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ABSTRACT 
 
Datacenters consume a growing share of energy, prompting the need for sustainable resource management. 

This paper presents a Hybrid ACO–PSO (HAPSO) algorithm for energy-aware virtual machine (VM) 

placement and migration in green cloud datacenters. In the first stage, Ant Colony Optimization (ACO) 

performs energy-efficient initial placement across physical hosts, ensuring global feasibility. In the second 

stage, a discrete Particle Swarm Optimization (PSO) refines allocations by migrating VMs from overloaded 

or underutilized hosts. HAPSO introduces several innovations: sequential hybridization of metaheuristics, 

system-informed particle initialization using ACO output, heuristic-guided discretization for constraint 

handling, and a multi-objective fitness function that minimizes active servers and resource wastage. 

Implemented in CloudSimPlus, extensive simulations demonstrate that HAPSO consistently outperforms 

classical heuristics (BFD, FFD), Unified Ant Colony System (UACS), and ACO-only. Notably, HAPSO 

achieves up to 25% lower energy consumption and 18% fewer SLA violations compared to UACS at large-

scale workloads, while sustaining stable cost and carbon emissions. These results highlight the effectiveness 

of two-stage bio-inspired hybridization in addressing the dynamic and multi-objective nature of cloud 

resource management. 
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1. INTRODUCTION 
 

Cloud datacenters are the backbone of modern computing, powering a wide range of services 

across infrastructure, platform, and software layers. While this model provides scalability and 

flexibility, it also comes with a significant environmental cost. Global datacenters are estimated to 

consume over 416 terawatt-hours annually—equivalent to more than 3% of the world's total 

electricity production—and contribute substantially to carbon emissions due to their continuous 

power demands. A large portion of this energy is consumed not only for computation but also for 

cooling and maintaining network infrastructure. For example, cooling systems alone can account 

for nearly 40% of a datacenter’s power budget, while network switches and routers can draw non-

negligible power even under light traffic conditions [1]. 

 

Cloud computing relies heavily on virtualization, which allows multiple virtual machines (VMs) 

to run concurrently on shared physical infrastructure. This brings efficiency benefits but also 

introduces new challenges. Poorly optimized VM placement can lead to underutilized servers, 

excessive energy consumption, and performance degradation—particularly during times of 

workload fluctuation. To address this, cloud providers implement VM placement and consolidation 
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strategies to intelligently map VMs to physical machines (PMs), enabling idle servers to be 

powered down and reducing the overall energy footprint. Designing an optimal VM-to-PM 

mapping is a complex combinatorial problem. The mapping must respect physical resource 

constraints (CPU, memory, bandwidth [BW]), satisfy quality of service guarantees (typically 

defined via Service Level Agreements [SLAs]), and adapt dynamically to workload changes. As a 

result, a wide variety of optimization techniques have been proposed in the literature, particularly 

heuristic and metaheuristic approaches such as Genetic Algorithms (GA), Ant Colony 

Optimization (ACO), Particle Swarm Optimization (PSO), and Simulated Annealing (SA). These 

methods have been used to address energy efficiency [2], workload balancing [3], and even 

network-aware VM scheduling [4].  

 

One growing trend is to combine multiple metaheuristics to leverage their complementary 

strengths. For example, in fog-cloud environments, [5] employed a hybrid FAHP–FTOPSIS 

approach to achieve efficient load balancing and energy savings, highlighting the broader 

applicability of hybrid designs. This demonstrates that hybridization is not limited to edge and fog 

scenarios but can be effectively extended to VM placement, where the joint optimization of static 

allocation and dynamic migration becomes crucial. Yet, existing approaches often rely on a single-

stage process—focusing solely on either initial placement or migration—without fully 

coordinating both phases of the VM lifecycle. This leaves an important gap in the management of 

real-world cloud workloads, which are dynamic by nature and demand flexible resource allocation 

mechanisms. 

 

To address this gap, we propose a Hybrid Ant Colony–Particle Swarm Optimization (HAPSO) 

framework designed for adaptive VM placement in green cloud datacenters. Like recent 

sustainability-driven bio-inspired strategies [6], our approach embeds energy- and carbon-

awareness directly into the placement process.  It integrates ACO for global static VM placement 

and PSO for runtime migration refinement. HAPSO clearly separates placement from migration 

and embeds sustainability constraints, making it well-suited for dynamic, green-aware cloud 

environments. 

 

The unified goal is to minimize energy consumption, reduce carbon emissions, and eliminate 

unnecessary resource wastage—all while maintaining SLA compliance. Our architecture supports 

heterogeneous datacenters, including those powered partially by renewable energy sources (e.g., 

solar or wind), and continuously monitors power, performance, and  environmental data to inform 

optimization decisions. 

 

While hybrid ACO–PSO models have been explored in prior research, most adopt a single-stage 

integration or lack sustainability awareness. A more detailed review of these approaches is 

presented in Section 2. 

 

The contributions are as follows: (1) a two-stage hybrid framework that combines ACO for initial 

VM placement with PSO for dynamic refinement, improving scalability and responsiveness; (2) a 

system-aware particle initialization strategy that seeds PSO with the current ACO-based mapping 

to ensure feasibility and accelerate convergence; and (3) a multi-objective fitness function that 

jointly minimizes the number of active servers and residual resource wastage across CPU, memory, 

and bandwidth to enhance overall energy efficiency. 

 

This work builds upon our previous ACO-based VM placement approach [4] by integrating PSO 

to handle dynamic consolidation more efficiently. 

