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ABSTRACT 
 

In this study, a deep learning-based model was proposed by combining a sparse autoencoder and a 

combination of autoencoders with LSTM for feature selection and intrusion detection. Subsequently, the 

likelihood of attacks was evaluated using an ensemble method. The proposed model employed several 

functions and addressed current research gaps, such as reducing false positive rates, mitigating model 

overfitting, addressing data imbalance, and identifying new attack scenarios. The proposed model was 

tested on benchmark datasets, viz., WUSTL-EHMS 2020, IoT Healthcare Security 2021, and CIC IoMT 
2024. The proposed model achieved a perfect detection rate in binary classification of WUSTL-EHMS 

2020 and IoT Healthcare Security 2021. The model achieved an accuracy rate of 99.80% (binary) and 

90.67% (multiclass) in the CIC IoMT 2024 dataset. In addition, the Matthews Correlation Coefficient 

(MCC), Cohen’s Kappa, and Adversarial Robustness Score (ARS) provided a comprehensive assessment of 

the model, demonstrating its robustness and applicability in healthcare. 
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1. INTRODUCTION 
 

The Internet of Things (IoT) has undergone rapid development, thereby advancing various 

industries, including manufacturing, transportation, healthcare, and agriculture. IoT is a network 
of physical objects that are embedded with sensors, actuators, communication modules, and 

storage, etc., for connecting and transferring data over the network. IoMT devices save costs, 

facilitate improved decision-making, remote patient monitoring, and exhibit high performance 
efficiency; however, the challenges associated with their security must be addressed. IoMT 

devices face various security threats due to insufficient credential configuration, a lack of 

encryption, and obsolete firmware. These vulnerabilities expose crucial data to man-in-the-

middle attacks, DDoS, and spoofing, among other threats [1], [2]. 
 

The integration of IoT in healthcare systems can revolutionize patient care and promote remote 

patient monitoring. IoMT facilitates remote patient monitoring, which decreases the need for 
clinicians to intervene directly. And the acquired data can be used for research purposes [3]. 

 

Fundamental components of personalized healthcare systems and e-health systems, such as 
mobile health (mHealth), telehealth, health informatics, and telemedicine. This paper examines 
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the advanced alternatives in e-health systems, IoT in healthcare, its role, and difficulties [4]. 
According to Cynerio's "State of Healthcare IoT Device Security 2022" report, over 50% of 

Internet of Medical Things (IoMT) devices have been exposed to several critical risks, as 

approximately half of the systems are outdated. The 2023 report similarly concluded that 

managing, prioritizing, and comprehending such risks should take precedence over achieving 
zero risk in such IoMT devices [5]. Additionally, the maintenance of medical equipment is 

challenging due to the vast range of equipment that is vulnerable to cyberattacks; regular 

calibration is therefore essential. Downtime of these critical devices disrupts workflow. The 
devices require specific expertise and trained personnel to operate, as well as frequent 

maintenance. 

 
Security threats associated with IoMT devices and sensors can have significant consequences, 

including life-threatening situations for patients and negatively impacting healthcare providers by 

damaging the organization's reputation [6], [7] because such systems have access to critical 

medical records of patients. These vulnerabilities can be mitigated using measures such as 
encryption and BitLocker security; however, intrusion detection systems (IDSs), event and log 

management, and network segmentation are also required to prevent data breaches and enhance 

data security. An IDS identifies potential cyber threats in real time and has therefore been widely 
used in IoMT. Next, the advantages and challenges of IoMT are stated below [8], [9], [10], [11]. 

The benefits of utilizing IoMT are outlined below. 

 
Enhanced patient monitoring and care: With IoMT, patients' vital signs and movements are 

tracked in real-time, significantly reducing their need for hospital visits. This technology is 

widely used to monitor and provide timely updates on chronic health conditions, such as diabetes 

and cardiovascular diseases, enabling prompt medical responses. 

 

Data-driven decision-making: The information gathered by IoMT devices can be leveraged for 

healthcare analytics without any data loss, which minimizes manual errors and accelerates the 
accuracy of decision-making. 

 

Cost reduction: By enabling remote monitoring, IoMT reduces the frequency of hospital visits, 

enhances operational efficiency, and enables healthcare organizations to manage their resources 
more effectively. 

 

Encourages research: IoMT devices collect vast amounts of sensitive data that can be utilized to 
advance medical research and foster innovation. 

IoMT devices have these challenges 

 
Real-time data: Enormous processing power is required to generate a wealth of real-time data 

continuously. Additionally, the history of this data cannot be disregarded, as health-related 

information is essential for making informed decisions. 

 
Lack of industry and technology exposure: Many end-users are unaware of the latest 

technological advancements and the security measures that accompany them. 

 
Data security and privacy: Since IoMT devices collect real-time data, it is essential to ensure 

their security; however, most devices do not adhere to established protocols and standards, which 

heightens the risk of cyber threats. 

 

Multiple connected devices: The integration of numerous IoMT devices without data loss 

remains a significant challenge. 
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Lack of licensed software and resource constraints: A significant amount of software, 
including electronic health record systems and security applications, is unlicensed and has limited 

resources, leading to data theft and mismanagement. These challenges can be mitigated by 

utilizing open-source software and cloud services. 

