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ABSTRACT 
 

Mobile Ad Hoc Networks encounter persistent challenges due to dynamic topologies, limited resources and 

high routing load. As these problems continue, the network’s overall performance declines as the network 

scales. To address these challenges Adaptive Q-Learning-Based Routing with Context-Aware Metrics for 

Robust MANET Routing (AQLR), a routing protocol that uses context-aware data and reinforcement 

learning to choose the best route for connected mobile devices. AQLR considers four essential routing 
metrics such as Coverage Factor, RSSI-Based Link Stability, Energy Weighting and Broadcast Delay. 

AQLR uses Q-learning agent at each node to enable adaptive learning of optimal next-hop decisions based 

on past history. Composite Routing Metric (CRM) helps to obtain smart decision in the absence of prior 

learning. Simulation performed with OMNeT++ across varying node densities from 50 to500 the simulation 

results shows that AQLR outperforms recent machine learning-based routing protocols including QLAR, 

RL-DWA, and DRL-MANET. Specifically, AQLR achieves up to 95.8% packet delivery ratio, reduces 

average end-to-end delay by 25–35%, lowers routing overhead by 20–30%, and improves network lifetime 

by over 15% in dense scenarios. These results affirm the effectiveness of combining reinforcement learning 

with context-aware metric computation for scalable and energy-efficient MANET routing. 
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1. INTRODUCTION 
 

Mobile Ad Hoc Networks (MANETs) consist of wireless mobile nodes that self-organize to create 
communication network without any centralized infrastructure [5]. They are inherently very 

flexible, and thus they can be used in cases such as military applications, disaster recovery, and in 

vehicular networks [2] where time is of the essence and no infrastructure is available. But, despite 
these advantages, several inherent characteristics of MANETs like the dynamic topology, the 

limited energy availability and the limited transmission range, make routing reliably and 

efficiently a non-trivial problem [7]. Together these elements cause variations in the link quality 

that are unpredictable, frequent breaks in the routes, an increase in routing overhead, and overall 
non-optimized performance of the network as it grows. The majority of current routing protocols 

like AODV, DSR, or OLSR adopt fixed or reactive strategies and use simple metrics (mostly hop 

count) for route selection. These protocols perform well in static or moderately dynamic scenarios, 
but tend to struggle under high mobility, link stability variations, or energy imbalance in the 
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nodes. As a result, these schemes lack learning capabilities and fail to adapt based on past 
outcomes [3][7][8], thus being unable to improve either the path selection or to decrease Control 

Messages that are duplicated. Thus these procedures suffer from broadcast storms, premature 

energy depletion of the nodes as well as poor route discovery in a highly dynamic environment 

[6]. Towards addressing such limitations, this contribution presents AQLR, which aims at 
intelligently controlling routing in MANETs through Q-learning and an entire set of metrics that 

take performance into account [1][4]. AQLR routing protocol embeds four fundamental 

measurements: Coverage Factor (CF) to prefer nodes that broaden the coverage of the network, 
RSSI Based Link Stability (LS) to give preference to stable links, Energy Weight (EW) to have an 

even participation of the nodes and to maximize the overall network lifespan and Broadcast Delay 

(BD) to reduce rebroadcasting overhead and control routing overhead. Each node employs a Q-
learning agent to learn the best routing action as a function of the state, action and reward 

associated with it, which enables the protocol to be self-adaptive over time. A Composite Routing 

Metric (CRM) fallback mechanism during the initial learning phase always leads to intelligent and 

redundant paths being selected even when the Q-table has not been completely populated. 
The major contributions of this work are: 

 

 A multi-metric multi-agent-based machine learning approach to MANET routing. 

 Deploying Q-learning agents at each node which learn dynamically and update optimal 

next-hop choices based on feedback from the environment. 

 A stable backup method for choosing CRMs based on experience when not enough data 
available for learning. 

 A scalable and lightweight protocol design as performance evaluated by means of 

OMNeT++ showing a higher packet delivery ratio, lower end-to-end delay, lower routing 

overhead and higher energy efficiency when compared with current state-of-the-art machine 
learning-based routing protocols. 

