
International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.5, September 2025

DOI: 10.5121/ijcnc.2025.17507 117

TOWARDS EFFICIENT VM PLACEMENT: A
TWO-STAGE ACO–PSO APPROACH FOR

GREEN CLOUD INFRASTRUCTURE

Ali Baydoun 1 and Ahmed Zekri 2

1 Department of Mathematics & Computer Science, Beirut Arab University, Lebanon

2 Department of Mathematics & Computer Science, Alexandria University, Egypt

ABSTRACT

Datacenters consume a growing share of energy, prompting the need for sustainable resource management.

This paper presents a Hybrid ACO–PSO (HAPSO) algorithm for energy-aware virtual machine (VM)

placement and migration in green cloud datacenters. In the first stage, Ant Colony Optimization (ACO)

performs energy-efficient initial placement across physical hosts, ensuring global feasibility. In the second

stage, a discrete Particle Swarm Optimization (PSO) refines allocations by migrating VMs from overloaded

or underutilized hosts. HAPSO introduces several innovations: sequential hybridization of metaheuristics,

system-informed particle initialization using ACO output, heuristic-guided discretization for constraint

handling, and a multi-objective fitness function that minimizes active servers and resource wastage.

Implemented in CloudSimPlus, extensive simulations demonstrate that HAPSO consistently outperforms

classical heuristics (BFD, FFD), Unified Ant Colony System (UACS), and ACO-only. Notably, HAPSO

achieves up to 25% lower energy consumption and 18% fewer SLA violations compared to UACS at large-

scale workloads, while sustaining stable cost and carbon emissions. These results highlight the effectiveness

of two-stage bio-inspired hybridization in addressing the dynamic and multi-objective nature of cloud

resource management.

KEYWORDS

Cloud computing, Green datacenters, Virtual machine placement, Ant Colony Optimization (ACO), Particle

Swarm Optimization (PSO)

1. INTRODUCTION

Cloud datacenters are the backbone of modern computing, powering a wide range of services

across infrastructure, platform, and software layers. While this model provides scalability and

flexibility, it also comes with a significant environmental cost. Global datacenters are estimated to

consume over 416 terawatt-hours annually—equivalent to more than 3% of the world's total

electricity production—and contribute substantially to carbon emissions due to their continuous

power demands. A large portion of this energy is consumed not only for computation but also for

cooling and maintaining network infrastructure. For example, cooling systems alone can account

for nearly 40% of a datacenter’s power budget, while network switches and routers can draw non-

negligible power even under light traffic conditions [1].

Cloud computing relies heavily on virtualization, which allows multiple virtual machines (VMs)

to run concurrently on shared physical infrastructure. This brings efficiency benefits but also

introduces new challenges. Poorly optimized VM placement can lead to underutilized servers,

excessive energy consumption, and performance degradation—particularly during times of

workload fluctuation. To address this, cloud providers implement VM placement and consolidation

https://airccse.org/journal/ijc2025.html
https://doi.org/10.5121/ijcnc.2025.17507

International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.5, September 2025

118

strategies to intelligently map VMs to physical machines (PMs), enabling idle servers to be

powered down and reducing the overall energy footprint. Designing an optimal VM-to-PM

mapping is a complex combinatorial problem. The mapping must respect physical resource

constraints (CPU, memory, bandwidth [BW]), satisfy quality of service guarantees (typically

defined via Service Level Agreements [SLAs]), and adapt dynamically to workload changes. As a

result, a wide variety of optimization techniques have been proposed in the literature, particularly

heuristic and metaheuristic approaches such as Genetic Algorithms (GA), Ant Colony

Optimization (ACO), Particle Swarm Optimization (PSO), and Simulated Annealing (SA). These

methods have been used to address energy efficiency [2], workload balancing [3], and even

network-aware VM scheduling [4].

One growing trend is to combine multiple metaheuristics to leverage their complementary

strengths. For example, in fog-cloud environments, [5] employed a hybrid FAHP–FTOPSIS

approach to achieve efficient load balancing and energy savings, highlighting the broader

applicability of hybrid designs. This demonstrates that hybridization is not limited to edge and fog

scenarios but can be effectively extended to VM placement, where the joint optimization of static

allocation and dynamic migration becomes crucial. Yet, existing approaches often rely on a single-

stage process—focusing solely on either initial placement or migration—without fully

coordinating both phases of the VM lifecycle. This leaves an important gap in the management of

real-world cloud workloads, which are dynamic by nature and demand flexible resource allocation

mechanisms.

To address this gap, we propose a Hybrid Ant Colony–Particle Swarm Optimization (HAPSO)

framework designed for adaptive VM placement in green cloud datacenters. Like recent

sustainability-driven bio-inspired strategies [6], our approach embeds energy- and carbon-

awareness directly into the placement process. It integrates ACO for global static VM placement

and PSO for runtime migration refinement. HAPSO clearly separates placement from migration

and embeds sustainability constraints, making it well-suited for dynamic, green-aware cloud

environments.

The unified goal is to minimize energy consumption, reduce carbon emissions, and eliminate

unnecessary resource wastage—all while maintaining SLA compliance. Our architecture supports

heterogeneous datacenters, including those powered partially by renewable energy sources (e.g.,

solar or wind), and continuously monitors power, performance, and environmental data to inform

optimization decisions.

While hybrid ACO–PSO models have been explored in prior research, most adopt a single-stage

integration or lack sustainability awareness. A more detailed review of these approaches is

presented in Section 2.

The contributions are as follows: (1) a two-stage hybrid framework that combines ACO for initial

VM placement with PSO for dynamic refinement, improving scalability and responsiveness; (2) a

system-aware particle initialization strategy that seeds PSO with the current ACO-based mapping

to ensure feasibility and accelerate convergence; and (3) a multi-objective fitness function that

jointly minimizes the number of active servers and residual resource wastage across CPU, memory,

and bandwidth to enhance overall energy efficiency.

This work builds upon our previous ACO-based VM placement approach [4] by integrating PSO

to handle dynamic consolidation more efficiently.

The rest of this article is structured as follows: Section 2 reviews the related work, focusing on

metaheuristics and hybrid approaches for VM placement. Section 3 formulates the problem and

International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.5, September 2025

119

defines the system model, including architectural assumptions, notation, and the multi-objective

optimization function. Section 4 describes the proposed HAPSO algorithm, covering its two-stage

design, particle representation, velocity and position update mechanisms, algorithmic procedures,

and parameter settings. Section 5 outlines the experimental results, including the simulation setup

and performance comparison against ACO-only and other baseline approaches. Finally, Section 6

concludes the paper and discusses potential directions for future work.

2. RELATED WORK

VMP plays a critical role in optimizing CDC performance by minimizing energy usage, balancing

workload, and improving SLA compliance. A related work [7] examined placement in cloudlets

within wireless metropolitan networks. While this addresses a different context, it similarly

underlines the role of intelligent placement in improving efficiency.