 
Overall, IoMT has transformed the healthcare industry by exchanging real-time data among 

medical equipment. Real-world incidents, such as Medjack [12] and vulnerabilities in 

pacemakers [13], highlight real-time attack scenarios. Most baseline approaches are often tested 
on traditional network datasets [14]; however, these models lack complexity and fail to handle 

the diversity of recent IoMT threats. However, this proposed approach is validated using 

comprehensive benchmark datasets, such as WUSTL-EHMS2020, IoT Healthcare Security 2021, 
and CIC-IoMT2024, which include realistic spoofing attacks, ensuring that the proposed 

approach is compatible and robust against current and emerging threats. Moreover, the existing 

IDS has a high misclassification rate with a significant false positive rate; this is an important 

issue to consider when incorporating IDS with critical infrastructure, such as the healthcare 
domain. To overcome these issues, a prototype is proposed that achieves high performance with 

low loss and misclassification. The structure of this paper is organized as follows: Section 2 

reviews pertinent literature and identifies existing research gaps. Section 3 outlines the proposed 
framework and methodology, while Section 4 presents the extensive experimental results and 

performance assessment, providing a thorough insight into the framework's capabilities. Finally, 

Section 5 wraps up the study. 
 

2. LITERATURE REVIEW 
 

Akshay Kumaar et al. [15] proposed a hybrid architecture, ImmuneNet, to identify recent 

intrusion attacks and secure healthcare data. ImmuneNet uses feature engineering techniques and 
oversampling to improve class balance. It employs hyperparameter optimization to achieve high 

accuracy and performance on the Canadian Institute for Cybersecurity (CIC) IDS 2017 and 2018 

datasets, as well as the Bell DNS 2021 datasets, ensuring generalizability and robustness. The 
model achieved an accuracy of ~99.19% for the CIC Bell DNS 2021 dataset. Roy et al. [16] 

developed a novel IoT intrusion detection model based on B-Stacking, which achieved accuracies 

of 98.5% and 99.11% on the NSL-KDD and CIC IDS 2017 datasets, respectively. B-Stacking 

exhibited a high detection rate and low false alarm rate; however, it has to be tested further in 
real-world IoT scenarios. Alferaidi et al. [17] developed a deep learning-based intrusion detection 

method for the Internet of Vehicles, achieving 99.7% accuracy in reducing security threats using 

CNN and LSTM networks. 
 

Raghuvanshi et al. [18] evaluated a model developed for ensuring the security and privacy of 

agricultural IoT networks using the NSL-KDD dataset. It achieved accuracies of 98%, 85%, and 

78% using SVM, RF, and logistic regression, respectively, thereby enabling its real-time 
implementation in IoT-enabled smart irrigation. Iwendi et al. [19] tested the NSL-KDD dataset 

using an integrated weighted genetic algorithm with random forest (RF), logistic regression, and 

naïve Bayes. The genetic model and RF yielded a high detection rate of 98.81% and a low false 
alarm rate of 0.8%. 

 

Bakro et al. [20] proposed a cloud IDS model that combined an ensemble model with the crow 
search algorithm (CSA), which exhibited high classification accuracy by selecting better features. 

This model employed ablation research, which included an ensemble model with and without 

CSA, and was tested on three datasets: NSL-KDD, Kyoto, and CIC IDS 2018. Without CSA, the 

accuracy rates were 97.01%, 96.19%, and 98.18%, whereas with CSA, they were 99.01%, 
98.99%, and 99.99%, respectively. 
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Öztürk et al. [21] proposed a model that examined the types of attacks and the performance of 
supervisory control and data acquisition (SCADA) protocols, which are frequently used in 

hospitals. This model demonstrated high accuracy when tested on a hardware-in-the-loop water 

distribution testbed dataset using classification techniques such as K-Nearest Neighbor, Support 

Vector Machine (SVM), and decision tree techniques. Verma & Ranga [22] proposed a machine 
learning (ML) classification algorithm to secure IoT systems against denial-of-service (DoS) 

attacks using popular datasets such as CIDDS-001, UNSWNB15, and NSL-KDD. The 

algorithm's performance was evaluated using various ensemble methods such as RF, 
classification and regression trees, multilayer perceptron learning, AdaBoost, gradient-boosted 

machines, extreme gradient boosting, and extremely randomized trees.  

 
John et al. [23] proposed a security threat detection system that used a cluster-based wireless 

sensor network and variable-selection ensemble ML algorithm (CBWSN_VSEMLA). It used 

fuzzy C-means clustering and principal component analysis for feature selection and ensemble 

ML algorithms for grayhole, blackhole, flooding, and scheduling attacks. The system's 
performance was evaluated using the WSN-DS dataset. The principal component analysis with 

random forest outperformed, achieving 99.99% accuracy; however, its computational complexity 

needs to be reduced. Shambharkar & Sharma [24] proposed three models to address network 
security issues, namely LinSVM, ConvSVM, and CatEmb, which were tested on the WUSTL-

EHMS 2020 dataset. Models achieved training accuracies of 99.78%, 99.98%, and 99.84%, 

respectively. Zubair et al. [25] proposed a decentralized model for detecting and blocking traffic 
in the Bluetack dataset, which achieved an F1 score of 97%–99.5% and an accuracy of 99% 

using a deep neural network (DNN). Goswami et al. [26] proposed the Lion-Salp-Swarm-

Optimization Algorithm (LSSOA), which utilizes freely accessible IoT data and combines four 

optimization techniques: lion, whale, spider monkey, and salp swarm optimization. The LSSOA 
outperformed other compared approaches with a 99.59% accuracy. 

 

Mosaiyebzadeh et al. [27] proposed a model to detect intrusion in the Internet of Health Things 
(IoHT) traffic using a DNN and federated learning. The model was tested on the WUSTL-EHMS 

2020 and ECU-IoHT datasets, yielding accuracies of 91.40% and 98.47% in anomaly detection; 

however, the model needs to be evaluated on larger datasets. Hady et al. [28] presented a real-

time enhanced healthcare monitoring system testbed that incorporated network and biometric 
features. The WUSTL-EHMS 2020 dataset was created and evaluated using several ML methods. 