 

The remainder of this paper is structured as follows: section 2 surveys related work on routing in 

MANETS and use of machine learning techniques. The methods such as the definition of metrics, 
formulation of states, reward prediction, and algorithm for making routing decisions are described 

in section 3. In section 4 the simulation set up is described as well as performance results 

compared with benchmark protocols. Finally, Section 5 concludes the paper and provides ideas for 
future work. 

 

2. RELATED WORKS 
 

To enhance network routing decision-making, Serhani et al. (2016) developed QLAR, a technique 
that leverages reinforcement learning. For best results, QLAR uses real-time feedback learning to 

dynamically adjust network routing policies but lacks in the usage of multiple metrics. [1]. RL-

DWA [2] enhances routing with deep reinforcement learning and unsupervised learning to 
minimize update costs, yet it does not incorporate energy or link stability metrics explicitly. DRL-

MANET [3] leverages multi-agent deep Q-learning to support real-time, scalable routing in highly 

dynamic topologies, although it introduces computational overhead. Deep ADMR [4] focuses on 

anomaly detection using deep learning to improve routing security, but gives less emphasis to 
energy efficiency or rebroadcast control. Kumar and Mallick [5] outline MANET challenges like 

limited energy, mobility, and bandwidth, supporting the need for intelligent protocols. Lin et al. 

[6] emphasize the importance of MANETs in D2D and IoT communications, making routing 
reliability critical. Sharma and Sahu [7] propose a hybrid reinforcement learning approach for QoS 

and energy-aware routing, while Zeng et al. [8] provide a comprehensive review of deep 

reinforcement learning for wireless network routing. Through the Symbionts Search Algorithm 
(SSA), Tabatabaei et.al. introduce a novel MANET routing technique that improves routing 
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performance by leveraging natural symbiotic behaviors. Through adaptive path selection, which 
reduces energy consumption and improves transmission reliability, the technique offers network 

stability [9]. Abdullah et.al. proposed an improved On-demand Distance Vector routing protocol. 

The improved protocol takes link quality and node mobility into account to improve route 

stability. The enhancement offers mobile environments greater adaptability, guaranteeing reliable 
communication even in the event of abrupt topology changes [10]. Hamad et.al. designed a routing 

framework that combines reliable connectivity with energy sustainability. The goal of the work is 

to show how energy-aware routing increases network endurance while preserving dependable data 
transmission by striking a balance between energy efficiency and link stability [11]. To create 

adaptive, energy-efficient routing strategies for MANETs, Chettibi and Chikhi investigated the 

use of reinforcement learning in conjunction with fuzzy logic, fuzzy logic allows the protocol to 
handle ambiguous information when making decisions [12]. Sumathi et.al.[13] use the nature-

inspired Grey Wolf Optimization (GWO) technique to reduce routing latency. It chooses routes 

that minimize transmission delay while optimizing factors like energy consumption and route 

stability. To maximize network efficiency Priyambodo.et.al. [14] examine many MANET routing 
protocols. Ali et al. suggested the LSTDA routing protocol for Flying Ad-Hoc Networks 

(FANETs) [15]. Two main issues are high mobility, and unpredictable link stability, which are 

taken into account to attain reliable communication in aerial networks. The routing protocol finds 
stable links to minimize latency, which lowers transmission delay and allows for reliable 

communication. A resource management framework to promote energy efficiency of mobile ad 

hoc clouds dedicated to mobile cyber-physical system applications is introduced by Shah [16]. 
The framework improves resource utilization, application efficiency and energy preserving 

features in dynamic mobile environments by optimizing the parameters on the network layer and 

middleware layers. Muneeswari et.al. integrate secure routing with energy efficient clustering 

approaches by utilizing reinforcement learning in a 3D MANET. The approach leverages the 
implications of clustering routers to improve reliability and security while maintaining energy 

efficiency, which is of importance in sensor networks [17]. Abdellaoui et al. provide a multi-

criteria algorithm for optimal multipoint relay (MPR) selection problem in MANETs. MPRs are 
selected in the algorithm based on several desirable properties including link quality, stability, and 

energy consumption, that improve both throughput and stability of the network [18]. Vishwanath 