 

The rest of this article is structured as follows: Section 2 reviews the related work, focusing on 

metaheuristics and hybrid approaches for VM placement. Section 3 formulates the problem and 
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defines the system model, including architectural assumptions, notation, and the multi-objective 

optimization function. Section 4 describes the proposed HAPSO algorithm, covering its two-stage 

design, particle representation, velocity and position update mechanisms, algorithmic procedures, 

and parameter settings. Section 5 outlines the experimental results, including the simulation setup 

and performance comparison against ACO-only and other baseline approaches. Finally, Section 6 

concludes the paper and discusses potential directions for future work. 

 

2. RELATED WORK 
 

VMP plays a critical role in optimizing CDC performance by minimizing energy usage, balancing 

workload, and improving SLA compliance. A related work [7] examined placement in cloudlets 

within wireless metropolitan networks. While this addresses a different context, it similarly 

underlines the role of intelligent placement in improving efficiency. 

 

To handle the complexity and dynamic nature of this NP-hard problem, researchers have widely 

adopted metaheuristic algorithms, with recent trends shifting toward hybrid metaheuristic models, 

especially ACO–PSO integrations. 

 

2.1. Metaheuristic Algorithms for VM Placement 
 

Metaheuristics such as PSO, SA, GA, and ACO have been extensively applied to VMP due to their 

ability to explore large search spaces efficiently. 

 

PSO approaches model VM-to-host mappings as particles navigating the search space. Various 

works ([8], [9]) have demonstrated the potential of PSO in reducing energy consumption and 

bandwidth usage. More recently, [10] extended PSO with a quantum-inspired formulation (QPSO-

MOVMP), achieving Pareto-optimal placement solutions that balance energy, SLA, and load 

distribution. Authors of [11] developed a discrete PSO for VM placement that optimized energy 

consumption and reduced migrations. However, PSO’s tendency to converge prematurely—

especially in large-scale settings—limits its robustness. 

 

SA, another probabilistic method, occasionally accepts worse solutions to escape local optima. 

Despite this, its slow convergence makes it unsuitable for real-time decisions [12], [13].  

 

GA methods like those in [14] and [15] evolve placements using crossover and mutation, but they 

require significant computation and careful tuning. 

 

Contemporary heuristic-driven approaches such as MOVMS and MOMBFD [16] also highlight 

the importance of multi-objective trade-offs in VM placement, emphasizing energy savings and 

SLA guarantees. 

 

ACO algorithms have shown strong results in multi-objective and constraint-based VMP scenarios. 

These algorithms build feasible mappings via a constructive, pheromone-guided process. Variants 

like MoOuACO [17], AP-ACO [18], and ETA-ACO [19] target energy, traffic, and server/network 

joint optimization. 

 

Beyond classical metaheuristics, reinforcement learning has emerged as a strong alternative. For 

example, [20] introduced CARBON-DQN, which combines deep Q-networks with clustering to 

achieve carbon-aware and SLA-compliant VM placement. 
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2.2. Hybrid Metaheuristic Models 
 

To overcome individual limitations, hybrid metaheuristics have emerged that combine global and 

local search techniques.  

 

ACO–GA models like ACOGA [21] leverage pheromone trails with evolutionary recombination 

to reduce traffic and active server count. The dynamic hybrid ACOPS [22] predicts VM load 

patterns using ACO and adapts mappings with PSO in real time. The work [23] integrates a 

permutation-based genetic algorithm (IGA-POP) with a multidimensional best-fit strategy to 

reduce the number of active servers and balance resource usage.  

 

Another approach is ACO–SA hybridization, as discussed in [24], which applies ACO for global 

path construction and SA for probabilistic refinement.  

 

More recently, [25] combined ACO with Grey Wolf Optimization (GWO), demonstrating 

improvements in communication-aware and energy-efficient VM placement. 

 

Another recent hybrid integrates Genetic Algorithms with Harris Hawks Optimization, offering 

energy-aware VM placement through complementary exploration and exploitation [26]. 

 

Despite these contributions, many existing hybrids suffer from constraint violations requiring 

penalty-based correction and neglect of green datacenter factors such as renewable energy, carbon 

tax, or dynamic cooling models. 

 

2.3. ACO–PSO Hybridization for VM Placement 
 

Hybrid ACO–PSO models aim to integrate ACO’s guided exploration with PSO’s fast 

convergence. 

 

In [27], sequential hybridization uses ACO for initial VM placement and PSO to fine-tune 

placements for energy and resource optimization. 

 

The framework in [28] applied iterative hybridization in their energy-aware scheduling hybrid 

algorithm where ACO explored the placement space, and PSO fine-tuned it. 

 

A layered hybrid in [29] combines ACO, PSO, and ABC to assign each algorithm a role in 

exploration, convergence, and local refinement. 

 

These hybrid strategies validate the synergy between ACO and PSO approaches. However, most 

still lack domain-specific encoding and are rarely implemented in sustainability-focused cloud 

environments. 

 

2.4. Positioning of HAPSO 
 

Our proposed HAPSO framework integrates ACO and PSO in a clean two-stage model: 

 

• ACO is used for multi-objective initial placement, incorporating energy, carbon, network 

bandwidth, and SLA considerations through dynamic PUE and renewable-aware 

heuristics. 

• PSO is selectively triggered during runtime for VM migrations, ensuring feasibility and 

fast convergence using particle-based refinements. 

