanning attacks 

(2.13%), and benign traffic (0.03%). These findings stress the importance of distinguishing 
features in ML models as overlapping traits between attack types can lead to misclassifications. 

This highlights the need for improved feature engineering and model refinement to improve 

detection accuracy. 
 

Hyperparameter tuning, which is essential for optimizing ensemble learning models, presents 

numerous challenges. One of the primary challenges in this study is mainly due to the 

computational system capacity of the machinery device used for the experiments. Consequently, 
we could only use 10% of the CICToN-IoT dataset instead of the full set. Moreover, we were 

unable to explore higher values for hyperparameter tuning, such as setting the maximum 

number of evaluations to 70–100 for BO-TPE or using 10-fold cross-validation for RS and HGS 
optimization. To deal with misclassification trends, particularly for classes such as Password, 

XSS, and Scanning attacks, more thorough feature analysis is needed to identify and engineer 

distinctive features that help separate these classes. Dimensionality reduction techniques like 



International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.4, July 2025 

113 

PCA and feature selection methods such as Analysis of Variance (ANOVA) could also improve 

class separability. Finally, to enhance model performance, particularly for multi-classification, 
we plan to implement a stacking ensemble model that complements the strengths of both 

XGBoost and RF algorithms. 

 

To establish the effectiveness of our study, Table 4 compares the proposed solution with similar 
existing papers based on the same ensemble models and HPO techniques. The findings showed 

that the proposed model performs exceptionally well for binary classification compared to other 

studies [36, 39]. However, the results obtained in [9], showed a better accuracy of 96.82% 
compared to ours specifically for multi-classification. In addition, their solution achieved a 

precision, recall, and F1-score of 97.00%, respectively. Although the evaluation was performed 

on diverse datasets, our findings highlight the impact of the HPOs on ensemble methods to 

improve cybersecurity, particularly in protecting IoT ecosystems from numerous cyber threats. 
 

Table 4． Comparison with state-of-the-art methods 

 
Ref. Model HPO Dataset Classification 

Method 

Performance Results 

[36] FL-

XGBoost 

BO WUSTL-EHMS-

2020 

Binary Accuracy (96.00%), Precision 

(96.00%), Recall (96.00%), 

and F1-score (96.00%). 

[39] XGBoost RS DDOS Attack 

Network Logs 

Binary Accuracy (97.00%), Precision 

(98.00%), Recall (96.00%), 

and F1-score (97.00%). 

[9] RF RS CICDDOS2019 Multi Accuracy (96.82%), Precision 
(97.00%), Recall (97.00%), 

and F1-score (97.00%). 

Proposed 

Solution 

XGBoost 

 

 

RF 

HGS 

 

 

 

 

CICToNIoT(10%) 

 

 

 

 

Binary 

 

 

 

Multi 

Accuracy (99.34%), Precision 

(98.99%), Recall (99.70%), 

and F1-score (99.34%). 

 

Accuracy (93.76%), Precision 

(93.78%), Recall (93.76%), 

and F1-score (93.73%) 

 

7. CONCLUSIONS 
 

This paper has examined the significant impact of hyperparameter tuning on the performance of 

ensemble learning models for detecting IoT-related cyberattacks. We conducted four 

experiments using both imbalanced and balanced CICToNIoT datasets and assessed the models 
via binary and multi-classification. We used the default hyperparameters as a baseline for the RF 

and XGBoost models in the first experiment and later applied BO-TPE, HGS and RS to tune the 

models’ hyperparameters in the remaining three experiments, respectively. The findings in 
comparison to the default baseline showed that hyperparameter optimization with HGS 

produced the best results on the balanced dataset. The XGBoost model performed best in binary 

classification and outperformed in multi-classification in terms of accuracy, F1-score and FPR. 
On the other hand, the RF model predicted various attacks such as DoS/DDoS, ransomware, 

backdoor, MitM, benign traffic, and scanning attacks. However, it had difficulty distinguishing 

between injection, password, and XSS attacks. These findings point to the importance of 

correctly adjusting hyperparameters based on IoT data features and the strengths of each 
ensemble model. By properly tuning XGBoosst with HGS, more accurate and efficient IDS for 