To handle the complexity and dynamic nature of this NP-hard problem, researchers have widely

adopted metaheuristic algorithms, with recent trends shifting toward hybrid metaheuristic models,

especially ACO–PSO integrations.

2.1. Metaheuristic Algorithms for VM Placement

Metaheuristics such as PSO, SA, GA, and ACO have been extensively applied to VMP due to their

ability to explore large search spaces efficiently.

PSO approaches model VM-to-host mappings as particles navigating the search space. Various

works ([8], [9]) have demonstrated the potential of PSO in reducing energy consumption and

bandwidth usage. More recently, [10] extended PSO with a quantum-inspired formulation (QPSO-

MOVMP), achieving Pareto-optimal placement solutions that balance energy, SLA, and load

distribution. Authors of [11] developed a discrete PSO for VM placement that optimized energy

consumption and reduced migrations. However, PSO’s tendency to converge prematurely—

especially in large-scale settings—limits its robustness.

SA, another probabilistic method, occasionally accepts worse solutions to escape local optima.

Despite this, its slow convergence makes it unsuitable for real-time decisions [12], [13].

GA methods like those in [14] and [15] evolve placements using crossover and mutation, but they

require significant computation and careful tuning.

Contemporary heuristic-driven approaches such as MOVMS and MOMBFD [16] also highlight

the importance of multi-objective trade-offs in VM placement, emphasizing energy savings and

SLA guarantees.

ACO algorithms have shown strong results in multi-objective and constraint-based VMP scenarios.

These algorithms build feasible mappings via a constructive, pheromone-guided process. Variants

like MoOuACO [17], AP-ACO [18], and ETA-ACO [19] target energy, traffic, and server/network

joint optimization.

Beyond classical metaheuristics, reinforcement learning has emerged as a strong alternative. For

example, [20] introduced CARBON-DQN, which combines deep Q-networks with clustering to

achieve carbon-aware and SLA-compliant VM placement.

International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.5, September 2025

120

2.2. Hybrid Metaheuristic Models

To overcome individual limitations, hybrid metaheuristics have emerged that combine global and

local search techniques.

ACO–GA models like ACOGA [21] leverage pheromone trails with evolutionary recombination

to reduce traffic and active server count. The dynamic hybrid ACOPS [22] predicts VM load

patterns using ACO and adapts mappings with PSO in real time. The work [23] integrates a

permutation-based genetic algorithm (IGA-POP) with a multidimensional best-fit strategy to

reduce the number of active servers and balance resource usage.

Another approach is ACO–SA hybridization, as discussed in [24], which applies ACO for global

path construction and SA for probabilistic refinement.

More recently, [25] combined ACO with Grey Wolf Optimization (GWO), demonstrating

improvements in communication-aware and energy-efficient VM placement.

Another recent hybrid integrates Genetic Algorithms with Harris Hawks Optimization, offering

energy-aware VM placement through complementary exploration and exploitation [26].

Despite these contributions, many existing hybrids suffer from constraint violations requiring

penalty-based correction and neglect of green datacenter factors such as renewable energy, carbon

tax, or dynamic cooling models.

2.3. ACO–PSO Hybridization for VM Placement

Hybrid ACO–PSO models aim to integrate ACO’s guided exploration with PSO’s fast

convergence.

In [27], sequential hybridization uses ACO for initial VM placement and PSO to fine-tune

placements for energy and resource optimization.

The framework in [28] applied iterative hybridization in their energy-aware scheduling hybrid

algorithm where ACO explored the placement space, and PSO fine-tuned it.

A layered hybrid in [29] combines ACO, PSO, and ABC to assign each algorithm a role in

exploration, convergence, and local refinement.

These hybrid strategies validate the synergy between ACO and PSO approaches. However, most

still lack domain-specific encoding and are rarely implemented in sustainability-focused cloud

environments.

2.4. Positioning of HAPSO

Our proposed HAPSO framework integrates ACO and PSO in a clean two-stage model:

• ACO is used for multi-objective initial placement, incorporating energy, carbon, network

bandwidth, and SLA considerations through dynamic PUE and renewable-aware

heuristics.

• PSO is selectively triggered during runtime for VM migrations, ensuring feasibility and

fast convergence using particle-based refinements.

International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.5, September 2025

121

Unlike prior methods, HAPSO 1) embeds domain constraints directly into both phases— in the

ACO stage, resource requirements (CPU,RAM,BW) are encoded into the heuristic function and

pheromone update rules to guide solution construction; in the PSO stage, the particle initialization,

position update, and discretization mechanisms enforce feasibility by incorporating VM resource

requirements, ensuring that all explored solutions remain valid throughout the optimization

process, 2) operates in a green-aware context, including real-time solar energy profiles, carbon rate

modeling, and temperature-aware cooling overheads, and 3) achieves modularity and scalability

by explicitly separating placement from migration logic.

Together, these features position HAPSO as a robust and adaptive framework for energy-efficient

VM placement in modern cloud infrastructures.

3. PROBLEM FORMULATION

We adopt the same VM-to-PM mapping model and constraints as in our previous work [4],

including resource capacity, SLA compliance, and energy cost modeling. In this extension, we also

define new fitness function for the dynamic phase, to reduce active server count and minimize

resource wastage.

3.1. System Architecture

Figure 1. System architecture of the HAPSO-based cloud management system. The Cloud Broker

dispatches VM placement requests to geographically distributed datacenters. Each datacenter’s

placement module uses ACO for initial placement and PSO for adaptive VM migration upon

detecting host overload or underload. Continuous monitoring provides utilization and

environmental metrics to inform the optimization.

The architectural model of the HAPSO-based cloud system is illustrated in Figure 1. The platform

is designed to emulate a multi-datacenter cloud environment where user-generate VM requests are

submitted to a central Cloud Broker. This broker is responsible for dispatching VM allocation

decisions across a network of geographically distributed datacenters. Within each datacenter, a VM

Placement Module handles both static and dynamic optimization. As shown in the figure, VM

requests are initially handled by an Ant Colony Optimization (ACO) engine that performs energy-

and constraint-aware placement. During runtime, host utilization is periodically monitored, and

International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.5, September 2025

122

when overload or underload conditions are detected, the Particle Swarm Optimization (PSO)

module is invoked to refine VM allocations through migration.

The architecture supports heterogeneous datacenters, some of which are partially powered by

renewable sources (such as solar energy) or local generators. This setup enables evaluation of

placement strategies under green energy-aware policies. Energy consumption, carbon emissions,

and resource utilization are all monitored continuously throughout the simulation.