 



International Journal of Computer Networks & Communications (IJCNC) Vol.17, No.5, September 2025 

121 

Unlike prior methods, HAPSO 1) embeds domain constraints directly into both phases— in the 

ACO stage, resource requirements (CPU,RAM,BW) are encoded into the heuristic function and 

pheromone update rules to guide solution construction; in the PSO stage, the particle initialization, 

position update, and discretization mechanisms enforce feasibility by incorporating VM resource 

requirements, ensuring that all explored solutions remain valid throughout the optimization 

process, 2) operates in a green-aware context, including real-time solar energy profiles, carbon rate 

modeling, and temperature-aware cooling overheads, and 3) achieves modularity and scalability 

by explicitly separating placement from migration logic. 

 

Together, these features position HAPSO as a robust and adaptive framework for energy-efficient 

VM placement in modern cloud infrastructures. 

 

3. PROBLEM FORMULATION 
 

We adopt the same VM-to-PM mapping model and constraints as in our previous work [4], 

including resource capacity, SLA compliance, and energy cost modeling. In this extension, we also 

define new fitness function for the dynamic phase, to reduce active server count and minimize 

resource wastage. 

 

3.1. System Architecture 
 

 
 

Figure 1. System architecture of the HAPSO-based cloud management system. The Cloud Broker 

dispatches VM placement requests to geographically distributed datacenters. Each datacenter’s 

placement module uses ACO for initial placement and PSO for adaptive VM migration upon 

detecting host overload or underload. Continuous monitoring provides utilization and 

environmental metrics to inform the optimization. 

 

The architectural model of the HAPSO-based cloud system is illustrated in Figure 1. The platform 

is designed to emulate a multi-datacenter cloud environment where user-generate VM requests are 

submitted to a central Cloud Broker. This broker is responsible for dispatching VM allocation 

decisions across a network of geographically distributed datacenters. Within each datacenter, a VM 

Placement Module handles both static and dynamic optimization. As shown in the figure, VM 

requests are initially handled by an Ant Colony Optimization (ACO) engine that performs energy- 

and constraint-aware placement. During runtime, host utilization is periodically monitored, and 
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when overload or underload conditions are detected, the Particle Swarm Optimization (PSO) 

module is invoked to refine VM allocations through migration. 

 

The architecture supports heterogeneous datacenters, some of which are partially powered by 

renewable sources (such as solar energy) or local generators. This setup enables evaluation of 

placement strategies under green energy-aware policies. Energy consumption, carbon emissions, 

and resource utilization are all monitored continuously throughout the simulation. 

 

3.2. Notations and Definitions 
 

Let us assume there are 𝑁 𝑉𝑀𝑠 and 𝑀 𝑃𝑀𝑠. The set of VMs is denoted as 𝑉𝑀 = 

{𝑉𝑀1, 𝑉𝑀2, … , 𝑉𝑀𝑁}, and the set of 𝑃𝑀𝑠 is denoted as 𝑃𝑀 = {𝑃𝑀1, 𝑃𝑀2, … , 𝑃𝑀𝑀}. Each VM, 

denoted as 𝑉𝑀𝑗 ∈ 𝑉𝑀, has 𝐶𝑃𝑈, 𝑅𝐴𝑀, and bandwidth (𝐵𝑊) requirements represented by 𝑉𝑀𝑗
𝐶𝑃𝑈, 

𝑉𝑀𝑗
𝑅𝐴𝑀, and 𝑉𝑀𝑗

𝐵𝑊, respectively. Similarly, each server 𝑃𝑀𝑖∈ 𝑃𝑀 has 𝐶𝑃𝑈, 𝑅𝐴𝑀, and 

𝐵𝑊 capacities denoted as 𝑃𝑀𝑖
𝐶𝑃𝑈, 𝑃𝑀𝑖

𝑅𝐴𝑀, and 𝑃𝑀𝑖
𝐵𝑊, respectively. 

 

The VM-to-PM assignment is represented by a zero-one assignment matrix X, where the element 

𝑥𝑖𝑗 indicates whether 𝑉𝑀𝑗 is assigned to 𝑃𝑀𝑖. If 𝑉𝑀𝑗 is placed on server 𝑃𝑀𝑖, then 𝑥𝑖𝑗 = 1; 

otherwise, 𝑥𝑖𝑗 = 0. The assignment must satisfy the following constraints: 

 

• VM Assignment Constraint 

 

Each VM must be assigned to exactly one PM: 

 

∑ 𝑥𝑖𝑗

𝑀

𝑖=1

= 1 , ∀ 𝑗 𝜖 {1, … , 𝑁} (1) 

 

• Resource Capacity Constraints 

 

The total demand placed on any PM must not exceed its capacity in any resource dimension r 

∈{CPU,RAM,BW}: 

 

∑ 𝑉𝑀𝑗
𝑟

𝑁

𝑗=1

∙  𝑥𝑖𝑗 ≤ 𝑃𝑀𝑖
𝑟 , ∀ 𝑖 𝜖 {1, … , 𝑀} (2) 

 

These constraints ensure that placement decisions are both exclusive (each VM placed once) and 

feasible (no host is overloaded). Table 1 summarizes the symbols and notations used throughout 

the optimization model. 

 

3.3. Objective Function 
 

Unlike the ACO-based placement phase, which jointly optimizes energy consumption, network 

performance, and carbon footprint across the entire datacenter, the PSO-based migration phase 

operates with a more focused and adaptive goal. It seeks to dynamically refine VM placement by 

reducing resource fragmentation and consolidating workloads onto fewer active physical machines. 

While both phases ultimately aim to enhance energy efficiency and overall datacenter utilization, 

the PSO stage achieves this through a distinct fitness function—one that prioritizes minimizing the 

number of active servers and the total residual resource wastage across CPU, RAM, and BW. 
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This change reflects the shift in scope between the static and dynamic phases. Static placement 

aims for long-term energy efficiency, while dynamic phase must react to workload imbalance and 

avoid resource fragmentation. ACO targets global, sustainability-aware optimization, while PSO 

addresses time-sensitive runtime consolidation with minimal disruption. 