The SVM model achieved a maximum accuracy of 92.44% and an area under curve (AUC) score 

of 82.37%, and the artificial neural network (ANN) achieved the highest AUC score of 93.42%. 
Dadkhah et al. [29] proposed a real-time testbed to enhance the security of IoMT devices. The 

test bed covered several systems and protocols, and the dataset contained five key attack 

categories. The dataset was examined using various techniques such as logistic regression, 
AdaBoost, DNNs, and RFs. RFs and DNNs achieved accuracies ranging from 77% to 99%. 

Hussain et al. [30] proposed a content-aware IoT security solution for the healthcare domain, 

which utilized IoT flocking to generate normal and malicious traffic data. The generated dataset 

was then analyzed using various ML approaches, wherein the RF achieved the highest accuracy 
of 99.51%. Similarly, this [31] model combines a novel UNet++ and LSTM to categorize attacks 

in the CIC IoMT 2024 dataset, achieving 87.96% accuracy in attack classification. Benmalek et 

al [32] introduced a novel AI-driven IDS model that is a stacked model integrated with 
Multilayer Perceptron (MLP), CNN, and LSTM, examined in WUSTL-EHMS 2020 and IoT 

Healthcare Security datasets. The model achieved accuracies ranging above 99% in all models. 

 
Shaikh et al. [33] proposed the RCLNet model for intrusion detection, which selects features 

using RF and recognizes patterns using CNN and LSTM. It employed a self-adaptive attention 

layer to address specific issues related to IoMT security. The model's performance was evaluated 

on the WUSTL-EHMS 2020 dataset, yielding an accuracy of 99.78%. Reinforcement learning 
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can be utilized in the model to enhance intrusion detection rates. Alsolami et al. [34] proposed a 
model to safeguard healthcare data by employing ensemble learning techniques such as stacking, 

bagging, and boosting with RF and SVM. The model was tested on the WUSTL-EHMS 2020 

dataset, achieving accuracies of 98.88%, 97.83%, and 88.68% using stacking, boosting, and 

bagging, respectively. Ghourabi [35] proposed a model for intrusion detection in the healthcare 
IT system using an improved LightGBM and transformer-based model. The model performance 

was assessed on four different datasets, in which the ECU-IoHT had attack classes relevant to 

IoHT. The LightGBM and a Bert-based transformed model were tested on four different datasets, 
yielding an ROC AUC score of over 99%. 

 

Hofer et al. [36] examined the current state and challenges involved in implementing the 
incremental knowledge graph and proposed the primary graph model to address the identified 

issues. This model was then used to develop the knowledge graph pipeline and obtain a high-

quality knowledge graph, while also providing tools and tactics for knowledge graph building. 

Chen et al. [37] proposed a knowledge graph as a semantic representation of entities and their 
attributes. It leveraged joint adaptive embedding to evaluate the quality of the knowledge graph, 

providing a better representation of word embeddings. Two general datasets and one 

cybersecurity-related dataset were used for evaluating the knowledge graph. Results revealed an 
accuracy of 95.8%–91.3%. Li et al. [38] evaluated the quality of a knowledge graph using Neo4j 

to enhance the existing ontology and create a manually built dataset named CS13K. The quality 

of the knowledge graph was then assessed using an AttTucker model, which achieved high-
dimensional embedding by reducing dimensionality. However, the model must use cyber traffic 

data to improve the effectiveness of the knowledge graph. 

 

Sarhan & Spruit [39] proposed the Open-CyKG model, which utilizes an attention-based neural 
open information extraction model to extract relevant information from unstructured reports. This 

model also used a named entity recognizer to detect triples and word embeddings for fusion, 

thereby capturing meaningful information and outperforming the existing research works. Future 
extensions of the model include a multilingual knowledge graph. Gilliard et al. [40] proposed a 

reasoning model for knowledge graphs in cybersecurity, which comprised three major steps: data 

preparation, semantic basis, and knowledge graph inference approaches. The proposed model 

could be applied to applications such as IDS, as it could automatically detect threats and enhance 
network security. The proposed model is robust, as it can update dynamically. Hao et al. [41] 

developed knowledge graphs for remote sensing applications. The Protégé tool was used to create 

the knowledge graph at the mode level based on the extracted data from the text corpus related to 
remote sensing, and the SPARQL protocol was utilized to describe querying and reasoning in the 

remote sensing domain. Harnoune et al. [42] utilized biomedical clinical-related data to extract 

relevant structured information, enabling quick and easy information retrieval about the field, 
with an 88% accuracy in named entity recognition. Table 1 lists the most popular datasets along 

with their attack categories. These datasets were generated in synthetic, semisynthetic, and real-

world test bed environments. 

 
Table 1. Dataset with classes 

 
Dataset Classes 

DARPA (1998) [43] DoS, Probe, R2L, U2R, Data 

NSL-KDD (2009) [44] DoS, R2L, U2R, Probe 

UNSW-NB15 (2015) [45] DoS, Analysis, Exploits, Fuzzers, Generic, Reconnaissance, Shellcode, 

Worms, Backdoor 

CICIDS 2017 & 2018 [46] Brute Force, Heartbleed, Botnet, DDoS, DoS, Web, Infiltration,Port 

Scan 

WSN-DS Dataset (2016)  [47] Flooding, Blackhole, Grayhole, Scheduling Attack 
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Dataset Classes 

BoT-IoT (2019) [48] DDoS, DoS, Data theft, Keylogging 

TON_IoT (2020) [49] Scanning, Ransomware, DoS, Injection, Man-in-the-Middle, Malware, 

Cross site scripting, Backdoor, Password tracking attack 

WUSTL EHMS (2020) [28] Spoofing and Data alteration 

CIC -Bell-DNS (2021) [50] Malware, Phishing, Spam 

IoT Healthcare Security(2021) [30] MQTT DDoS, MQTT publish flood, Brute force, and SlowITE 

CIC IoMT dataset (2024) [29] DDos(SYN, TCP, ICMP,UDP) Dos(SYN, TCP, ICMP,UDP), Recon ,  

ARP Spoofing, MQTT  
 

 

2.1. Research Gap and Future Directions 
 
Despite significant advancements in IDS technologies, several critical research gaps remain. 