Rao et al. apply reinforcement learning to develop a protocol aimed at improving MANET energy 

efficiency. Their work demonstrates the effectiveness of machine learning methodologies to 
significantly alter routing decisions as a function of the network state, achieving remarkable 

energy efficiency with no negative impact on performance [19]. Alsalmi et al. explore the 

application of deep reinforcement learning (DRL) for the enhancement of mobile wireless sensor 
networks (WSNs). The DRL approach can incorporate prior knowledge and thus, optimize energy 

and throughput efficiently and flexibly which is beneficial for the deployment of sensor networks 

[20].  Maleki et.al. present routing in self-sustaining nodes in MANET, which uses a predictive 
model to integrate energy replenishment into the decision-making process. The routing decision 

follows a learning paradigm that continuously monitors the available energy of nodes. [21]. In 

wireless sensor systems most, effective routes are identified by applying a game theory-based 

algorithm for inter cluster node communication. Interaction between the nodes immediately 
notifies the most effective routes which improves the performance of the network and conserves 

the energy [22]. Due to dynamic topology and frequent link failures occurs which may result in 

data loss and degrade network performance, to address this issue, Lin and Sun designed a routing 
protocol that places a high priority on choosing reliable links to ensure consistent communication 

[23]. Salim and Ramachandran considered the link quality as a crucial factor for maintaining 

stable communication paths, particularly in highly mobile environments. The proposed protocol 
prioritizes the most efficient routes based on link stability, thus boosting data communications 

efficiency [24]. Ahirwar et.al., introduce a chaotic gazelle routing protocol whereby including 

chaotic mechanisms into the optimization mechanism optimizes routing in MANETs. Based on 

network conditions, this technique dynamically changes the routing path; as such, it enhances 
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security and energy efficiency [25]. Pandey and Singh (2024) proposed a modified RREQ 
broadcasting scheme, ASTMRS [26] uses a fitness-based threshold to reduce routing overhead in 

multipath MANET routing. While it improves PDR and reduces delay compared to 

AODV/AOMDV, it lacks adaptive learning and relies on static metric thresholds. The paper 

proposes a hybrid QRFSODCNL model combining deep convolutional neural learning, quantile 
regression, and artificial fish swarm optimization for routing in the Internet of Vehicles (IoV). 

While it improves packet delivery and reduces delay, its reliance on deep learning and swarm-

based optimization introduces high computational overhead [27]. 
 

2.1. Motivation for the Proposed Protocol 
 
Though recent solutions use machine learning to improve routing in MANETs, the vast majority 

of them present significant drawbacks. Most of them depend on single metrics like hop count, or 

residual energy, and do not account for the multiple aspects of the dynamic nature. Some use 
centralized models or models that require a lot of computational power, such as deep 

reinforcement learning, which are not suitable for resource constrained nodes. In addition, many 

routing protocols Q- learning and others fail to consider important features namely broadcast 
suppression, variable link stability or coverage awareness of the nodes that lead to a greater 

routing overhead or even unstable paths. On top of that, their approaches fail to provide a strong 

back-up when the learning model is not trained enough, thus producing very poor performance in 

the initial phases of route discovery. Such limitations highlight the existence of a lightweight, fully 
distributed, context-aware learning protocol capable of considering intelligently multiple 

performance metrics and capable of adapting in real-time to network modifications. 

 

3. PROPOSED METHODOLOGY 
 

AQLR is a multi-metric, Q-learning-based routing approach for dynamic mobile ad hoc networks 

(MANETs). This approach combines real-time metric analysis with reinforcement learning to 

allow intelligent and adaptive route planning in a dispersed and resource-limited environment. 
Every mobile node is an independent agent able to learn from its local surroundings via feedback-

driven interactions. State representation in the Q-learning paradigm is based on four important 

network statistics: Coverage Factor (CF), Link Stability (LS), Energy Weight (EW), and 
Broadcast Delay (BD).  It supports scalability, energy efficiency, and route reliability by allowing 

each node to separately assess routing decisions and update it based on learned Q-values and 

rewards. The architecture of AQLR is illustrated in Figure 1. 

 
The following section describe AQLR’s adaptive behaviour driven by its internal components, 

decision-making mechanism, and dynamic feedback system.   