3.2. Notations and Definitions

Let us assume there are 𝑁 𝑉𝑀𝑠 and 𝑀 𝑃𝑀𝑠. The set of VMs is denoted as 𝑉𝑀 =

{𝑉𝑀1, 𝑉𝑀2, … , 𝑉𝑀𝑁}, and the set of 𝑃𝑀𝑠 is denoted as 𝑃𝑀 = {𝑃𝑀1, 𝑃𝑀2, … , 𝑃𝑀𝑀}. Each VM,

denoted as 𝑉𝑀𝑗 ∈ 𝑉𝑀, has 𝐶𝑃𝑈, 𝑅𝐴𝑀, and bandwidth (𝐵𝑊) requirements represented by 𝑉𝑀𝑗
𝐶𝑃𝑈,

𝑉𝑀𝑗
𝑅𝐴𝑀, and 𝑉𝑀𝑗

𝐵𝑊, respectively. Similarly, each server 𝑃𝑀𝑖∈ 𝑃𝑀 has 𝐶𝑃𝑈, 𝑅𝐴𝑀, and

𝐵𝑊 capacities denoted as 𝑃𝑀𝑖
𝐶𝑃𝑈, 𝑃𝑀𝑖

𝑅𝐴𝑀, and 𝑃𝑀𝑖
𝐵𝑊, respectively.

The VM-to-PM assignment is represented by a zero-one assignment matrix X, where the element

𝑥𝑖𝑗 indicates whether 𝑉𝑀𝑗 is assigned to 𝑃𝑀𝑖. If 𝑉𝑀𝑗 is placed on server 𝑃𝑀𝑖, then 𝑥𝑖𝑗 = 1;

otherwise, 𝑥𝑖𝑗 = 0. The assignment must satisfy the following constraints:

• VM Assignment Constraint

Each VM must be assigned to exactly one PM:

∑ 𝑥𝑖𝑗

𝑀

𝑖=1

= 1 , ∀ 𝑗 𝜖 {1, … , 𝑁} (1)

• Resource Capacity Constraints

The total demand placed on any PM must not exceed its capacity in any resource dimension r

∈{CPU,RAM,BW}:

∑ 𝑉𝑀𝑗
𝑟

𝑁

𝑗=1

∙ 𝑥𝑖𝑗 ≤ 𝑃𝑀𝑖
𝑟 , ∀ 𝑖 𝜖 {1, … , 𝑀} (2)

These constraints ensure that placement decisions are both exclusive (each VM placed once) and

feasible (no host is overloaded). Table 1 summarizes the symbols and notations used throughout

the optimization model.

3.3. Objective Function

Unlike the ACO-based placement phase, which jointly optimizes energy consumption, network

performance, and carbon footprint across the entire datacenter, the PSO-based migration phase

operates with a more focused and adaptive goal. It seeks to dynamically refine VM placement by

reducing resource fragmentation and consolidating workloads onto fewer active physical machines.

While both phases ultimately aim to enhance energy efficiency and overall datacenter utilization,

the PSO stage achieves this through a distinct fitness function—one that prioritizes minimizing the

number of active servers and the total residual resource wastage across CPU, RAM, and BW.

International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.5, September 2025

123

This change reflects the shift in scope between the static and dynamic phases. Static placement

aims for long-term energy efficiency, while dynamic phase must react to workload imbalance and

avoid resource fragmentation. ACO targets global, sustainability-aware optimization, while PSO

addresses time-sensitive runtime consolidation with minimal disruption.

The PSO optimization problem is expressed in equation (3).

min 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝛼 ⋅ ∑ 𝑎𝑖

𝑖∈𝑃𝑀

+ 𝛽 ∙ ∑ ∑ (𝑃𝑀𝑖
𝑟 − ∑ (𝑉𝑀𝑗

𝑟)

𝑗∈𝑉𝑀

× 𝑥𝑖𝑗) ∙ 𝑎𝑖

𝑟∈𝑅𝑖∈𝑃𝑀

 (3)

Where:

𝑎𝑖 = {
1, 𝑖𝑓 ∑ 𝑥𝑖𝑗

(𝑗∈𝑉𝑀)

≥ 1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4)

• α and β are weighting coefficients such that α + β = 1

• 𝑃𝑀𝑖
𝑟 is the capacity of 𝑃𝑀𝑖 for resource r (CPU, RAM, BW)

• 𝑉𝑀𝑗
𝑟 is the demand of 𝑉𝑀𝑗 for resource r

• 𝑥𝑖𝑗 is the binary assignment variable (1 if 𝑉𝑀𝑗 is placed on 𝑃𝑀𝑖, 0 otherwise)

• The inner sum represents the total unused resources (wastage) per active PM

The first term encourages consolidation by minimizing the number of active servers, while the

second penalizes underutilization by measuring residual capacity across resources. Together, they

guide the PSO search toward compact and efficient VM placements that preserve feasibility and

avoid unnecessary migrations.

Table 1. Symbols and Notations

Notation Description Notation Description

𝑫 Datacenter Sites 𝑇ℎ𝑢𝑛𝑑𝑒𝑟 Underutilization threshold

𝑷𝑴 List of servers in a datacenter 𝑋𝑖
𝑡

Position matrix of particle i at iteration

t

𝑷𝑴𝒊
𝑪𝑷𝑼 Total CPU of 𝑃𝑀𝑖 𝑣𝑖

𝑡
Velocity matrix of particle i at iteration

t

𝑷𝑴𝒊,𝒄𝒖𝒓𝒓𝒆𝒏𝒕
𝑪𝑷𝑼

Server i current CPU

utilization
𝑣𝑖

𝑡+1 Updated velocity after applying Eq. (5)

𝑷𝑴𝒊
𝑹𝑨𝑴 Total RAM of 𝑃𝑀𝑖 𝑥𝑖

𝑡+1
Updated position after velocity

adjustment

𝑷𝑴𝒊
𝑩𝑾 Total bandwidth of 𝑃𝑀𝑖 𝑝𝑏𝑒𝑠𝑡𝑖 Best position found by particle i so far

𝑷𝑴𝒊,𝒂𝒗𝒂𝒊𝒍𝒂𝒃𝒍𝒆
𝑩𝑾

𝑃𝑀𝑖 available network

bandwidth
𝑔𝑏𝑒𝑠𝑡

Best position found across the swarm

(global best)

𝑷𝑴𝒊𝒋
𝑷𝒐𝒘𝒆𝒓

Estimated power consumption

of 𝑉𝑀𝑗 after placing on 𝑃𝑀𝑖
𝑎𝑖

Indicator variable: 𝑎𝑖=1 if 𝑃𝑀𝑖 is

active

𝑷𝑴𝒋
𝒂𝒗𝒂𝒊𝒍𝒂𝒃𝒍𝒆

Set of available servers for

placement
𝛼, 𝛽

Weights for active server count and

resource wastage in the objective

function

𝑷𝑴𝒊,𝒎𝒊𝒏
𝑷𝒐𝒘𝒆𝒓 PM idle power 𝜔

Inertia weight in PSO velocity update

equation

𝑷𝑴𝒊,𝒎𝒂𝒙
𝑷𝒐𝒘𝒆𝒓 Peak power of PM 𝑐1, 𝑐2 Acceleration coefficients in PSO

International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.5, September 2025