 

The PSO optimization problem is expressed in equation (3). 

 

min 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝛼 ⋅  ∑ 𝑎𝑖

𝑖∈𝑃𝑀

+  𝛽 ∙  ∑ ∑ (𝑃𝑀𝑖
𝑟 − ∑ (  𝑉𝑀𝑗

𝑟)

𝑗∈𝑉𝑀

× 𝑥𝑖𝑗  ) ∙ 𝑎𝑖

𝑟∈𝑅𝑖∈𝑃𝑀

 (3) 

 

Where:  

𝑎𝑖 = {
1, 𝑖𝑓 ∑ 𝑥𝑖𝑗

(𝑗∈𝑉𝑀)

≥ 1

0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4) 

  
• α and β are weighting coefficients such that α + β = 1 

• 𝑃𝑀𝑖
𝑟 is the capacity of 𝑃𝑀𝑖 for resource r (CPU, RAM, BW) 

• 𝑉𝑀𝑗
𝑟 is the demand of 𝑉𝑀𝑗 for resource r 

• 𝑥𝑖𝑗 is the binary assignment variable (1 if 𝑉𝑀𝑗 is placed on 𝑃𝑀𝑖, 0 otherwise) 

• The inner sum represents the total unused resources (wastage) per active PM 

 

The first term encourages consolidation by minimizing the number of active servers, while the 

second penalizes underutilization by measuring residual capacity across resources. Together, they 

guide the PSO search toward compact and efficient VM placements that preserve feasibility and 

avoid unnecessary migrations. 

 
Table 1. Symbols and Notations 

 
Notation Description Notation Description 

𝑫 Datacenter Sites 𝑇ℎ𝑢𝑛𝑑𝑒𝑟  Underutilization threshold 

𝑷𝑴 List of servers in a datacenter 𝑋𝑖
𝑡 

Position matrix of particle i at iteration 

t 

𝑷𝑴𝒊
𝑪𝑷𝑼 Total CPU of 𝑃𝑀𝑖 𝑣𝑖

𝑡  
Velocity matrix of particle i at iteration 

t 

𝑷𝑴𝒊,𝒄𝒖𝒓𝒓𝒆𝒏𝒕
𝑪𝑷𝑼  

Server i current CPU 

utilization 
𝑣𝑖

𝑡+1 Updated velocity after applying Eq. (5) 

𝑷𝑴𝒊
𝑹𝑨𝑴 Total RAM of 𝑃𝑀𝑖  𝑥𝑖

𝑡+1 
Updated position after velocity 

adjustment 

𝑷𝑴𝒊
𝑩𝑾 Total bandwidth of  𝑃𝑀𝑖 𝑝𝑏𝑒𝑠𝑡𝑖 Best position found by particle i so far 

𝑷𝑴𝒊,𝒂𝒗𝒂𝒊𝒍𝒂𝒃𝒍𝒆
𝑩𝑾  

𝑃𝑀𝑖 available network 

bandwidth 
𝑔𝑏𝑒𝑠𝑡 

Best position found across the swarm 

(global best) 

𝑷𝑴𝒊𝒋
𝑷𝒐𝒘𝒆𝒓 

Estimated power consumption 

of 𝑉𝑀𝑗  after placing on 𝑃𝑀𝑖 
𝑎𝑖 

Indicator variable: 𝑎𝑖=1 if 𝑃𝑀𝑖   is 

active 

𝑷𝑴𝒋
𝒂𝒗𝒂𝒊𝒍𝒂𝒃𝒍𝒆 

Set of available servers for 

placement 
𝛼, 𝛽 

Weights for active server count and 

resource wastage in the objective 

function 

𝑷𝑴𝒊,𝒎𝒊𝒏
𝑷𝒐𝒘𝒆𝒓 PM idle power 𝜔 

Inertia weight in PSO velocity update 

equation 

𝑷𝑴𝒊,𝒎𝒂𝒙
𝑷𝒐𝒘𝒆𝒓 Peak power of PM 𝑐1, 𝑐2 Acceleration coefficients in PSO 
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𝑽𝑴𝒋,𝒆𝒔𝒕𝒊𝒎𝒂𝒕𝒆𝒅
𝑩𝑾  

Estimated bandwidth usage of 

𝑉𝑀𝑗 
𝑟1, 𝑟2 

Random values in the range [0, 1] for 

PSO velocity update 

𝑷𝑴𝒊,𝒕+
𝒑𝒐𝒘𝒆𝒓

 
Power consumption of server i 

at time t after placing new VM 
𝑥𝑖𝑗  

Matrix element to show VMs to PMs 

mapping 

𝑽𝑴 List of running VMs S Swarm size 

𝑽𝑴𝒏𝒆𝒘 List of VMs to be (re)placed 𝑇𝑚𝑎𝑥 Maximum Iterations 

𝑽𝑴𝒋,𝒄𝒖𝒓𝒓𝒆𝒏𝒕
𝑪𝑷𝑼  𝑉𝑀𝑗 current CPU utilization 𝑉𝑀𝑗

𝑅𝐴𝑀 Required RAM for 𝑉𝑀𝑗 

𝑽𝑴𝒋
𝑪𝑷𝑼 Required CPU for 𝑉𝑀𝑗 𝑉𝑀𝑗

𝐵𝑊 Required Bandwidth for 𝑉𝑀𝑗 

𝑻𝒉𝒐𝒗𝒆𝒓 Overutilization threshold 𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 Current VM-to-PM assignment 

 

4. PROPOSED ALGORITHM (HAPSO - HYBRID ACO–PSO ALGORITHM) 
 

4.1. Hybrid Algorithm Overview 
 

The proposed Hybrid ACO–PSO (HAPSO) algorithm integrates the strengths of two 

metaheuristic techniques—Ant Colony Optimization (ACO) and Particle Swarm Optimization 

(PSO)—to address both the initial placement and dynamic migration of VMs in cloud datacenters. 