Traditional methods suffer from high false positive rates and lack the contextual awareness that 

signature-based detection provides, as it can only look for existing threats. Systems protected this 
way tend to be susceptible to new ones, including zero-day attacks. To detect sophisticated 

emerging threats, it is necessary to use contextual awareness. Furthermore, numerous IoMT 

intrusion detection models have been proposed that rely on general IDS datasets, which overlook 

the protocol-specific features of IoMT. Deep learning approaches have improved detection 
accuracy and feature extraction; however, they often face issues such as overfitting, high 

computational costs, and difficulties in generalizing to heterogeneous, real-world environments. 

Hybrid models and ensemble methods have further pushed the envelope, but still struggle with 
scalability and the efficient integration of diverse data sources. Similarly, although knowledge 

graph-based approaches offer rich semantic representations, challenges in KG completion, data 

sparsity, and real-time integration limit their practical deployment. 

 
This work addresses these gaps by integrating semantic knowledge graphs with deep learning 

architectures—specifically, an autoencoder-LSTM framework enhanced with sparse 

autoencoder-based feature weighting and an Extreme Gradient Boosting ensemble for analyzing 
attack likelihood. By combining these techniques, our proposed IDS aims to enhance detection 

accuracy and minimize false positives, while providing robust contextual insights. In addition, 

our model is evaluated using a benchmark dataset specifically designed for IoMT, providing 
more realistic insights for healthcare deployments. Future research should focus on refining 

feature selection strategies, integrating heterogeneous datasets more seamlessly, developing 

enhanced evaluation metrics, and ensuring real-time adaptability to keep pace with the evolving 

threat landscapes. 
 

The primary contribution of the proposed model is 

 

 To guarantee scalability, the model is tested on three different datasets. 

 The knowledge graph comprises feature groups along with their corresponding weights. 

 Anomaly detection utilizes both autoencoder and LSTM, resulting in a very low 
reconstruction error. 

 The model incorporates various techniques, such as Synthetic Minority Oversampling 

Technique (SMOTE) and early stopping. 

 By combining traditional and advanced metrics, our model provides a multidimensional 

evaluation. 

 To assess the likelihood of an attack, an ensemble method known as Extreme Gradient 
Boosting (XG Boosting) is utilized. 
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3. PROPOSED FRAMEWORK AND METHODOLOGY 
 
Figure 1 shows the intrusion detection model developed for IoMT devices. The three key layers 

in its architecture namely the data, semantic, and detection layers have a unique set of 

functionalities. 

 
The prototype leveraged a real-time dataset generated on a test bed comprising real and simulated 

devices. This dataset contained data on network traffic generated from IoMT devices. Moreover, 

the model performance was tested by creating attack scenarios such as distributed DoS (DDoS), 
DoS, Recon, message queuing telemetry transport (MQTT), and spoofing using real and 

simulated devices. The features of the network traffic were preprocessed to enhance model 

performance, and the features were then grouped by various domains.These features were then 

depicted as knowledge graphs, and the feature weights were determined using a sparse 
autoencoder. The last layer employed various feature engineering and fine-tuning techniques, as 

well as deep learning with an ensemble model, for a more precise prediction of intrusions. This 

prototype focuses on minimizing reconstruction error and loss, and reducing overfitting by 
employing early stopping to enhance accurate predictions. 

 

 
   

Figure 1. Proposed IDS in IoMT 

 

3.1. Data Layer 
 

In this layer, data analytics approaches were employed to obtain accurate predictions of the real-

time benchmark for evaluating model performance. It includes NaN removal, label encoding, and 

data cleansing, including noise removal using outlier analysis and checks to ensure consistency, 
thereby ensuring the data is of high quality. The model was evaluated using the most current and 

up-to-date data obtained from the WUSTL-EHMS 2020, IoT Healthcare Security 2021, and CIC 

IoMT 2024 datasets, which are ideal for assessing medical device security solutions. 
 

Data preprocessing 

 

Data preprocessing involved two key functions: removing not a number (NaN) values and 
performing label encoding. Then, data cleansing was performed to obtain clean and noise-free 

data. 

 
NaN removal involves removing null data and is a vital process when dealing with large datasets. 

This process considerably improves data quality, increases model performance, and reduces 

computational load. By removing null data, sparse datasets can be handled, and the risk of model 
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overfitting can be reduced. The proposed model uses the dropna () function in pandas to remove 
unwanted data. Next, Label encoding converts categorical features into numerical features, 

assigning each attack type a distinct numerical value for intrusion detection. Label encoding can 

be easily implemented and is highly efficient when handling large amounts of data compared to 

one-hot encoding, as it reduces the data size. 
 

Data cleansing removes noisy data by deleting extraneous information, eliminating random 

errors, and removing repeated header columns. This usually occurs in network traffic logs, which 
should be removed to improve the generalizability and standard integrity of the dataset. It ensures 

data quality via a consistency check by examining data types. This process reduces errors during 

model training and enhances the model's performance. The proposed model was tested on three 
datasets containing benign data and attacks to ensure that the data were clean, thereby ensuring 

better model prediction and task performance. 

 

3.2. Semantic Layer 
 

The semantic layer comprises two main components: domain grouping and feature importance. 
These steps promote a deeper understanding of the features and allow for the analysis of their 

weights, which is crucial to the intrusion detection process. 

 

Domain grouping 
 

In domain grouping, the features from datasets were categorized based on their attributes, and a 

feature knowledge graph was constructed—the proposed model used three distinct datasets. 
Figure 2 illustrates the categories of basic network traffic information, including their key 

features. 