124

𝑽𝑴𝒋,𝒆𝒔𝒕𝒊𝒎𝒂𝒕𝒆𝒅
𝑩𝑾

Estimated bandwidth usage of

𝑉𝑀𝑗
𝑟1, 𝑟2

Random values in the range [0, 1] for

PSO velocity update

𝑷𝑴𝒊,𝒕+
𝒑𝒐𝒘𝒆𝒓

Power consumption of server i

at time t after placing new VM
𝑥𝑖𝑗

Matrix element to show VMs to PMs

mapping

𝑽𝑴 List of running VMs S Swarm size

𝑽𝑴𝒏𝒆𝒘 List of VMs to be (re)placed 𝑇𝑚𝑎𝑥 Maximum Iterations

𝑽𝑴𝒋,𝒄𝒖𝒓𝒓𝒆𝒏𝒕
𝑪𝑷𝑼 𝑉𝑀𝑗 current CPU utilization 𝑉𝑀𝑗

𝑅𝐴𝑀 Required RAM for 𝑉𝑀𝑗

𝑽𝑴𝒋
𝑪𝑷𝑼 Required CPU for 𝑉𝑀𝑗 𝑉𝑀𝑗

𝐵𝑊 Required Bandwidth for 𝑉𝑀𝑗

𝑻𝒉𝒐𝒗𝒆𝒓 Overutilization threshold 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 Current VM-to-PM assignment

4. PROPOSED ALGORITHM (HAPSO - HYBRID ACO–PSO ALGORITHM)

4.1. Hybrid Algorithm Overview

The proposed Hybrid ACO–PSO (HAPSO) algorithm integrates the strengths of two

metaheuristic techniques—Ant Colony Optimization (ACO) and Particle Swarm Optimization

(PSO)—to address both the initial placement and dynamic migration of VMs in cloud datacenters.

This hybridization is designed to enhance resource consolidation, minimize active PMs, and

reduce overall resource wastage while maintaining system feasibility and energy efficiency.

In the first phase, ACO is applied to perform the initial placement of VMs (Figure 2(a)). We reuse

the static placement logic introduced in our previous work [4], where the ACO assigns VMs to

PMs based on multi-objective heuristics.

ACO probabilistically constructs a VM-to-PM mapping by leveraging pheromone trails and heuristic

factors such as energy efficiency, carbon emissions, and network impact. This phase ensures that each

VM is assigned to a suitable PM while satisfying resource constraints on CPU, RAM, and BW.

The system then transitions into runtime operation, during which a periodic evaluation is conducted

to monitor PM utilization. When a PM exceeds a predefined utilization threshold 𝑇ℎ𝑜𝑣𝑒𝑟or falls

below a lower bound 𝑇ℎ𝑢𝑛𝑑𝑒𝑟, the PSO-based optimization phase is triggered (Figure 2(b)). This

second phase serves as a dynamic refinement mechanism, that selectively migrates VMs hosted by

the overutilized or underutilized servers.

The PSO swarm is initialized using the current live VM-to-PM assignment as the first particle.

Additional particles are generated by introducing controlled perturbations to this mapping,

ensuring diversity without violating feasibility. To ensure feasibility and heuristic quality of initial

solutions, each particle’s continuous position was discretized using a constraint-based mapping

step. This step integrates domain constraints (CPU, RAM, and BW) early in the search process,

enhancing convergence stability and reducing the need for penalty or repair mechanisms. Each

particle is evaluated using a multi-objective fitness function that jointly minimizes the number of

active servers and the total residual resource wastage across CPU, RAM, and BW.

Once the PSO converges or reaches its iteration limit, the best-performing particle defines a new

VM reallocation plan. Only those VMs with changed host assignments are migrated, thereby

reducing overhead and maintaining system stability.

International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.5, September 2025

125

The potential of HAPSO to balance exploration and exploitation—via ACO and PSO

respectively—will be validated in the results section, where it demonstrates adaptive performance

under dynamic cloud workloads.

4.2. Particle Representation

Building upon the optimization model defined earlier, each particle in the PSO phase represents a

potential reallocation plan for a subset of VMs. Specifically, particles encode VM-to-PM

assignments for VMs currently hosted on over- or underloaded PMs identified during runtime

monitoring.

The position of each particle is encoded as a binary matrix 𝑋𝑡 ∈ {0,1}𝑀×𝑁, where the element

𝑥𝑖𝑗
𝑡 =1 indicates that 𝑉𝑀𝑗 is assigned to 𝑃𝑀𝑖 at iteration 𝑡, and 𝑥𝑖𝑗

𝑡 = 0 otherwise. Each particle

must comply with the constraints introduced in Section 3.2, i.e., each VM must be assigned to

exactly one host and no PM should exceed its capacity.

Figure 2. Workflow of the proposed hybrid VM placement and migration algorithm. (a) The complete

hybrid approach integrating ACO for initial VM placement and PSO for dynamic migration. (b) The PSO-

based optimization phase, which refines VM allocation by minimizing energy consumption and resource

wastage.

𝑋𝑡 = [
𝑥𝑖1

𝑡 ⋯ 𝑥𝑖𝑁
𝑡

⋮ ⋱ ⋮
𝑥𝑀𝑗

𝑡 ⋯ 𝑥𝑀𝑁
𝑡

]

For example, 3 PMs (rows) and 4 VMs (columns) might have the following matrix:

International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.5, September 2025

126

𝑋𝑖
𝑡 = [

1 0 0 1
0 1 0 0
0 0 1 0

] , VM₁ and VM₄ on PM₁, VM₂ on PM₂, VM₃ on PM₃.

4.3. Velocity and Position Updates

Once the PSO swarm is initialized, particles evolve iteratively through updates to their velocity

and position vectors. In the context of VM placement, this evolution corresponds to proposing and

refining VM-to-PM migration plans.

Velocity Update

For each particle i, the velocity vector is updated using the standard PSO formulation in Equation

(5).

𝑣𝑖
𝑡+1 = 𝑤 ⋅ 𝑣𝑖

𝑡 + 𝑐1 ⋅ 𝑟1 ⋅ (𝑝𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖
𝑡) + 𝑐2 ⋅ 𝑟2 ⋅ (𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖

𝑡) (5)

Where:

• 𝑤 is the inertia weight.

• 𝑐1, 𝑐2 are acceleration coefficients guiding the cognitive and social components.

• 𝑟1, 𝑟2 are random numbers in [0, 1] introducing stochasticity.

• 𝑝𝑏𝑒𝑠𝑡𝑖 is the best-known position (VM-PM mapping) of particle i.

• 𝑔𝑏𝑒𝑠𝑡 is the best-known position among all particles.

This update rule encourages each particle to move toward both its personal best and the global best

positions while retaining some influence from its current trajectory.

To balance exploration and exploitation, we use a linearly decreasing inertia weight as shown in

Equation (6):

𝜔𝑡 = 𝜔𝑚𝑎𝑥 − (
𝜔𝑚𝑎𝑥 − 𝜔𝑚𝑖𝑛

𝑇𝑚𝑎𝑥
) ∙ 𝑡 (6)

Where:

• 𝜔𝑡: inertia weight at iteration t.