This hybridization is designed to enhance resource consolidation, minimize active PMs, and 

reduce overall resource wastage while maintaining system feasibility and energy efficiency. 

In the first phase, ACO is applied to perform the initial placement of VMs (Figure 2(a)). We reuse 

the static placement logic introduced in our previous work [4], where the ACO assigns VMs to 

PMs based on multi-objective heuristics. 

 

ACO probabilistically constructs a VM-to-PM mapping by leveraging pheromone trails and heuristic 

factors such as energy efficiency, carbon emissions, and network impact. This phase ensures that each 

VM is assigned to a suitable PM while satisfying resource constraints on CPU, RAM, and BW. 

 

The system then transitions into runtime operation, during which a periodic evaluation is conducted 

to monitor PM utilization. When a PM exceeds a predefined utilization threshold 𝑇ℎ𝑜𝑣𝑒𝑟or falls 

below a lower bound 𝑇ℎ𝑢𝑛𝑑𝑒𝑟, the PSO-based optimization phase is triggered (Figure 2(b)). This 

second phase serves as a dynamic refinement mechanism, that selectively migrates VMs hosted by 

the overutilized or underutilized servers. 

 

The PSO swarm is initialized using the current live VM-to-PM assignment as the first particle. 

Additional particles are generated by introducing controlled perturbations to this mapping, 

ensuring diversity without violating feasibility. To ensure feasibility and heuristic quality of initial 

solutions, each particle’s continuous position was discretized using a constraint-based mapping 

step. This step integrates domain constraints (CPU, RAM, and BW) early in the search process, 

enhancing convergence stability and reducing the need for penalty or repair mechanisms. Each 

particle is evaluated using a multi-objective fitness function that jointly minimizes the number of 

active servers and the total residual resource wastage across CPU, RAM, and BW. 

 

Once the PSO converges or reaches its iteration limit, the best-performing particle defines a new 

VM reallocation plan. Only those VMs with changed host assignments are migrated, thereby 

reducing overhead and maintaining system stability.  
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The potential of HAPSO to balance exploration and exploitation—via ACO and PSO 

respectively—will be validated in the results section, where it demonstrates adaptive performance 

under dynamic cloud workloads. 
 

4.2. Particle Representation 
 

Building upon the optimization model defined earlier, each particle in the PSO phase represents a 

potential reallocation plan for a subset of VMs. Specifically, particles encode VM-to-PM 

assignments for VMs currently hosted on over- or underloaded PMs identified during runtime 

monitoring. 

 

The position of each particle is encoded as a binary matrix 𝑋𝑡 ∈ {0,1}𝑀×𝑁, where the element 

𝑥𝑖𝑗
𝑡 =1 indicates that 𝑉𝑀𝑗 is assigned to 𝑃𝑀𝑖 at iteration 𝑡, and 𝑥𝑖𝑗

𝑡 = 0 otherwise. Each particle 

must comply with the constraints introduced in Section 3.2, i.e., each VM must be assigned to 

exactly one host and no PM should exceed its capacity. 

 

 
 

Figure 2. Workflow of the proposed hybrid VM placement and migration algorithm. (a) The complete 

hybrid approach integrating ACO for initial VM placement and PSO for dynamic migration. (b) The PSO-

based optimization phase, which refines VM allocation by minimizing energy consumption and resource 

wastage. 

 

𝑋𝑡 = [
𝑥𝑖1

𝑡 ⋯ 𝑥𝑖𝑁
𝑡

⋮ ⋱ ⋮
𝑥𝑀𝑗

𝑡 ⋯ 𝑥𝑀𝑁
𝑡

] 

 

For example, 3 PMs (rows) and 4 VMs (columns) might have the following matrix: 
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𝑋𝑖
𝑡 = [

1 0 0 1
0 1 0 0
0 0 1 0

] , VM₁ and VM₄ on PM₁, VM₂ on PM₂, VM₃ on PM₃. 

 

4.3. Velocity and Position Updates 
 

Once the PSO swarm is initialized, particles evolve iteratively through updates to their velocity 

and position vectors. In the context of VM placement, this evolution corresponds to proposing and 

refining VM-to-PM migration plans.  

 

Velocity Update 

 

For each particle i, the velocity vector is updated using the standard PSO formulation in Equation 

(5). 

 

𝑣𝑖
𝑡+1  =  𝑤 ⋅ 𝑣𝑖

𝑡 +  𝑐1 ⋅ 𝑟1 ⋅ (𝑝𝑏𝑒𝑠𝑡𝑖 −  𝑥𝑖
𝑡) + 𝑐2 ⋅ 𝑟2 ⋅ (𝑔𝑏𝑒𝑠𝑡 −  𝑥𝑖

𝑡) (5) 

 

Where: 

 

• 𝑤 is the inertia weight. 

• 𝑐1, 𝑐2 are acceleration coefficients guiding the cognitive and social components. 

• 𝑟1, 𝑟2 are random numbers in [0, 1] introducing stochasticity. 

• 𝑝𝑏𝑒𝑠𝑡𝑖 is the best-known position (VM-PM mapping) of particle i. 