IoT environments can be created. This study provides excellent insights into designing real-time 

threat detection systems and the integration of ML into IoT security. Our future work will focus 



International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.4, July 2025 

114 

on enhancing model performance and robustness by using the full CIC-TON-IoT dataset and 

applying advanced feature selection and dimensionality reduction techniques to improve class 
separability, especially for misclassified attacks such as password, XSS, and injection. In 

addition, we aim to build a stacking ensemble model to combine the strengths of XGBoost and 

RF models for better multi-classification performance. Lastly, a comparison of these models 

with advanced DL models and the use of another similar benchmark dataset, such as 
CICIoT2023, is recommended. 

 

CONFLICTS OF INTEREST 
 
The authors declare no conflict of interest. 

 

ACKNOWLEDGEMENTS 
 

This research is supported by the Department of Computer Science and the Unit for Data 
Science and Computing at the North-West University Mafikeng campus. 

 

REFERENCES 
 
[1] B. Isong, O. Kgote, and A. Abu-Mahfouz, "Insights into Modern Intrusion Detection Strategies for 

Internet of Things Ecosystems," Electronics, vol. 13, p. 2370, 2024. 

[2] N. Mishra and S. Pandya, "Internet of things applications, security challenges, attacks, intrusion 

detection, and future visions: A systematic review," IEEE Access, vol. 9, pp. 59353-59377, 2021. 

[3] B. R. Kikissagbe and M. Adda, "Machine learning-based intrusion detection methods in IoT 

systems: A comprehensive review," Electronics, vol. 13, p. 3601, 2024. 

[4] S. Bharati and P. Podder, "Machine and deep learning for iot security and privacy: applications, 

challenges, and future directions," Security and communication networks, vol. 2022, p. 8951961, 

2022. 
[5] Y. N. Kunang, S. Nurmaini, D. Stiawan, and B. Y. Suprapto, "Attack classification of an intrusion 

detection system using deep learning and hyperparameter optimization," Journal of Information 

Security and Applications, vol. 58, p. 102804, 2021. 

[6] F. Hussain, R. Hussain, S. A. Hassan, and E. Hossain, "Machine learning in IoT security: Current 

solutions and future challenges," IEEE Communications Surveys & Tutorials, vol. 22, pp. 1686-

1721, 2020. 

[7] H. Bakır and Ö. Ceviz, "Empirical enhancement of intrusion detection systems: a comprehensive 

approach with genetic algorithm-based hyperparameter tuning and hybrid feature selection," 

Arabian Journal for Science and Engineering, pp. 1-19, 2024. 

[8] W. Chimphlee and S. Chimphlee, "Intrusion detection system (IDS) development using tree-based 

machine learning algorithms," International Journal of Computer Networks and Communications, 
vol. 15, pp. 93-109, 2023. 

[9] M. V. Gaur and R. Kumar, "Hpddos: a hyperparameter model for detection of multiclass ddos 

attacks," Mathematical Statistician and Engineering Applications, vol. 71, pp. 1444-1470, 2022. 

[10] L. Yang and A. Shami, "On hyperparameter optimization of machine learning algorithms: Theory 

and practice," Neurocomputing, vol. 415, pp. 295-316, 2020. 

[11] M. Sarhan, S. Layeghy, and M. Portmann, "Evaluating standard feature sets towards increased 

generalisability and explainability of ML-based network intrusion detection," Big Data Research, 

vol. 30, p. 100359, 2022. 

[12] R. Lohiya and A. Thakkar, "Application domains, evaluation data sets, and research challenges of 

IoT: A systematic review," IEEE Internet of Things Journal, vol. 8, pp. 8774-8798, 2020. 

[13] Y. Otoum, D. Liu, and A. Nayak, "DL‐IDS: a deep learning–based intrusion detection framework 
for securing IoT," Transactions on Emerging Telecommunications Technologies, vol. 33, p. e3803, 

2022. 