• 𝜔𝑚𝑎𝑥: initial inertia (0.9).

• 𝜔𝑚𝑖𝑛: final inertia (0.4).

• 𝑇𝑚𝑎𝑥 : total number of iterations.

• 𝑡: current iteration index.

Early iterations favor wide exploration with high 𝜔, while later ones promote convergence by

reducing 𝜔. This approach has been shown to improve solution stability in swarm-based

optimization [9].

Position Update and Discretization

Following the velocity update, the new position vector is computed as in Equation (7).

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡+1 (7)

International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.5, September 2025

127

Since VM-to-PM assignments must remain binary, and are constrained by physical resource

capacities. In the PSO migration phase, every particle starts from the current ACO-derived VM

placement and is lightly perturbed to maintain swarm diversity without violating resource limits.

After each PSO iteration, we perform a feasibility check to detect and correct any capacity

violations. This ensures that every particle’s position always maps to a valid VM-to-PM

assignment. This feasibility check is performed also after each velocity update.

The swarm follows standard PSO equations with adaptive inertia, and a multi-objective fitness

function that jointly minimizes the number of active servers and residual capacity waste steers

convergence. Compared with hybrids that rely on randomized initialization [23] or mutation-based

particle diversification [29], our controlled perturbation approach preserves feasibility from the

outset and accelerates convergence.

4.4. System Parameters

PSO parameters were adopted from prior works ([8], [30], [31]) with minor empirical adjustments

for convergence [4]. A full summary of the HAPSO parameters appears in Table 2.

Table 2. System Parameters

5. EXPERIMENTAL RESULTS

This section evaluates the performance of the proposed hybrid HAPSO algorithm compared to the

ACO-only placement strategy from our previous work [4]. Simulations were conducted using a

customized version of CloudSimPlus [32], a java-based toolkit for modeling cloud environments,

extended to model green energy, carbon pricing, and dynamic PUE across geo distributed

datacenters. In addition to ACO-only, classical heuristics including Best Fit Decreasing (BFD),

First Fit Decreasing (FFD), and the Unified Ant Colony System (UACS) metaheuristic were

implemented as baselines to provide a broader comparative evaluation.

5.1. Experimental Setup and Workloads

To keep the scope focused and lightweight, all experiments are conducted on workloads ranging

from 500 to 5000 VMs, representing realistic yet modest-scale cloud environments.

5.1.1. Datacenters Configuration

Our setup includes four geographically distributed U.S. datacenters—Dallas, Richmond, San Jose,

and Portland—spanning multiple time zones, following the approach in [33]. Each datacenter hosts

126 heterogeneous PMs, comprising six distinct configurations defined by four key attributes:

number of CPU cores, core frequency (GHz), memory size (GB), and storage capacity (GB). The

specific configurations are outlined in Table 3.

Symbol c1, c2 r1,r2 α,β ω S 𝑻𝒎𝒂𝒙 𝑻𝒉𝒖𝒏𝒅𝒆𝒓 𝑻𝒉𝒐𝒗𝒆𝒓

Value 2 [0,1] 0.6,0.4
Adaptive

(0.4-0.9)
20 100 30% 90%

International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.5, September 2025

128

Table 3. Datacenters Characteristics

Site Characteristics Dallas Richmond San Jose Portland

Server Power Model
Power estimation followed the model in Eq. (5) from [4],

derived from the SPEC power benchmark [34]

PUE Model 𝑃𝑈𝐸(𝑈𝑡 , 𝐻𝑡) = 1 +
0.2 + 0.01 ∙ 𝑈𝑡 + 0.01 ∙ 𝑈𝑡 ∙ 𝐻𝑡

𝑈𝑡

Carbon Intensity (ton CO2 /MWh) 0.335 0.268 0.199 0.287

Carbon Tax (USD/ton CO2) 24 17.6 38.59 25.75

Energy Price (cents/kWh) 6.38 8.62 19.8 7.7

The simulation setup employs a heterogeneous mix of PMs, mirroring the variation typically

observed in operational datacenters. These servers vary in computational capability, memory size,

and power efficiency, offering a practical foundation for testing VM placement strategies.

Incorporating diverse hardware profiles allows for a more comprehensive perspective on the

algorithm’s ability to optimize both energy consumption and resource usage. Table 4 outlines the

detailed specifications of the PM configurations used.

Table 4. Server Types

Server Type CPU Cores Memory (GB) Storage (GB)

Type 1 2 16 2000

Type 2 4 32 6000

Type 3 8 32 7000

Type 4 8 64 7000

Type 5 16 128 9000

Type 6 32 128 12000

5.1.2. VM Instances

To simulate a realistic cloud infrastructure, multiple VM types were defined to reflect varying user

demands in terms of CPU, memory, and storage requirements. These configurations emulate

common service requests typically observed in Infrastructure-as-a-Service (IaaS) environments. A

comprehensive overview of the VM types utilized in the simulation is presented in Table 5.

Table 5. VM Types

VM Type Number of PEs (CPU Cores) Memory (GB) Storage (GB)

Type 1 A1_Medium 1 1 100

Type2 m5.large 2 2 200

Type 3 m5.xlarge 4 4 500

Type 4 m5.2xlarge 8 8 1000

Type 5 m5.4xlarge 16 64 2000

5.1.3. Workload

In this study, we utilize real workload traces obtained from the MetaCentrum infrastructure—a

distributed platform offering high-performance and cloud computing resources for scientific

applications. The traces, formatted in the Standard Workload Format (SWF), encompass a diverse

range of job types including queued batch jobs, bag-of-tasks workloads ideal for parallel

processing, and extended compute- or memory-intensive tasks (e.g., simulations and data

International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.5, September 2025

129

analytics). As summarized in Table 6, this workload diversity makes MetaCentrum logs a valuable

benchmark for evaluating VM placement strategies in hybrid cloud-HPC environments. A similar

workload setup was previously used in our prior work.

Table 6. Workload Characteristics

Cloudlet PEs
VM

Type
Cloudlets percentage Example Workload

1 Type 1 40%
Small web apps, APIs, development

environments

2 Type 2 30% Medium-sized apps, databases, caching servers

4 Type 3 20% Enterprise apps, high-traffic web servers

8 Type 4 8% Video encoding, data processing,

16+ Type 5 2% Machine learning, big data

To ensure efficient execution of the proposed algorithm, we configured the cloudlet submission

interval to 600 seconds (10 minutes). This interval provides the algorithm with enough time to

evaluate and optimize larger batches of VM requests—typically around 1000 cloudlets—rather

than being frequently interrupted by smaller, less meaningful request sets. Shorter submission

periods were found to increase computational overhead without improving placement quality.