• 𝑔𝑏𝑒𝑠𝑡 is the best-known position among all particles. 

 

This update rule encourages each particle to move toward both its personal best and the global best 

positions while retaining some influence from its current trajectory. 

 

To balance exploration and exploitation, we use a linearly decreasing inertia weight as shown in 

Equation (6): 

 

𝜔𝑡 = 𝜔𝑚𝑎𝑥 − (
𝜔𝑚𝑎𝑥 − 𝜔𝑚𝑖𝑛 

𝑇𝑚𝑎𝑥
) ∙ 𝑡 (6) 

 

Where: 

 

• 𝜔𝑡: inertia weight at iteration t. 

• 𝜔𝑚𝑎𝑥: initial inertia (0.9). 

• 𝜔𝑚𝑖𝑛: final inertia (0.4). 

• 𝑇𝑚𝑎𝑥 : total number of iterations. 

• 𝑡: current iteration index. 

 

Early iterations favor wide exploration with high 𝜔, while later ones promote convergence by 

reducing 𝜔. This approach has been shown to improve solution stability in swarm-based 

optimization [9]. 

Position Update and Discretization 

 

Following the velocity update, the new position vector is computed as in Equation (7). 

 

𝑥𝑖
𝑡+1 =  𝑥𝑖

𝑡 + 𝑣𝑖
𝑡+1 (7) 
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Since VM-to-PM assignments must remain binary, and are constrained by physical resource 

capacities. In the PSO migration phase, every particle starts from the current ACO-derived VM 

placement and is lightly perturbed to maintain swarm diversity without violating resource limits. 

After each PSO iteration, we perform a feasibility check to detect and correct any capacity 

violations. This ensures that every particle’s position always maps to a valid VM-to-PM 

assignment. This feasibility check is performed also after each velocity update.  

 

The swarm follows standard PSO equations with adaptive inertia, and a multi-objective fitness 

function that jointly minimizes the number of active servers and residual capacity waste steers 

convergence. Compared with hybrids that rely on randomized initialization [23] or mutation-based 

particle diversification [29], our controlled perturbation approach preserves feasibility from the 

outset and accelerates convergence. 

 

4.4. System Parameters 
 

PSO parameters were adopted from prior works ([8], [30], [31]) with minor empirical adjustments 

for convergence [4].  A full summary of the HAPSO parameters appears in Table 2. 

 
Table 2. System Parameters 

 

5. EXPERIMENTAL RESULTS 
 

This section evaluates the performance of the proposed hybrid HAPSO algorithm compared to the 

ACO-only placement strategy from our previous work [4]. Simulations were conducted using a 

customized version of CloudSimPlus [32], a java-based toolkit for modeling cloud environments, 

extended to model green energy, carbon pricing, and dynamic PUE across geo distributed 

datacenters. In addition to ACO-only, classical heuristics including Best Fit Decreasing (BFD), 

First Fit Decreasing (FFD), and the Unified Ant Colony System (UACS) metaheuristic were 

implemented as baselines to provide a broader comparative evaluation. 

 

5.1. Experimental Setup and Workloads 
 

To keep the scope focused and lightweight, all experiments are conducted on workloads ranging 

from 500 to 5000 VMs, representing realistic yet modest-scale cloud environments. 

 

5.1.1. Datacenters Configuration  

 

Our setup includes four geographically distributed U.S. datacenters—Dallas, Richmond, San Jose, 

and Portland—spanning multiple time zones, following the approach in [33]. Each datacenter hosts 

126 heterogeneous PMs, comprising six distinct configurations defined by four key attributes: 

number of CPU cores, core frequency (GHz), memory size (GB), and storage capacity (GB). The 

specific configurations are outlined in Table 3. 

 

 

 

 

Symbol c1, c2 r1,r2 α,β ω S 𝑻𝒎𝒂𝒙 𝑻𝒉𝒖𝒏𝒅𝒆𝒓 𝑻𝒉𝒐𝒗𝒆𝒓 

Value 2 [0,1] 0.6,0.4 
Adaptive 

(0.4-0.9) 
20 100 30% 90% 
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Table 3. Datacenters Characteristics 

 
Site Characteristics Dallas Richmond San Jose Portland 

Server Power Model 
Power estimation followed the model in Eq. (5) from [4], 

derived from the SPEC power benchmark [34] 

PUE Model 𝑃𝑈𝐸(𝑈𝑡 , 𝐻𝑡) = 1 +
0.2 + 0.01 ∙ 𝑈𝑡 + 0.01 ∙ 𝑈𝑡 ∙ 𝐻𝑡

𝑈𝑡

 

Carbon Intensity (ton CO2 /MWh) 0.335 0.268 0.199 0.287 

Carbon Tax (USD/ton CO2) 24 17.6 38.59 25.75 

Energy Price (cents/kWh) 6.38 8.62 19.8 7.7 

  
The simulation setup employs a heterogeneous mix of PMs, mirroring the variation typically 

observed in operational datacenters. These servers vary in computational capability, memory size, 

and power efficiency, offering a practical foundation for testing VM placement strategies. 

Incorporating diverse hardware profiles allows for a more comprehensive perspective on the 

algorithm’s ability to optimize both energy consumption and resource usage. Table 4 outlines the 

detailed specifications of the PM configurations used. 