 

 
 

Figure 2. Sample Feature Group 

 

Sparse Autoencoder 

 

A sparse autoencoder consists of multiple dense layers, including an input layer, a hidden layer 
(encoding phase), a bottleneck layer, a hidden layer (decoding phase), and an output layer, as 

explained below:  

 
Input layer - It transforms the data into a high-dimensional space by accepting the input feature 

and applying the activation function (ReLU) with L1 regularization, which adds sparsity to focus 

on important features. 

 
Hidden layer (encoding phase) - This layer converts the input into a compact, meaningful 

representation by reducing noise and distortion. It also employs dropout to prevent overfitting 

and promote generalization. It retrieves fundamental latent features using dimension reduction 
progression (64 → 32 → 16 → 8). 
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Bottleneck layer - It represents the compressed form of input with meaningful features.  
Hidden layer (decoding phase) - As the progression increases, this layer expands and decodes 

features to their original dimensions (8 → 16 → 32 → 64). 

 

Output layer - It reflects the reconstructed form of the input, ensuring an accurate representation 
of the original data. 

 

Feature importance 
 

The weight of each feature was simultaneously computed using a sparse autoencoder, which is an 

ANN used for learning effective data representation. This ANN introduced a sparsity constraint, 
allowing the model to utilize only a limited number of neurons at a time. The feature weights 

were computed by developing a sequential sparse autoencoder model with many layers that used 

rectified linear unit (ReLU) activation and L1 regularization. The model was then trained by 

recreating its input layer, during which the weights of each feature were determined using the 
following techniques. 

 

Weighted knowledge graph 
 

The feature knowledge graph was then merged with the estimated feature weights to create a 

weighted knowledge graph (Figure 3). In this graph, each feature is linked to its related feature 
group, with the corresponding weights applied. The graph was developed in an interactive format 

using the pyvis package, which can be accessed via the following link: weighted knowledge 

graph contained feature sets and their corresponding weights from three datasets. For instance, 

the WUSTL-EHMS 2020 dataset contained two significant feature groups: flow metrics and 
biometric characteristics. Flow metrics were further divided into seven categories, ranging from 

basic traffic data to loss and error measurements. The IoT healthcare security 2021 dataset 

comprised five key feature groups: TCP, MQTT, IP characteristics, frame properties, and 
miscellaneous. The CIC IoMT 2024 dataset comprised four major feature groups: header and 

packet characteristics, and Open Systems Interconnection layer protocols, categorized as 

application, transport, and link layers. 

 

 
 

Figure 3. Weighted Knowledge Graph 

 

3.3. Detection Layer 
 

The detection layer employed crucial processes, including feature engineering, resampling 
techniques, intrusion detection, and attack likelihood analysis, to address class imbalance and 

classify intrusions with high accuracy. 
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Feature engineering 

 

Feature engineering is a crucial component of the proposed model, where data transformation and 

feature selection enable the model to perform more effectively and produce more accurate 
predictions. During feature selection, the most relevant features in the datasets were selected for 

processing based on their corresponding weights, calculated by a sparse autoencoder. These 

features, along with their weights, are represented in the weighted knowledge graph in Figure 3. 
Data normalization minimizes model inaccuracies and enhances data analytics by scaling the data 

to a given range using the MinMax equation (Eq. 1). As the IDS dataset contained several 

features and noisy data, the data were preprocessed during feature engineering before 
normalization to improve model performance. Labels and class features were excluded during 

scaling because their normalization caused confusion in the model, leading to misclassification. 

 

min

max min

normalized

X X
X

X X





          (1) 

 

Resampling technique 
 

Synthetic sampling adjusts the minority and majority classes based on the model's requirements. 

The data were oversampled using the synthetic minority oversampling technique (SMOTE) with 
a random_ state of 42. Random Under Sampler was also used to remove superfluous data from 

the majority class using a random_ state of 42. Additional representative and balanced data were 

generated, and SMOTE and Random Under Sampler were used to mitigate model overfitting and 
class imbalance; this process enhanced model generalizability. Sampling techniques were used to 

prevent semantic data imbalance. In the binary classification process, the before and after 

sampling categories include two types: attack and benign. However, for multiclass classification, 

the sampling data covers multiple categories, such as different types of attacks and the benign 
category, allowing for a broader classification beyond just two classes. Figure 4 shows the 

process of handling data imbalance using SMOTE across three datasets.  

 

 
 

Figure 4. Resampling technique across three datasets 
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Intrusion detection 
 

Figure 5 illustrates the pipeline employed to detect intrusions in network traffic using a deep 

autoencoder with LSTM. The three key components in the deep autoencoder enabled the model 
to learn from compressed input forms. The normalized features were transmitted to the input 

layer and encoded using three hidden layers with ReLU activation function and three neurons to 

reduce the dimensionality and extract important features. LSTM integration, a crucial component 
of the pipeline, comprised an encoder layer with a tanh function, a reshape layer, and an LSTM 

layer with a ReLU function. The data were reconstructed back to their original form (decoding) 

using three hidden layers with the ReLU activation function and the output layer with the 
sigmoid function. The model was then compiled using the Adam optimizer, which manages noisy 

problems and sparse gradients, along with the loss function. The features of the autoencoder were 

refined using the LSTM and used in the classification model. These features were defined using 

the Softmax layer that predicted the class probabilities. Early stopping was introduced in the 
classification model to reduce overfitting, and a learning rate was used to adjust the learning 

when the validation loss plateaued. The impact of activation functions, such as ReLU, Tanh, 

Sigmoid, and Softmax, on enhancing the performance of the proposed model is discussed below. 
ReLU: This function is used in the hidden layers of the model, addressing the vanishing gradient 

problem and promoting effective training. The sparse representation of ReLU facilitates better 

feature extraction, enabling the model to distinguish easily between malicious and benign data. 
 

f(x)=max(0,x)                      (2) 

 

Tanh: The Tanh function helps the autoencoder learn from a balanced representation for 
intrusion detection, thereby facilitating anomaly detection. 