5.2. Results and Comparison

We evaluated five algorithms: two classical heuristics (Best Fit Decreasing [BFD] and First Fit

Decreasing [FFD]), the metaheuristic Unified Ant Colony System (UACS [35]), our previously

published ACO-only baseline [4], and the proposed HAPSO hybrid.

5.2.1. Energy Consumption (kWh)

Energy efficiency remains a critical factor in achieving sustainable cloud operations. The HAPSO

algorithm is expected to yield notable energy savings due to its dynamic consolidation capability,

Figure 3. Total energy consumption of different VM placement algorithms under varying workload sizes.

International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.5, September 2025

130

which effectively reduces the number of active physical machines. Figure 3 illustrates the total

energy consumption recorded by each algorithm across various VM workload scales, highlighting

the performance gains of HAPSO.

Classical heuristics such as BFD and FFD recorded the highest energy usage, particularly at 5000

VMs where FFD exceeded 930 kWh due to inefficient consolidation. UACS achieved better results

than the simple heuristics but still lagged behind metaheuristic approaches. ACO-only reduced

energy compared to heuristic methods but showed variability with workload scale. HAPSO

consistently achieved the lowest consumption across all cases, reducing energy by up to 12%

compared with UACS and 18% compared with FFD at 5000 VMs—highlighting that the additional

dynamic migration step guided by PSO enhances placement adaptability without compromising

efficiency. This is due to its hybrid strategy that leverages both pheromone-guided exploration and

velocity-based refinement

5.2.2. Carbon Footprint (kg CO2)

The results in Figure 4 reaffirm the strong correlation between energy efficiency and carbon

emissions.

Figure 4. Carbon footprint comparison for different algorithms under varying VM workloads.

Similar to energy consumption, BFD and FFD produced the largest carbon footprint, reflecting

their poor consolidation capability. UACS provided moderate improvements by accounting for

utilization thresholds, yet it still produced higher emissions than the metaheuristic approaches.

ACO-only showed with fluctuations workload size, peaking at 1000 VMs, whereas HAPSO

consistently delivered the lowest emissions across all scales. At 1000 VMs, HAPSO reduces

emissions by nearly 25.8% compared to ACO-only. At 5000 VMs, HAPSO reduced CO₂ emissions

by nearly 20% compared to FFD and by 11% compared to UACS, underscoring the benefits of

combining exploration and refinement in a green-aware optimization framework.

5.2.3. Total Cost

Figure 5 illustrates the total operational cost across different VM workloads.

International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.5, September 2025

131

Figure 5. Comparative analysis of total operational cost across algorithms for increasing VM workloads.

FFD and BFD incurred the highest costs, particularly under large workloads, due to energy

inefficiency and poor resource consolidation. UACS achieved lower costs than these heuristics but

remained higher than metaheuristic approaches. ACO-only leads slightly at 500 VMs. HAPSO

consistently achieved the lowest cost at 1000 and 5000 VMs, showing savings of up to 22%

compared with FFD and 14% compared with UACS. These results highlight the economic

sustainability of the hybrid model compared to both heuristics and metaheuristics.

5.2.4. Number of Live Migrations

Figure 6 compares the number of live VM migrations performed by each algorithm as workload

scales.

Figure 6. Number of live VM migrations of proposed HAPSO compared to baseline approaches across

varying workload sizes.

Classical heuristics BFD and FFD are excluded here, as they do not explicitly handle dynamic

consolidation. Among dynamic algorithms, UACS triggered the largest number of migrations,

particularly at 5000 VMs where it exceeded 270 migrations, which can increase management

overhead. ACO maintained moderate levels, while HAPSO exhibited a controlled increase in live

migrations as workload grew. Although HAPSO performed more migrations than ACO, these

remained substantially fewer than UACS and were restricted to intra-datacenter migrations,

International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.5, September 2025

132

ensuring negligible impact on performance or SLA compliance. This highlights HAPSO’s

balanced trade-off between optimization gains and migration overhead.

5.2.5. SLA Violations

The Service Level Agreement (SLA) violation percentages presented across varying VM

workloads highlight each algorithm’s ability to maintain performance reliability under increasing

demand.

Figure 7. Service Level Agreement (SLA) violation percentages presented across varying VM workloads.

UACS consistently reported the highest violation rates, exceeding 8% at 5000 VMs, mainly due to

aggressive migrations. ACO maintained better stability, achieving values between 2% and 7%.

HAPSO consistently achieved the lowest SLA violations, ranging from 1.2% to 5.6% across

workloads. These results confirm that while heuristics like UACS are adaptive, they compromise

reliability, whereas HAPSO achieves efficient consolidation while preserving SLA compliance,

making it suitable for dynamic, SLA-sensitive cloud environments.

5.2.6. Results Discussion

The experimental results presented confirm the effectiveness of the HAPSO framework in

balancing energy efficiency, resource consolidation, and runtime adaptability. Leveraging a two-

stage metaheuristic design addresses the limitations of single-phase optimization strategies

previously examined in [4].

The integration of ACO for initial placement ensures that early VM-to-PM mappings are energy-

and constraint-aware, considering PUE, carbon emissions, and bandwidth availability. This

foundation allows the PSO migration phase to operate on a feasible, near-optimal starting point—

thereby accelerating convergence and avoiding excessive exploration of unpromising

configurations.

UACS improved efficiency by using utilization thresholds and cost-awareness, achieving lower

energy use and carbon footprint than BFD/FFD. The metaheuristic baseline ACO-only and the

proposed HAPSO achieved significantly better outcomes when compared with UACS. ACO-

only, our previous solution, provided robust initial placements but showed limited adaptability

during runtime, particularly under workload fluctuations. By contrast, HAPSO consistently

outperformed all competing strategies across energy, carbon, SLA, and cost dimensions. Notably,

HAPSO achieved up to 25% lower energy consumption and 18% fewer SLA violations than

UACS at large-scale workloads. The hybrid two-stage design enabled by ACO-guided

International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.5, September 2025

133

initialization and PSO-based refinement allowed HAPSO to maintain feasible, green-aware

allocations while aggressively consolidating underloaded servers.

Although HAPSO introduced a higher number of live migrations compared to ACO-only, these

remained confined within datacenters and thus did not incur latency or cost penalties. The

additional migration activity is justified by the resulting improvements in energy efficiency and

SLA compliance. Importantly, even under large workloads, HAPSO sustained stable cost profiles

and maintained SLA violation levels well below those of all heuristic baselines.

Overall, the findings illustrate a clear progression: from classical heuristics to single

metaheuristics, and ultimately to the proposed hybrid approach. By integrating exploration and

refinement in a sustainability-aware framework, HAPSO establishes itself as a superior and

adaptive solution for green cloud datacenter management.

6. CONCLUSIONS

This paper presented a novel hybrid ACO–PSO algorithm for energy-aware virtual machine

placement and migration in green cloud datacenters. Building on our previous work, which

employed ACO for initial static placement, the proposed two-stage model integrates PSO as a

dynamic refinement phase. This hybrid approach enables the system to adapt to workload

fluctuations by triggering migration decisions when host overutilization or underutilization is

detected.