 
Table 4. Server Types 

 

Server Type CPU Cores Memory (GB) Storage (GB) 

Type 1 2 16 2000 

Type 2 4 32 6000 

Type 3 8 32 7000 

Type 4 8 64 7000 

Type 5 16 128 9000 

Type 6 32 128 12000 

 

5.1.2. VM Instances 

 

To simulate a realistic cloud infrastructure, multiple VM types were defined to reflect varying user 

demands in terms of CPU, memory, and storage requirements. These configurations emulate 

common service requests typically observed in Infrastructure-as-a-Service (IaaS) environments. A 

comprehensive overview of the VM types utilized in the simulation is presented in Table 5. 

 
Table 5. VM Types 

 

VM Type Number of PEs (CPU Cores) Memory (GB) Storage (GB) 

Type 1 A1_Medium  1 1 100 

Type2 m5.large  2 2 200 

Type 3 m5.xlarge 4 4 500 

Type 4 m5.2xlarge 8 8 1000 

Type 5 m5.4xlarge 16 64 2000 

 

5.1.3. Workload 

 

In this study, we utilize real workload traces obtained from the MetaCentrum infrastructure—a 

distributed platform offering high-performance and cloud computing resources for scientific 

applications. The traces, formatted in the Standard Workload Format (SWF), encompass a diverse 

range of job types including queued batch jobs, bag-of-tasks workloads ideal for parallel 

processing, and extended compute- or memory-intensive tasks (e.g., simulations and data 
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analytics). As summarized in Table 6, this workload diversity makes MetaCentrum logs a valuable 

benchmark for evaluating VM placement strategies in hybrid cloud-HPC environments. A similar 

workload setup was previously used in our prior work. 

 
Table 6. Workload Characteristics 

 

Cloudlet PEs 
VM 

Type 
Cloudlets percentage Example Workload 

1 Type 1 40% 
Small web apps, APIs, development 

environments 

2 Type 2 30% Medium-sized apps, databases, caching servers 

4 Type 3 20% Enterprise apps, high-traffic web servers 

8 Type 4 8% Video encoding, data processing, 

16+ Type 5 2% Machine learning, big data 

 

To ensure efficient execution of the proposed algorithm, we configured the cloudlet submission 

interval to 600 seconds (10 minutes). This interval provides the algorithm with enough time to 

evaluate and optimize larger batches of VM requests—typically around 1000 cloudlets—rather 

than being frequently interrupted by smaller, less meaningful request sets. Shorter submission 

periods were found to increase computational overhead without improving placement quality. 

 

5.2. Results and Comparison 
 

We evaluated five algorithms: two classical heuristics (Best Fit Decreasing [BFD] and First Fit 

Decreasing [FFD]), the metaheuristic Unified Ant Colony System (UACS [35]), our previously 

published ACO-only baseline [4], and the proposed HAPSO hybrid. 

 

5.2.1. Energy Consumption (kWh) 

 

Energy efficiency remains a critical factor in achieving sustainable cloud operations. The HAPSO 

algorithm is expected to yield notable energy savings due to its dynamic consolidation capability,  

 

 
 
Figure 3. Total energy consumption of different VM placement algorithms under varying workload sizes. 
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which effectively reduces the number of active physical machines. Figure 3 illustrates the total 

energy consumption recorded by each algorithm across various VM workload scales, highlighting 

the performance gains of HAPSO. 

 

Classical heuristics such as BFD and FFD recorded the highest energy usage, particularly at 5000 

VMs where FFD exceeded 930 kWh due to inefficient consolidation. UACS achieved better results 

than the simple heuristics but still lagged behind metaheuristic approaches. ACO-only reduced 

energy compared to heuristic methods but showed variability with workload scale. HAPSO 

consistently achieved the lowest consumption across all cases, reducing energy by up to 12% 

compared with UACS and 18% compared with FFD at 5000 VMs—highlighting that the additional 

dynamic migration step guided by PSO enhances placement adaptability without compromising 

efficiency. This is due to its hybrid strategy that leverages both pheromone-guided exploration and 

velocity-based refinement 

 

5.2.2. Carbon Footprint (kg CO2) 

 

The results in Figure 4 reaffirm the strong correlation between energy efficiency and carbon 

emissions.  

 

 
 

Figure 4. Carbon footprint comparison for different algorithms under varying VM workloads. 

 

Similar to energy consumption, BFD and FFD produced the largest carbon footprint, reflecting 

their poor consolidation capability. UACS provided moderate improvements by accounting for 

utilization thresholds, yet it still produced higher emissions than the metaheuristic approaches. 

ACO-only showed with fluctuations workload size, peaking at 1000 VMs, whereas HAPSO 

consistently delivered the lowest emissions across all scales. At 1000 VMs, HAPSO reduces 

emissions by nearly 25.8% compared to ACO-only. At 5000 VMs, HAPSO reduced CO₂ emissions 

by nearly 20% compared to FFD and by 11% compared to UACS, underscoring the benefits of 

combining exploration and refinement in a green-aware optimization framework. 

 

5.2.3. Total Cost 

 
Figure 5 illustrates the total operational cost across different VM workloads.  
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Figure 5. Comparative analysis of total operational cost across algorithms for increasing VM workloads. 

 

FFD and BFD incurred the highest costs, particularly under large workloads, due to energy 

inefficiency and poor resource consolidation. UACS achieved lower costs than these heuristics but 

remained higher than metaheuristic approaches. ACO-only leads slightly at 500 VMs. HAPSO 

consistently achieved the lowest cost at 1000 and 5000 VMs, showing savings of up to 22% 

compared with FFD and 14% compared with UACS. These results highlight the economic 

sustainability of the hybrid model compared to both heuristics and metaheuristics. 

 

5.2.4. Number of Live Migrations 

 

Figure 6 compares the number of live VM migrations performed by each algorithm as workload 

scales. 