 

tanh( )

x x

x x

e e
x

e e









              (3) 

 

Sigmoid: This function is used in the output layer of the autoencoder. By observing small 
changes, this function helps the model to identify the features of an intrusion. 
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Softmax: This function is added to the output layer of multi-classification tasks attached to the 

autoencoder for classifying intrusions and identifying anomalies. Thus, the proposed model can 

accurately classify data based on normalized probability across classes. 
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Figure 5. Structure of Autoencoder 

Attack likelihood 
 
The extreme gradient boost (XGBoost) ensemble model, developed through 5-fold cross-

validation, was used to analyze the likelihood of attacks during multiclass classification. This 

model was then trained, and predict_proba() determined the likelihood of an attack, returning the 

probabilities for each class. The result was initially a floating - point number [0, 1], which was 
then converted into a percentage value and filtered using a threshold value of 0.9 to identify high-

likelihood attacks. The numeric labels were then replaced with individual attack names to 

facilitate better understanding, as well as encourage actionability and reporting. 
 

The WUSTL-EHMS 2020 dataset comprises two attack categories: spoofing attacks (198 

observations, indicating a high likelihood) and data alteration (185 occurrences, with a 
likelihood). The CIC IoMT dataset features five primary attack categories, including DoS, which 

exhibits a high likelihood range with 100,840 occurrences. 

 

4. EXPERIMENTAL SETUP 
 
The hyperparameters shown in Table 2 were tuned based on the complexity and requirements of 

the datasets. 

 

Datasets 
 

The model's performance in terms of IoMT security was analyzed by testing it on three real-time 

benchmark datasets: WUSTL-EHMS 2020, IoT Healthcare Security 2021, and CIC IoMT 2024. 
These datasets facilitate advanced research on the security of the IoT device in the healthcare 

sector. They contain various features, and the vital features are chosen based on the previously 

computed weights during training and testing. The knowledge graph shows features, groups, and 
their weights. 

 
Table 2. Hyperparameters and its values 

 

Hyperparameter 
Values 

Autoencoder Classification Model 

Input Dimensions Number of input features Same as autoencoder (input_dim) 

Hidden Layer Sizes 128, 64, 32, 16 (encoding layer) 128, 64, 32, 32 (LSTM layer) 

Activation Functions ReLU (hidden layers) , Tanh ReLU (hidden layers), Sigmoid 
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(encoding layer) (output layer) 

Regularization 
L1 regularizer (10e-5) on 

encoding layer 
- 

Optimizer  Adam (learning rate = 0.001) 

Loss Function  Binary Crossentropy 
Binary or  sparse_categorical_ 

crossentropy 

Batch Size and Epochs 128 and 20 128 

Early Stopping  - Patience of 3, restore best weights 

Minimum Learning 

Rate 
- 0.00001 

Attack likelihood 

Estimator and scoring XGBoost Algorithm and Accuracy 

Cross–Fold & 

Threshold 
5 & 0.9 

 

WUSTL-EHMS 2020 dataset 

 

This dataset [28] was generated in the enhanced healthcare monitoring system test bed, which 
contains sensor boards that capture patient data. It includes two attack categories: spoofing and 

data alteration, and 44 features (35 related to network flow, eight related to biometric 

characteristics)  
 

IoT Healthcare security 2021 dataset 

 

This dataset [30] was generated using IoT flock and contains benign and attack categories. This 
dataset contains 52 features and four categories of attacks: MQTT-distributed DoS, MQTT 

publish flood, brute force, and SlowITE attack. 

 

CIC IoMT 2024 dataset  

 

This realistic benchmark dataset [29] was created to evaluate the security of IoMT solutions. 
Herein, 18 attacks were launched against 40 IoMT devices, which were classified into five 

categories: DDoS, DoS, Recon, MQTT, and The spoofing. Dataset directory was divided into 

two subdirectories: Bluetooth (containing the original benign and attack Bluetooth traffic) and 

profiling (containing data from the power experiment). WiFi_and_MQTT contained actual 
benign and attack traffic from WiFi- and MQTT-enabled devices, as well as the features 

extracted during evaluation using ML methods. 

 

4.1. Performance Metrics 
 

Figure 6 illustrates the reconstruction error rates for binary and multiclass tasks, using three 
datasets. Reconstruction error is the difference between the original input and the reconstructed 

output. This error is a key statistic in the autoencoder, indicating the model's performance in 

input reconstruction. During intrusion detection, this error allows the model to distinguish 
between attack and normal data. For instance, a higher reconstruction error in an autoencoder 

model indicates that the model is unable to distinguish between attacks and benign data. A low 

reconstruction error indicates that the autoencoder can efficiently distinguish between attacks and 

benign data. The CIC IoMT dataset exhibited a higher reconstruction error rate of 0.2342 for 
multiclass classification, indicating that the autoencoder model struggled to handle a large 

number of classes, and 0.2586 for binary classification. 
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Figure 6. Reconstruction error                          Figure 7. Early Stopping 

 

Figure 7 illustrates the number of epochs per fold in various datasets. The EarlyStopping callback 
monitors the validation loss and terminates model training when the loss stops decreasing. If the 

model performance does not improve during future epochs, training will be terminated because 

the patience value is set to three. By setting restore_best_weights to true, the model's optimal 
weights were restored. The maximum value for an epoch was 20, and the number of folds was 7 

in the proposed model. Early stopping enhances model performance and saves training time by 

reducing model overfitting and the number of epochs required.  
 