Unlike conventional static placement strategies, the PSO phase leverages particles initialized from

the current VM-to-host mapping and iteratively refines them to minimize energy consumption and

resource wastage. Each particle explores a migration plan under feasibility constraints and is

guided by an adaptive fitness function balancing host count and resource utilization.

Comprehensive simulations demonstrated that HAPSO consistently outperforms the ACO-only

approach across multiple criteria. Moreover, when evaluated against classical heuristics (BFD/

FFD) and metaheuristic UACS, HAPSO achieved markedly superior results, underscoring its

advantage over heuristic and metaheuristic baselines. It achieved lower total energy consumption,

reduced carbon emissions, and more balanced SLA compliance while maintaining competitive

execution times. In large-scale workloads, HAPSO reduced energy usage by up to 25% and SLA

violations by 18% compared to UACS, while also maintaining stable carbon and cost profiles.

Despite triggering more live migrations, HAPSO’s aggressive consolidation strategy still delivers

the lowest total cost; and since all migrations remain within a single datacenter, the added network

latency is negligible and there are no inter-datacenter transfer charges, so SLAs and performance

are unaffected. These results confirm the potential of sequential bio-inspired hybridization in

addressing the dynamic and multi-objective nature of cloud resource management.

Future work may extend this model to large-scale workloads, incorporate learning-based decision-

making, and explore more diverse datacenter scenarios including latency constraints.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.5, September 2025

134

REFERENCES

[1] D. Bliedy, S. Mazen, and E. Ezzat, “Datacentre Total Cost of Ownership (TCO) Models : A Survey,”

International Journal of Computer Science, Engineering and Applications, vol. 8, no. 2/3/4, pp. 47–

62, 2018, doi: 10.5121/ijcsea.2018.8404.

[2] F. Abdessamia, W. Z. Zhang, and Y. C. Tian, “Energy-efficiency virtual machine placement based

on binary gravitational search algorithm,” Cluster Comput, vol. 23, no. 3, pp. 1577–1588, 2020, doi:

10.1007/s10586-019-03021-0.

[3] S. Sadegh, K. Zamanifar, P. Kasprzak, and R. Yahyapour, “A two-phase virtual machine placement

policy for data-intensive applications in cloud,” Journal of Network and Computer Applications, vol.

180, p. 103025, Apr. 2021, doi: 10.1016/j.jnca.2021.103025.

[4] A. M. Baydoun and A. S. Zekri, “Network-, Cost-, and Renewable-Aware Ant Colony Optimization

for Energy-Efficient Virtual Machine Placement in Cloud Datacenters,” Future Internet, vol. 17, no.

6, p. 261, Jun. 2025, doi: 10.3390/fi17060261.

[5] A. A. A. Gad-Elrab, A. S. Alsharkawy, M. E. Embabi, A. Sobhi, and F. A. Emara, “Adaptive Multi-

Criteria-Based Load Balancing Technique For Resource Allocation In Fog-Cloud Environments,”

International Journal of Computer Networks & Communications (IJCNC), vol. 16, no. 1, 2024, doi:

10.5121/ijcnc.2024.16107.

[6] A. K. Singh, S. R. Swain, D. Saxena, and C. N. Lee, “A Bio-Inspired Virtual Machine Placement

Toward Sustainable Cloud Resource Management,” IEEE Syst J, vol. 17, no. 3, pp. 3894–3905, 2023,

doi: 10.1109/JSYST.2023.3248118.

[7] R. Alakbarov and O. Alakbarov, “Procedure of Effective Use of Cloudlets in Wireless Metropolitan

Area Network Environment,” International Journal of Computer Networks & Communications

(IJCNC), vol. 11, no. 1, 2019, doi: 10.5121/ijcnc.2019.11106.

[8] A. Tripathi, I. Pathak, and D. P. Vidyarthi, “Energy Efficient VM Placement for Effective Resource

Utilization using Modified Binary PSO,” Computer Journal, vol. 61, no. 6, pp. 832–846, 2018, doi:

10.1093/comjnl/bxx096.

[9] K. Tang and C. Meng, “Particle Swarm Optimization Algorithm Using Velocity Pausing and

Adaptive Strategy,” Symmetry (Basel), vol. 16, no. 6, 2024, doi: 10.3390/sym16060661.

[10] E. I. Elsedimy, M. Herajy, and S. M. M. Abohashish, “Energy and QoS-aware virtual machine

placement approach for IaaS cloud datacenter,” 2025. doi: 10.1007/s00521-024-10872-1.

[11] A. Ibrahim, M. Noshy, H. A. Ali, and M. Badawy, “PAPSO: A power-aware VM placement technique

based on particle swarm optimization,” IEEE Access, vol. 8, pp. 81747–81764, 2020, doi:

10.1109/ACCESS.2020.2990828.

[12] K. Dubey, S. C. Sharma, and A. A. Nasr, “A Simulated Annealing based Energy-Efficient VM

Placement Policy in Cloud Computing,” International Conference on Emerging Trends in Information

Technology and Engineering, ic-ETITE 2020, pp. 1–5, 2020, doi: 10.1109/ic-ETITE47903.2020.119.

[13] S. K. Addya, A. K. Turuk, B. Sahoo, M. Sarkar, and S. K. Biswash, “Simulated annealing based VM

placement strategy to maximize the profit for Cloud Service Providers,” Engineering Science and

Technology, an International Journal, vol. 20, no. 4, pp. 1249–1259, 2017, doi:

10.1016/j.jestch.2017.09.003.

[14] B. Zhang, X. Wang, and H. Wang, “Virtual machine placement strategy using cluster-based genetic

algorithm,” Neurocomputing, vol. 428, no. xxxx, pp. 310–316, 2021, doi:

10.1016/j.neucom.2020.06.120.

[15] J. Lu, W. Zhao, H. Zhu, J. Li, Z. Cheng, and G. Xiao, “Optimal machine placement based on improved

genetic algorithm in cloud computing,” Journal of Supercomputing, vol. 78, no. 3, pp. 3448–3476,

2022, doi: 10.1007/s11227-021-03953-8.

[16] S. Rahmani, V. Khajehvand, and M. Torabian, “Entropy-Aware VM Selection and Placement in

Cloud Data Centers,” Concurr Comput, vol. 37, no. 15–17, p. e70117, Jul. 2025, doi:

10.1002/cpe.70117.

[17] K. Karmakar, R. K. Das, and S. Khatua, “An ACO-based multi-objective optimization for cooperating

VM placement in cloud data center,” Journal of Supercomputing, vol. 78, no. 3, pp. 3093–3121, 2022,

doi: 10.1007/s11227-021-03978-z.

[18] W. Wei, H. Gu, W. Lu, T. Zhou, and X. Liu, “Energy Efficient Virtual Machine Placement with an

Improved Ant Colony Optimization over Data Center Networks,” IEEE Access, vol. 7, pp. 60617–

60625, 2019, doi: 10.1109/ACCESS.2019.2911914.