 

 
 

Figure 6.  Number of live VM migrations of proposed HAPSO compared to baseline approaches across 

varying workload sizes. 

 

Classical heuristics BFD and FFD are excluded here, as they do not explicitly handle dynamic 

consolidation. Among dynamic algorithms, UACS triggered the largest number of migrations, 

particularly at 5000 VMs where it exceeded 270 migrations, which can increase management 

overhead. ACO maintained moderate levels, while HAPSO exhibited a controlled increase in live 

migrations as workload grew. Although HAPSO performed more migrations than ACO, these 

remained substantially fewer than UACS and were restricted to intra-datacenter migrations, 
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ensuring negligible impact on performance or SLA compliance. This highlights HAPSO’s 

balanced trade-off between optimization gains and migration overhead. 

 

5.2.5. SLA Violations 

 

The Service Level Agreement (SLA) violation percentages presented across varying VM 

workloads highlight each algorithm’s ability to maintain performance reliability under increasing 

demand. 

 

 
 

Figure 7. Service Level Agreement (SLA) violation percentages presented across varying VM workloads. 

 

UACS consistently reported the highest violation rates, exceeding 8% at 5000 VMs, mainly due to 

aggressive migrations. ACO maintained better stability, achieving values between 2% and 7%. 

HAPSO consistently achieved the lowest SLA violations, ranging from 1.2% to 5.6% across 

workloads. These results confirm that while heuristics like UACS are adaptive, they compromise 

reliability, whereas HAPSO achieves efficient consolidation while preserving SLA compliance, 

making it suitable for dynamic, SLA-sensitive cloud environments. 

 

5.2.6. Results Discussion  

 

The experimental results presented confirm the effectiveness of the HAPSO framework in 

balancing energy efficiency, resource consolidation, and runtime adaptability. Leveraging a two-

stage metaheuristic design addresses the limitations of single-phase optimization strategies 

previously examined in [4]. 

 

The integration of ACO for initial placement ensures that early VM-to-PM mappings are energy- 

and constraint-aware, considering PUE, carbon emissions, and bandwidth availability. This 

foundation allows the PSO migration phase to operate on a feasible, near-optimal starting point—

thereby accelerating convergence and avoiding excessive exploration of unpromising 

configurations. 

 

UACS improved efficiency by using utilization thresholds and cost-awareness, achieving lower 

energy use and carbon footprint than BFD/FFD. The metaheuristic baseline ACO-only and the 

proposed HAPSO achieved significantly better outcomes when compared with UACS. ACO-

only, our previous solution, provided robust initial placements but showed limited adaptability 

during runtime, particularly under workload fluctuations. By contrast, HAPSO consistently 

outperformed all competing strategies across energy, carbon, SLA, and cost dimensions. Notably, 

HAPSO achieved up to 25% lower energy consumption and 18% fewer SLA violations than 

UACS at large-scale workloads. The hybrid two-stage design enabled by ACO-guided 
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initialization and PSO-based refinement allowed HAPSO to maintain feasible, green-aware 

allocations while aggressively consolidating underloaded servers. 

 

Although HAPSO introduced a higher number of live migrations compared to ACO-only, these 

remained confined within datacenters and thus did not incur latency or cost penalties. The 

additional migration activity is justified by the resulting improvements in energy efficiency and 

SLA compliance. Importantly, even under large workloads, HAPSO sustained stable cost profiles 

and maintained SLA violation levels well below those of all heuristic baselines. 

 

Overall, the findings illustrate a clear progression: from classical heuristics to single 

metaheuristics, and ultimately to the proposed hybrid approach. By integrating exploration and 

refinement in a sustainability-aware framework, HAPSO establishes itself as a superior and 

adaptive solution for green cloud datacenter management. 

 

6. CONCLUSIONS 
 

This paper presented a novel hybrid ACO–PSO algorithm for energy-aware virtual machine 

placement and migration in green cloud datacenters. Building on our previous work, which 

employed ACO for initial static placement, the proposed two-stage model integrates PSO as a 

dynamic refinement phase. This hybrid approach enables the system to adapt to workload 

fluctuations by triggering migration decisions when host overutilization or underutilization is 

detected. 

 

Unlike conventional static placement strategies, the PSO phase leverages particles initialized from 

the current VM-to-host mapping and iteratively refines them to minimize energy consumption and 

resource wastage. Each particle explores a migration plan under feasibility constraints and is 

guided by an adaptive fitness function balancing host count and resource utilization. 

 

Comprehensive simulations demonstrated that HAPSO consistently outperforms the ACO-only 

approach across multiple criteria. Moreover, when evaluated against classical heuristics (BFD/ 

FFD) and metaheuristic UACS, HAPSO achieved markedly superior results, underscoring its 

advantage over heuristic and metaheuristic baselines. It achieved lower total energy consumption, 

reduced carbon emissions, and more balanced SLA compliance while maintaining competitive 

execution times. In large-scale workloads, HAPSO reduced energy usage by up to 25% and SLA 

violations by 18% compared to UACS, while also maintaining stable carbon and cost profiles. 

Despite triggering more live migrations, HAPSO’s aggressive consolidation strategy still delivers 

the lowest total cost; and since all migrations remain within a single datacenter, the added network 

latency is negligible and there are no inter-datacenter transfer charges, so SLAs and performance 

are unaffected. These results confirm the potential of sequential bio-inspired hybridization in 

addressing the dynamic and multi-objective nature of cloud resource management. 

 

Future work may extend this model to large-scale workloads, incorporate learning-based decision-

making, and explore more diverse datacenter scenarios including latency constraints. 
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