 

3.1. Network Environment 
 

The AQLR protocol is designed to operate in a MANET scenario where the network topology is 
continuously changing due to the normal mobility patterns of nodes and existing signal 

interference. Nodes use mobility models such as Random Waypoint or RPGM, where the 

connectivity on the network is constantly changing. RSSI is a measure of signal strength which 
also varies depending on environmental factors and thus contributes to reliability of the 

interconnection. Each node sends out the periodic signals to communicate with its neighbors to 

identify which other nodes are within its range. These environment states generate dynamic inputs 
to the Q-learning agent's state secretariat at each node.  

3.2. Node i (Agent) 
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Each node acts as an intelligent agent composed of three critical modules, Metric Manager, Q 
Agent, and Routing Core, which work together to enable adaptive routing. The metric 

computations are illustrated in Figure 2. 

 

 
 

Figure 1: Functional Design of AQLR 
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Figure 2.  Metric Computation for Coverage Factor, Link Stability, Energy Weight and Broadcast Delay 

 

3.2.1. Metric Manager  
 

Metric Manager is responsible for gathering local and neighbour metrics that determine the current 

status of a node. The coverage factor (CF) is calculated using Eq.1 

 

 refers to the uncovered neighbours that node i can reach and potentially 

rebroadcast. The total set of neighbours of a node (Ni) represents all nodes within its 

communication range.  range exist from 0 to 1. A higher CF value means the node can reach 

more uncovered neighbours and is prioritized for rebroadcast. The link stability (LS) is based on 

the signal strength variation, which represents the quality of the link. Reliability of the connection 
is estimated Eq.2. 

 
 

as the Standard deviation of the Received Signal Strength Indicator  divided by the 

maximum receiving signal strength . attains a normalized value ranging from 0 to 1. 

Energy Weight of node (EW) normalizes the energy level of a node by dividing its current energy 

 by the maximum initial energy   represented in Eq.3 

 
The normalized value ranges from 0 to 1.  The value 1 indicates that the node has maximum 

energy or more remaining energy, and the value 0 indicates that the node is nearer to depletion.  
The higher value holding nodes are prioritized for forwarding packets to enhance the network’s 

life span.  The lower value holding nodes are avoided to prevent premature energy depletion.  
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which helps to avoid excessive use of nodes which depletes the energy. To minimize unnecessary 
retransmission, the Broadcast delay (BD) strategy is designed to ensure that the most influential 

nodes only offer robocasting of RREQ packets.  is dynamically adjusted based on the values 

of coverage factor and energy weight the broadcast delay is defined as using Eq.4 

 

 
 
The delay value shorter or longer. Thus, a node with high CF and residual energy will have a 

shorter delay and will rebroadcast quicker, resulting in a more responsive network.  Nodes, on the 

other hand, that have low CF and energy, have long delays thus avoiding unnecessary 

retransmissions. The delay adopted is scaled by a constant K so that it does not get too large and  

is employed to avoid division by zero . The advantage of this is that it avoids duplication of 

information, saves energy, and enhances the lifetime of the network as well as the efficacy of 
routing. 

 

3.3. Q Agent 
 

To improve adaptive decision making in dynamic environment Q learning based reinforcement 

learning module is introduced. Each node is equipped with an autonomous agent called Q Agent 
that learns the routing behaviour based on the metric value observation. Q Agent keeps track of Q-

Table that maps state-action pairs (s, a) to expected rewards Q(s, a) The state values (S) are 

learned values such as (Coverage Factor, Energy Weight, Link Stability, delay), action (A), 
corresponds to selecting a next-hop neighbor, in a particular state, which is defined by the routing 

metrics. A €-greedy action is used next-hop selection. With € probability it explores a random 

neighbor, otherwise takes the action for exploitation using the Eq.5 
 

 
 

If the packet is forwarded, then the agent gets some feedback (reward) and the Q-values are 
updated according to the standard update rule using Eq.6. 

 

 
 

where α is the learning rate, γ is the discount factor, r is the immediate reward (e.g., successful 

packet forwarding or minimized delay), and s' is the resulting state after action. 

 

3.4. Routing Core 
 

The Routing Core handles the operational part of processing RREQ and RREP messages, deciding 
next-hop based on outputs of the Q Agent, and keeping routes when necessary due to mobility or 

link failure. It is the bridge between the packet processing at protocol level intelligent decision-

making that Q Agent can provide. 
 