The loss function minimized the difference between the true labels and the predicted 

probabilities. The proposed model utilized binary cross-entropy and sparse categorical cross-

entropy as the loss functions for binary and multiclass classifications, respectively. These loss 
functions work well with imbalanced data, which is a common anomaly detection strategy. When 

regularizers were combined with cross-entropy, overfitting was reduced and better model 

generalization was obtained. 
 

 
 

Figure 8. Loss Values 

 

Figure 8 shows the average training and validation loss values for each dataset in binary and 

multiclass classifications. The minimal loss scores indicated that the model exhibited a low loss 
level during training and validation. The proposed model fits the data well, providing precise 

predictions. When experimenting with multiclass classification on the CIC IoMT dataset, the 

model produced a loss value of 0.23–0.24. This indicated that the loss value was appropriate for 
the multiclass classification problem. Despite providing accurate predictions, the model failed to 

classify some classes in the dataset. 

 
The confusion matrix was used to visualize the performance of the proposed model. The binary 

classification consisted of two classes: benign data and attack, whereas multiclass the 

classification involved different types of attacks and benign data. Figure 9 shows the confusion 
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matrix, wherein the binary and multiclass classification results for the WUSTL-EHMS 2020 
dataset are shown (Class 0: Benign, Class 1: Spoofing, and Class 2: Data alteration).  

 

 
 

Figure 9. WUSTL EHMS 2020 - Confusion matrix 

 

On the IoT healthcare security 2021 dataset, the proposed approach classified the intrusions more 

accurately. Figure 10 shows the confusion matrix for evaluating the binary classification  
 

 
 

Figure 10. IoT Healthcare Security – Confusion matrix 

 
Figure 11 illustrates the confusion matrix for the CIC IoMT 2024 dataset, demonstrating both 

binary and multiclass classification. Multiclass classification comprised five different types of 

attacks and benign data, specifically Class 1: MQTT, Class 2: Recon, Class 3: DoS, Class 4: 
DDoS, and Class 5: Spoofing.  

 

 
 

Figure 11. CIC IoMT Dataset - Confusion Matrix 

 
Classification report of the binary and multiclass classification. When working with intrusion 

detection, the analysis of classification reports showed that the model accurately predicted each 

class. It describes various metrics such as precision, recall, F1-score, and support for each class. 
These metrics were calculated as follows: 
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Accuracy: It assesses the overall correctness of the model. 
 

True Positive True Negative
Accuracy

True Positive True Negative False Positive False Negative




  
               (6) 

Recall: Recall is a measure of how many of the positive cases the classifier correctly predicted.  

 

   
True Positive

Recall
True Positive False Negative




                                                      (7) 

Precision: It is a measure combining both precision and recall     

 

True Positive
Precision

True Positive False Positive



                                              (8) 

 
F1-Score: It is a measure combining both precision and recall 

  

             1 2
precision recall

F Score
precision recall


  


                       (9)                   

 
Matthews Correlation Coefficient (MCC): This advanced metric is used to measure the quality 

of both classification, even when the classes are imbalanced. 

 

2 2 2 2

( )( )

k k

k

k k

k k

c s p t

MCC

s p s t

 



 



 
                      (10) 

 
Cohen’s Kappa: This measure is used to evaluate the consistency of the classifier model and 

adjust for chance agreement. 

1

o e

e
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                           (11) 

 

Adversarial Robustness Score (ARS): This metric assesses a model's stability and its ability to 

classify attacks robustly. 
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Figure 12 shows the binary classification report for the IoT healthcare security 2021 dataset, 

demonstrating how the suggested model classified the classes more precisely.  
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Figure 12. Classification report- IoT healthcare security Dataset 

 

Figure 13 illustrates the high-precision metrics of the proposed model when tested with the 
WUSTL-EHMS 2020 dataset in both binary and multiclass classification tasks. Although the 

model exhibited excellent performance across all datasets, it encountered difficulties in 

classifying data from the CIC IoMT 2024 dataset (Figure 14). The model exhibited overall 

proficiency and high accuracy, particularly for classes 1 and 2. However, a low precision rate was 
observed for class 5. 

 

 
 

Figure 13. Classification report- WUSTL EHMS 2020 Dataset 

 

 
 

Figure 14. Classification report - CIC IoMT 2024 Dataset 

 

Table 3 shows the binary and multiclass classification results of the proposed model on three 

datasets along with the average values of various metrics such as accuracy, precision, recall, F1-

score, false detection rate (FDR), positive prediction rate (PPR), and area under the curve (AUC) 
along with advanced metrics to ensure the model robustness and correctness and its agreement 

between attack and normal classes. These performance metrics indicated that the model 

demonstrated excellent performance, with no misclassification, in both the WUSTL-EHMS 2020 

and IoT Healthcare Security 2021 datasets, for both binary and multiclass classification. The 
model achieved excellent results on the CIC IoMT binary classification, with an accuracy of 

99.8% a minimal FDR of 0.079%. However, the model yielded only somewhat satisfactory 

performance in multiclass classification, with an accuracy of 90.67%, a precision of 92.89%, a 
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recall of 90.67% and an F1-score of 91.04%. However, these results are effective for multiclass 
classification with five attack categories and benign data with a total of 2,068,848 instances.  