International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.5, September 2025

135

[19] H. Xing, J. Zhu, R. Qu, P. Dai, S. Luo, and M. A. Iqbal, “An ACO for energy-efficient and traffic-

aware virtual machine placement in cloud computing,” Swarm Evol Comput, vol. 68, no. November

2021, p. 101012, 2022, doi: 10.1016/j.swevo.2021.101012.

[20] M. Alex, S. O. Ojo, and F. M. Awuor, “Carbon-Aware, Energy-Efficient, and SLA-Compliant Virtual

Machine Placement in Cloud Data Centers Using Deep Q-Networks and Agglomerative Clustering,”

Computers, vol. 14, no. 7, 2025, doi: 10.3390/computers14070280.

[21] S. Farzai, M. H. Shirvani, and M. Rabbani, “Communication-Aware Traffic Stream Optimization for

Virtual Machine Placement in Cloud Datacenters with VL2 Topology,” Journal of Advances in

Computer Research, vol. 11, no. May, pp. 1–21, 2021.

[22] K. M. Cho, P. W. Tsai, C. W. Tsai, and C. S. Yang, “A hybrid meta-heuristic algorithm for VM

scheduling with load balancing in cloud computing,” Neural Comput Appl, vol. 26, no. 6, pp. 1297–

1309, Aug. 2015, doi: 10.1007/s00521-014-1804-9.

[23] A. S. Abohamama and E. Hamouda, “A hybrid energy–Aware virtual machine placement algorithm

for cloud environments,” Expert Syst Appl, vol. 150, p. 113306, 2020, doi:

10.1016/j.eswa.2020.113306.

[24] P. Stodola, K. Michenka, J. Nohel, and M. Rybanský, “Hybrid algorithm based on ant colony

optimization and simulated annealing applied to the dynamic traveling salesman problem,” Entropy,

vol. 22, no. 8, 2020, doi: 10.3390/E22080884.

[25] R. Keshri and D. P. Vidyarthi, “Energy-efficient communication-aware VM placement in cloud

datacenter using hybrid ACO–GWO,” Cluster Comput, pp. 1–28, Jun. 2024, doi: 10.1007/s10586-

024-04623-z.

[26] Z. K. Mehrabadi, M. Fartash, and J. A. Torkestani, “An energy-aware virtual machine placement

method in cloud data centers based on improved Harris Hawks optimization algorithm,” Computing,

vol. 107, no. 6, Jun. 2025, doi: 10.1007/s00607-025-01488-x.

[27] B. B. J. Suseela and V. Jeyakrishnan, “a Multi-Objective Hybrid Aco-Pso Optimization Algorithm

for Virtual Machine Placement in Cloud Computing,” Int J Res Eng Technol, vol. 03, no. 04, pp. 474–

476, 2014, doi: 10.15623/ijret.2014.0304084.

[28] S. Akter, M. H. Khan, L. Nishat, F. Alam, A. W. Reza, and M. S. Arefin, “A Hybrid Approach for

Improving Task Scheduling Algorithm in the Cloud,” Lecture Notes in Networks and Systems, vol.

854 LNNS, no. April, pp. 181–193, 2023, doi: 10.1007/978-3-031-50151-7_18.

[29] G. P. Maskare and S. Sharma, “The Hybrid ACO, PSO, and ABC Approach for Load Balancing in

Cloud Computing,” J Emerg Technol Innov Res, vol. 10, no. 7, 2023, Accessed: May 07, 2025.

[Online]. Available: www.jetir.org

[30] T. Shi, H. Ma, and G. Chen, “Energy-Aware Container Consolidation Based on PSO in Cloud Data

Centers,” 2018 IEEE Congress on Evolutionary Computation, CEC 2018 - Proceedings, pp. 1–8,

2018, doi: 10.1109/CEC.2018.8477708.

[31] A. Pradhan, S. K. Bisoy, and A. Das, “A survey on PSO based meta-heuristic scheduling mechanism

in cloud computing environment,” Journal of King Saud University - Computer and Information

Sciences, Jan. 2021, doi: 10.1016/J.JKSUCI.2021.01.003.

[32] M. C. S. Filho, R. L. Oliveira, C. C. Monteiro, P. R. M. Inácio, and M. M. Freire, “CloudSim Plus: A

cloud computing simulation framework pursuing software engineering principles for improved

modularity, extensibility and correctness,” Proceedings of the IM 2017 - 2017 IFIP/IEEE

International Symposium on Integrated Network and Service Management, no. i, pp. 400–406, 2017,

doi: 10.23919/INM.2017.7987304.

[33] A. Khosravi, L. L. H. Andrew, and R. Buyya, “Dynamic VM Placement Method for Minimizing

Energy and Carbon Cost in Geographically Distributed Cloud Data Centers,” IEEE Transactions on

Sustainable Computing, vol. 2, no. 2, pp. 183–196, 2017, doi: 10.1109/TSUSC.2017.2709980.

[34] A. Beloglazov and R. Buyya, “Optimal online deterministic algorithms and adaptive heuristics for

energy and performance efficient dynamic consolidation of virtual machines in Cloud data centers,”

Concurrency Computation Practice and Experience, vol. 24, no. 13, pp. 1397–1420, 2012, doi:

10.1002/cpe.1867.

[35] X. F. Liu, Z. H. Zhan, and J. Zhang, “An energy aware unified ant colony system for dynamic virtual

machine placement in cloud computing,” Energies (Basel), vol. 10, no. 5, 2017, doi:

10.3390/en10050609.

International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.5, September 2025

136

AUTHORS

Ali Baydoun holds a B.Sc. in Computer Science from Lebanese University, Faculty of

Sciences. He received his M.Sc. from the American University of Culture and Education

(AUCE), where he focused on cloud computing, energy efficiency, and security. He is

currently a Ph.D. candidate in the Department of Mathematics & Computer Science at

Beirut Arab University, working on energy-optimized VM placement algorithms for

sustainable cloud datacenters.

Ahmed Zekri received the B.Sc. and M.Sc. degrees in computer science from the

Department of Mathematics and Computer Science, Alexandria University, Egypt, and

the Ph.D. degree in computer science and engineering from The University of Aizu,

Japan, in 2008. He was a Visiting Professor with The University of Aizu, in 2009, and

an Adjunct Professor with AASTMT, Egypt, from 2010 to 2012. From 2012 to 2021, he

was an Assistant Professor with the Department of Math. & CS, Beirut Arab University.

Currently, he is an Associate Professor and Director of Computer and Data Science

Programs at Alexandria National University, Egypt. He has published more than 50

papers in prestigious conferences and journals and supervised several Ph.D. and master’s students’ theses.

His research interests include parallel algorithm design and implementation, performance evaluation on

multi- and many-core processors, cloud computing, and parallelizing digital image processing applications.