3.5. Next-Hop Selection 
 
If the node needs to forward a packet, then it selects the next-hop node according to action 

selection based on the Eq.5. If no experience has been recorded for state in the Q-table, the node 

falls back to heuristic-based Composite Routing Metric (CRM), calculated as Eq.7. 
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Where W1, W2, W3 and W4 are weights assigned to each metric. This guarantees that nodes will 

still make informed decisions when they encounter states with which they have no prior 

experience. 
 

3.6. Reward Feedback 
 
Upon forwarding a packet, the node receives feedback based on the packet’s delivery outcome. If 

the packet arrives successfully at its destination, then a positive reward r is assigned to the Agent, 

which promotes the routing path that was taken. On the other hand, negative rewards are given in 
the event of link failures, packet drops, or delays, leading to the eventual penalty of the Q-values 

of bad actions over time. This feedback is used to update the Q-table and refine future routing 

actions. 

 

3.7. Q Learning Update and Learning Parameters  
 
Q-values are adjusted during the learning process using the Eq.6. The use of distributed and 

dynamic learning techniques allows AQLR to improve the routing performance adaptively in real 

time environment. The pseudocode below outlines the routing decision logic executed at each 

node. The pseudocode (Figure.3) outlines the routing decision logic executed at each node. 
 

 
 

Figure 3: Pseudocode of routing decision logic executed at each node 
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4. RESULTS AND DISCUSSIONS 
 

4.1. Comparative Feature Analysis 
 

A comprehensive comparative description between the main characteristics of Adaptive Q- 
Learning-based Routing AQLR, and the other routing protocols QLAR, RL-DWA, and DRL-

MANET is represented in Protocol Feature Comparison Table 1. This comparison is intended to 

highlight the specific design features and improvements that allow AQLR to outperform others in 
highly dynamic Mobile Ad Hoc Network (MANET) scenarios .While traditional RL approaches 

usually select a single metric as input and they are less aware of the context of the decision to be 

made, AQLR takes advantage of a multi-metric model that integrates information about the energy 

of the network, the delay and the stability of the link into a composite Q-learning framework. 
Ablation analyses were performed to assess the contribution of each of the CF, LS, EW and BD 

metrics in AQLR’s performance. Having CF disabled increased routing overhead due to the 

uncontrolled retransmissions, and permanent LS implied unstable routes with higher delay. Failure 
to implement EW resulted in asymmetric energy consumption and decreased network lifespan. If 

BD was not included, the number of collisions increased and the PDR decreased. Together, these 

findings validate the contribution of each measure and the importance of their collective use to the 

impact of AQLR. 
 

Table 1: Comparative Feature Analysis of AQLR and Baseline Protocols’ 

 

Feature AQLR QLAR RL-DWA DRL-MANET 

Learning Model Q-Learning Q-Learning RL Deep RL 

Multi-Metric Input Yes No Partial Partial 

Energy Awareness Yes No Yes Yes 

Broadcast Delay Adaptation Yes No No No 

Composite Metric Fallback Yes No No No 

Scalability (Node Density) High  Moderate Moderate Moderate 

 

4.2. Computational Efficiency Analysis 
 

The computational complexity of AQLR is much lower than that of DRL-MANET. DRL based 

approaches require continuous training using deep neural network which demand higher memory, 
processing power and energy consumption, AQLR only needs to periodically update a simple and 

light-weight Q-table. In AQLR, the Q-learning algorithm state-action updates take  O(1) time, 

while the next-hop selection process is O(N) where N represents the number of one-hop 
neighbours. This straightforwardness also makes AQLR lightweight enough to be executed by low 

power MANET nodes, without the need for GPU acceleration and/or external training data. 

Therefore, AQLR is better adapted for on-the-fly use in a highly dynamic, resource-constrained 

environment such as in tactical/emergency ad hoc networks.  
 