 
Table 3. Overall average performance metrics 

 

 

 

4.2. Performance Assessment  
 

The proposed model was evaluated on three different datasets, utilizing both binary and 

multiclass classifications, and its performance was assessed using various metrics, including 
accuracy, precision, recall, and F1-score. Table 4 shows that the comprehensive result of the 

proposed model outperformed the existing models with an accuracy of 99.98%–100.0%, 

indicating that the model appropriately identified both classes in the WUSTL-EHMS 2020 
dataset. While in the IoT healthcare security 2021 dataset, which yielded a more precise 

classification with performance metrics of 100%. Results of the CIC IoMT 2024 dataset in binary 

and multiclass classification. The model fitted data well for binary classification with a 99.80% 
accuracy and 0.079% FDR. During multiclass classification, the performance of the proposed 

model improved across all metrics compared with the DNN model. Overall, deep learning 

models, such as autoencoders and LSTMs, outperform various baseline approaches in terms of 

detection rates, as shown in Table 4. Overall, AUC values range between 0. 99 to 1.0 which 
shows that the proposed model is a perfect classifier. However, IDS in IoMT requires a high 

detection rate due to the critical nature of the data related to healthcare, resulting in significant 

computing expenses. To overcome this, the IDS model should be lightweight and able to 
outsource computationally demanding tasks to the cloud or servers [51], [52], [53]. 

 

Additionally, a key tradeoff exists between real-time processing and batch analysis. Real-time 

detection is essential for timely detection, but it imposes strict constraints on computation and 
latency. On the other hand, batch processing is suitable for deeper analysis but delays response, 

which is not suitable for IoMT as it risks patient safety [54], [55]. Although most IDS models 

address these critical challenges, integrating IDS into the healthcare domain remains a 
challenging task that requires significant resources and faces financial limitations [56]. Common 

challenges include interoperability, ensuring real-time and low latency [34], and compliance with 

regulations such as HIPAA and GDPR [57].  
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WUSTL EHMS 2020 

(Binary) 
1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 

WUSTL EHMS 2020 

(Multiclass) 
0.99 0.99 0.99 0.99 0.0 0.99 0.99 1.0 1.0 1.0 

IoT Healthcare 

Security (Binary) 
1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 

CIC IoMT 2024 
(Binary) 

0.99 0.99 0.99 0.99 0.079 0.99 0.99 0.95 0.95 0.97 

CIC IoMT 2024 

(Multiclass) 
0.90 0.92 0.90 0.91 0.093 0.90 0.99 0.88 0.88 0.89 
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Table 4. Comparative analysis of proposed system 

 

  

 
Future research on IDS in IoMT focuses on enhancing scalability to handle vast amounts of data 

in the healthcare domain. As the expansion of healthcare advancements demands high 

dimensionality, detecting real-time traffic efficiently can be achieved using distributed computing 

platforms, such as Apache Spark, which enables low latency [58]. Federated IDS and blockchain 
techniques enables data privacy while maintaining a high detection rate [59] [60], and supports 

explainable AI for IDS [61]. 

 

5. CONCLUSION 
 

IoT systems are used in various domains to collect important data using sensors, boards, and 

other devices. When important data, such as health and financial information, is transmitted over 

a network, the risk of cyber threats is involved. In this study, a model was proposed for detecting 
intrusions in healthcare data. To this end, the importance and challenges involved in the security 

of IoMT infrastructure were evaluated. The proposed model consisted of three layers: a data layer 

for data preprocessing and cleaning, a semantic layer for feature representation as a weighted 
knowledge graph using a sparse autoencoder, and a detection layer for intrusion detection, 

utilizing a combined model of a deep autoencoder with LSTM and XGBoost for attack likelihood 

analysis. The performance of the model was assessed by applying it to three real-time datasets: 

WUSTL-EHMS 2020, IoT Healthcare Security 2021, and CIC IoMT 2024. This served as the 
foundation for addressing intrusion detection in healthcare IoT systems. These datasets contained 

various simulated and real-time attacks, including spoofing, data alteration, DDoS, DoS, and 

MQTT attacks, as well as other common attacks in IoMT devices. The model's performance was 
comprehensively evaluated. The suggested model performed exceptionally well, with a high 

detection rate, minimal loss, and a low FDR in both binary and multiclass classification in the 

WUSTL-EHMS 2020 and IoT Healthcare Security 2021 datasets, as well as in the binary 
classification of CIC IoT 2024. However, it only performed satisfactorily on the CIC IoMT 2024 

dataset multiclass classification with five attack categories. In the future, the model will be 
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DNN –FL[27] 

WUSTL EHMS 

2020 (Binary) 

91.40 65.05 61.42 - - - - 

ANN [28] 90.04 - - - - - 93.42 

RCLNet[33] 99.78 99.53 99.83 99.57 - - - 

LSTM[32] 97.13 96.33 98.28 97.22 - - 99.30 

Proposed model 1.0 1.0 1.0 1.0 0.0 1.0 1.0 

Stacking [34] WUSTL EHMS 

2020(Multiclass) 

98.88 98.23 99.58 98.90 - - - 

Proposed model 99.98 99.98 99.98 99.98 0.0 99.98 99.99 

     Comparative model of IoT Healthcare security dataset 

RF [30] 
IoT Healthcare 
Security 

99.51 99.79 99.70 99.65 - - - 

        LSTM[32] 99.74 99.91 99.46 99.68 - - 99.94 

Proposed model 1.0 1.0 1.0 1.0 0.0 1.0 1.0 

Comparative model of CIC IoMT 2024 Dataset 

DNN [29] CIC IoMT 2024 

(Binary) 

99.61 95.23 96.27 95.74 - - - 

Proposed model 99.80 99.81 99.80 99.80 0.079 99.99 99.99 

DNN [29] 
CIC IoMT 2024 

(Multiclass) 

78.05 76.02 76.80 73.35 - - - 

UNet++ LSTM[31] 87.96 94.55 93.31 86.47 - - 93.64 

Proposed model 90.67 92.89 90.67 91.04 0.093 90.67 99.98 
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evaluated in real-time to detect intrusions, and an autonomous lightweight IDS will be created. It 
is also intended to scale the model to accommodate large datasets. 
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