[14] K. Saranya and A. Valarmathi, "A Comparative Study on Machine Learning based Cross Layer 

Security in Internet of Things (IoT)," in 2022 International Conference on Automation, Computing 

and Renewable Systems (ICACRS), 2022, pp. 267-273. 



International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.4, July 2025 

115 

[15] A. Khanna and S. Kaur, "Internet of things (IoT), applications and challenges: a comprehensive 

review," Wireless Personal Communications, vol. 114, pp. 1687-1762, 2020. 

[16] H. U. Rehman, M. Asif, and M. Ahmad, "Future applications and research challenges of IOT," in 

2017 International conference on information and communication technologies (ICICT), 2017, pp. 

68-74. 

[17] I. Martins, J. S. Resende, P. R. Sousa, S. Silva, L. Antunes, and J. Gama, "Host-based IDS: A 

review and open issues of an anomaly detection system in IoT," Future Generation Computer 

Systems, vol. 133, pp. 95-113, 2022. 

[18] R. Alshamy and M. AKCAYOL, "Intrusion Detection Model using Machine Learning Algorithms 

On Nsl-Kdd Dataset," International Journal of Computer Networks and Communications, vol. 16, 
2024. 

[19] B. A. Tama and S. Lim, "Ensemble learning for intrusion detection systems: A systematic 

mapping study and cross-benchmark evaluation," Computer Science Review, vol. 39, p. 100357, 

2021. 

[20] M. A. Talukder, M. M. Islam, M. A. Uddin, K. F. Hasan, S. Sharmin, S. A. Alyami, et al., 

"Machine learning-based network intrusion detection for big and imbalanced data using 

oversampling, stacking feature embedding and feature extraction," Journal of big data, vol. 11, p. 

33, 2024. 

[21] T. Lai, F. Farid, A. Bello, and F. Sabrina, "Ensemble learning based anomaly detection for IoT 

cybersecurity via Bayesian hyperparameters sensitivity analysis," Cybersecurity, vol. 7, p. 44, 

2024. 
[22] Y. Alotaibi and M. Ilyas, "Ensemble-learning framework for intrusion detection to enhance 

internet of things’ devices security," Sensors, vol. 23, p. 5568, 2023. 

[23] I. D. Mienye and Y. Sun, "A survey of ensemble learning: Concepts, algorithms, applications, and 

prospects," IEEE Access, vol. 10, pp. 99129-99149, 2022. 

[24] T. N. Rincy and R. Gupta, "Ensemble learning techniques and its efficiency in machine learning: 

A survey," in 2nd international conference on data, engineering and applications (IDEA), 2020, 

pp. 1-6. 

[25] K. A. Nguyen, W. Chen, B.-S. Lin, and U. Seeboonruang, "Comparison of ensemble machine 

learning methods for soil erosion pin measurements," ISPRS International Journal of Geo-

Information, vol. 10, p. 42, 2021. 

[26] Z. Ma, S. Cui, and I. Joe, "An Enhanced Proximal Policy Optimization-Based Reinforcement 
Learning Method with Random Forest for Hyperparameter Optimization," Applied Sciences, vol. 

12, p. 7006, 2022. 

[27] C. H. Goay, N. S. Ahmad, and P. Goh, "Transient simulations of high-speed channels using CNN-

LSTM with an adaptive successive halving algorithm for automated hyperparameter 

optimizations," IEEE Access, vol. 9, pp. 127644-127663, 2021. 

[28] J. Xu, Q. Fu, and H. Li, "A novel deep learning-based automatic search workflow for CO2 

sequestration surrogate flow models," Fuel, vol. 354, p. 129353, 2023. 

[29] T. Yu and H. Zhu, "Hyper-parameter optimization: A review of algorithms and applications," 

arXiv preprint arXiv:2003.05689, 2020. 

[30] M. Feurer and F. Hutter, "Hyperparameter optimization," Automated machine learning: Methods, 

systems, challenges, pp. 3-33, 2019. 