4.3. Experimental Setup 
 

The result of AQLR and other conventional methods is implemented in OMNeT++ (Version 

6.0.3) network simulator. Table 2 provides a comprehensive view of the simulation setup for 

AQLR.  
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Table 2: Simulation Setup 

 

Parameter Value 

Simulation Tool OMNeT++ (version 6.0.3) 

Network Area 1000m X 1000m 

Total Nodes 50 – 250 

Mobility Model Random Waypoint Model 

Node Speed 1 – 10 m/s 

Pause Duration 0-5 s 

Transmission Range 250 m 

Traffic Pattern Constant Bit Rate 

Data Packet Size 512 Bytes 

Transmission Interval 1s 

Propagation Model Two Way Ground 

Simulation Duration 300s 

Initial Energy per Node  100J 

 
Considering the need of fine-tuning parameters in order to strike the right balance between 

Exploration and Exploitation in respect to good adaptability and convergence speed, the Q-

learning parameters were set as α=0.5 (learning rate), γ=0.9 (discount factor), and ε=0.1 

(exploration rate), which were chosen through empirical tuning based on stability and convergence 
criteria. The simulations were executed with varying seeds, and results are reported as mean with 

standard deviation in order to be statistically robust. AQLR’s performance was then compared to 

that of QLAR, RL-DWA and DRL-MANET, all trained and tested under the same conditions. 
 

4.4. Performance Metrics and Measurement 
 
In order to prove the efficiency of the AQLR routing protocol obtained results are contrasted with 

three recent machine learning routing protocols QLAR, RL-DWA and DRL-MANET. It presents 

an assessment using five parameters; Packet Delivery Ratio (PDR), End-to-End Delay, Routing 
Overhead, Energy Consumption and Network Lifetime at different node densities between 50 and 

500 nodes. To ensure statistical reliability, all performance graphs include standard deviation (SD) 

bars derived from multiple simulation runs. These bars represent the variability or spread of 
performance values around the average (mean). A smaller SD bar indicates consistent behaviour 

across different trials, while a larger SD suggests more variability in results. Including SD bars 

strengthens the experimental validity by illustrating that observed trends are not artefacts of 

isolated simulations, but reflect repeatable, dependable outcomes.  
 

4.4.1. Packet Delivery Ratio (PDR) 

 
The reliability and effectiveness of data transmission are evaluated using the Packet Delivery 

Ratio parameter. It is calculated using Eq. (8) as the percentage of data packets that are 

successfully delivered to the intended destination of the total number of packets originally sent by 

the source  
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AQLR demonstrates the highest PDR among all other protocols in all node densities illustrate in 
Figure 4, with a maximum of 95.8% in a 50-node density, and 89.6% in dense 500-nodes scenario. 

On the contrary, DRL-MANET and RL-DWA experience lower delivery ratios in denser 

scenarios, as the number of collisions and broadcast storms tends to increase. AQLR which 

applies Q-learning through metrics that consider context information, such as CF and LS, selects 
routes in a more stable way and performs a more efficient control of rebroadcasting packets, 

leading to less dropped packets. 

 

 
 

Figure 4: Packet Delivery Ratio Vs Node Density 

 
The quantitative variation in Packet Delivery Ratio is visually illustrated using error bars in the 

Figure 5. AQLR consistently maintains higher delivery rates with narrower deviation bands 

(±0.5% to ±0.8%), while QLAR and RL-DWA exhibit wider error margins (up to ±1.4%), 

indicating more unstable performance. 
 

 
                  

   Figure 5: Packet Delivery Ratio Vs Node Density with Standard Deviation 

 

4.4.2. End-to-End Delay  
 

It Measures the average time taken for packets to travel from source to destination. It is calculated 

using the Eq. 9 and measured as milliseconds(ms) 
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AQLR achieves the lowest average end-to-end delay among all methods, but the difference with 

some of the baselines is not bigger than 50% shown in Figure 6. For example, with 300 nodes 
AQLR has a delay of 101ms, while DRL-MANET and RL-DWA have delays of 127ms and 

140ms respectively. The reason for this is that broadcast delay metric (BD) favours to forwarders 

that are efficient and makes these redundant RREQs to be less broadcasted, reducing thus 
congestion at MAC level and queuing delays.  

 

 
 

Figure 6: End – to – End Delay Vs Node Density 

 

 
 

Figure 7: End – to – End Delay Vs Node Density with Standard Deviation 

 

The error bars for delay in Figure 7 demonstrated that AQLR achieves consistent low delay with 
error margins under ±5 ms, indicating predictability in data transmission time. In contrast, QLAR 

and DRL-MANET displayed higher variability (±6–8 ms), pointing to performance inconsistency 

under mobility. 
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4.4.3. Routing Overhead 
 

Routing overhead measures the efficiency of routing by evaluating the proportion of control 

packet transmissions relative to data packet delivery. It is computed using the formula (10). 

 

   

 

AQLR also has the least routing overhead in the entire testbed shown in Fig 8. For the case of 

500 nodes, the control packets overhead of AQLR is 790 control packets per successfully 
delivered data packet, while QLAR and RL-DWA impatient have 1180 and 1060 control packets 

respectively.  

 

 
 

Figure 8: Routing Overhead Vs Node Density 

 

 
 

Figure 9: Routing Overhead Vs Node Density with Standard Deviation 

 
The Q-learning model controls EW and CF metrics that effectively limits the participation of the 

non-ideal nodes to spare control traffic. Error bars for routing overhead shown in Figure 9 

measure fluctuations in control message load. AQLR showed low overhead variability (±0.01–
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0.02), whereas QLAR and RL-DWA had larger spreads (up to ±0.03), indicating less efficient 
control packet management under stress. 

 

4.4.4. Energy Consumption 

 
Energy consumption measures the total energy expended by all nodes for transmitting, receiving, 

and processing data packets. It is determined using the eq. (11) and measured as Joules (J). 

 

 
 

An important benefit of AQLR is energy efficiency. The nodes preselected for routing are filtered 

in terms of remaining energy EW, which prevents the low energy nodes being transmitted. AQLR 
showed in Figure 10 a consumption of 785 J with 500 nodes, while DRL-MANET used 860 J and 

QLAR exceeded 950 J. Such energy-aware design directly contributes to the sustainability of the 

network in the long run. 

 

 
 
 

Figure 10: Energy Consumption Vs Node Density 

 

 
 

Figure 11: Energy Consumption Vs Node Density with Standard Deviation 

 

Variation in energy usage, as shown by error bars in Figure 11, reflects differences in routing path 

lengths and node participation. AQLR had narrower bars (±3–4%), indicating efficient energy 
balancing, while QLAR and RL-DWA had broader spreads (up to ±6%), revealing less uniform 

energy depletion across the network 
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4.4.5. Network Lifetime  
 

It is defined as the time until the first or last node exhausts its energy resources.  

 

     

 

 indicates simulation start time and  represents time when the last node dies. Longer 

network lifetime indicates better energy-aware load balancing. AQLR has a longer network 

lifetime, which is the time in which the first node dies, as a result of balanced use of their energy 

and intelligent use of routes. In the scenario with high density, the AQLR increases the lifetime as 

well, achieving 930 seconds, higher than the 830 s of DRL-MANET and 800 s of the RL-DWA 
shown in Figure 8. This reveals that the protocol successfully avoids energy holes and ensures 

uniform participation of the nodes. 

 

 
 

Figure 12: Network Lifetime Vs Node Density 

 

The error bars for network lifetime illustrates in Figure 13 depicts AQLR kept a consistent 

performance with small deviations of around +/- 10-15 seconds, while RL-DWA and DRL-
MANET showed a larger fluctuation indicating an unstable distribution of power among the 

nodes. 

 

 
 

Figure 13: Network Lifetime Vs Node Density with Standard Deviation 
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The above metrics highlight the strength of AQLR, since it not only provides the best average but 
also the lowest dispersion, which is very important in MANETs when deployed in practice. 

 

5. CONCLUSION 
 

AQLR is a context-aware, Q-learning-based routing protocol that adaptively optimizes routing 
performance in MANETs. By integrating multi-metric evaluations into the Q-learning framework, 

the protocol dynamically adjusts to mobility, congestion, and energy constraints. Evaluations 

indicate substantial improvements in delivery ratio, delay, overhead, and energy efficiency over 
state-of-the-art ML protocols. Future enhancements of AQLR protocol can be extended by 

incorporating deep reinforcement learning models such as DQNs or actor-critic methods for 

continuous state-action optimization. Additionally, the framework can be adapted for 

heterogeneous and large-scale environments such as Vehicular Ad Hoc Networks (VANETs) and 
UAV-based networks. Incorporating federated learning and multi-agent collaboration across 

clusters could further reduce learning convergence time and improve decision decentralization. 
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