[31] B. Zhang, R. Rajan, L. Pineda, N. Lambert, A. Biedenkapp, K. Chua, et al., "On the importance of 
hyperparameter optimization for model-based reinforcement learning," in International 

Conference on Artificial Intelligence and Statistics, 2021, pp. 4015-4023. 

[32] B. Bischl, M. Binder, M. Lang, T. Pielok, J. Richter, S. Coors, et al., "Hyperparameter 

optimization: Foundations, algorithms, best practices, and open challenges," Wiley 

Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 13, p. e1484, 2023. 

[33] P. Brazdil, J. N. van Rijn, C. Soares, and J. Vanschoren, "Metalearning for hyperparameter 

optimization," in Metalearning: Applications to Automated Machine Learning and Data Mining, 

ed: Springer, 2022, pp. 103-122. 

[34] A. Alsarhan, M. AlJamal, O. Harfoushi, M. Aljaidi, M. M. Barhoush, N. Mansour, et al., 

"Optimizing Cyber Threat Detection in IoT: A Study of Artificial Bee Colony (ABC)-Based 

Hyperparameter Tuning for Machine Learning," Technologies, vol. 12, p. 181, 2024. 
[35] O. R. Sanchez, M. Repetto, A. Carrega, and R. Bolla, "Evaluating ML-based DDoS detection with 

grid search hyperparameter optimization," in 2021 IEEE 7th International Conference on Network 

Softwarization (NetSoft), 2021, pp. 402-408. 



International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.4, July 2025 

116 

[36] B. Guembe, S. Misra, and A. Azeta, "Federated Bayesian optimization XGBoost model for 

cyberattack detection in internet of medical things," Journal of Parallel and Distributed 

Computing, vol. 193, p. 104964, 2024. 

[37] M. Mohy-Eddine, A. Guezzaz, S. Benkirane, and M. Azrour, "An efficient network intrusion 

detection model for IoT security using K-NN classifier and feature selection," Multimedia Tools 

and Applications, vol. 82, pp. 23615-23633, 2023. 

[38] M. Injadat, A. Moubayed, and A. Shami, "Detecting botnet attacks in IoT environments: An 

optimized machine learning approach," in 2020 32nd International Conference on 

Microelectronics (ICM), 2020, pp. 1-4. 

[39] Z. M. Jiyad, A. Al Maruf, M. M. Haque, M. S. Gupta, A. Ahad, and Z. Aung, "DDoS Attack 
Classification Leveraging Data Balancing and Hyperparameter Tuning Approach using Ensemble 

Machine Learning with XAI," in 2024 Third International Conference on Power, Control and 

Computing Technologies (ICPC2T), 2024, pp. 569-575. 

[40] N. Moustafa, "A new distributed architecture for evaluating AI-based security systems at the edge: 

Network TON_IoT datasets," Sustainable Cities and Society, vol. 72, p. 102994, 2021. 

[41] E. K. Sahin, "Comparative analysis of gradient boosting algorithms for landslide susceptibility 

mapping," Geocarto International, vol. 37, pp. 2441-2465, 2022. 

[42] V. Azizi and G. Hu, "Machine learning methods for revenue prediction in google merchandise 

store," in Smart Service Systems, Operations Management, and Analytics: Proceedings of the 2019 

INFORMS International Conference on Service Science, 2020, pp. 65-75. 

[43] S. Sivasubramaniam and S. Balamurugan, "An Accurate Hyperparameter Tuning Based Machine 
Learning Model For Heart Disease Identification," Innovative Technologies and its Applications in 

Higher Education, p. 193. 

[44] H. Dong, D. He, and F. Wang, "SMOTE-XGBoost using Tree Parzen Estimator optimization for 

copper flotation method classification," Powder Technology, vol. 375, pp. 174-181, 2020. 

[45] R. M. AlZoman and M. J. Alenazi, "A comparative study of traffic classification techniques for 

smart city networks," Sensors, vol. 21, p. 4677, 2021. 
 


	Abstract
	Keywords
	IoT Security, Intrusion Detection, Ensemble Learning, Hyperparameter Tuning.


