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ABSTRACT 
 
A high peak-to-average power ratio (PAPR) is one of the most critical challenges in Orthogonal Frequency 

Division Multiplexing (OFDM) systems. It limits the efficiency of high power amplifiers and increases signal 

distortion. This problem is aggravated in Multiple-Input Multiple-Output (MIMO) OFDM systems due to the 

simultaneous transmission of multiple data streams, resulting in degraded Bit Error Rate (BER) performance and 

reduced power efficiency. To address this, we propose an intelligent PAPR reduction scheme based on Artificial 

Neural Networks (ANNs) to dynamically optimise the clipping threshold. Unlike traditional clipping techniques, 

which use a fixed threshold, our adaptive ANN-Clipping method learns to determine the optimal threshold 

according to the instantaneous statistical properties of the transmitted signal. This enables an efficient trade-off 

to be made between PAPR reduction and signal distortion while maintaining low computational complexity. 

Simulation results demonstrate the effectiveness of the proposed method, achieving an average PAPR of 2.76 dB, 

compared to 4.01 dB for conventional fixed clipping and 8.74 dB for the original OFDM signal. Furthermore, at 

a CCDF probability of 10−4 , the ANN-Clipping scheme achieves a PAPR of 3.04dB, which is a significant 

improvement on conventional PAPR reduction methods. These results confirm that the proposed approach 

significantly improves the performance of 5G and 6G wireless communication systems in terms of efficiency and 

robustness. 
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1. INTRODUCTION 
 

Next-generation wireless communication systems, particularly 5G and beyond, demand high data rates, 

optimal spectral efficiency, and enhanced reliability. OFDM has emerged as a preferred modulation 

technique in such systems due to its robustness against frequency-selective fading channels and its 

ability to efficiently exploit the available spectrum [1]. The integration of OFDM with MIMO systems 

further enhances performance in terms of data rate and reliability through spatial diversity and 

multiplexing gains. However, OFDM suffers from a major drawback its inherently high PAPR. This 

large PAPR results from the constructive superposition of multiple orthogonal subcarriers, occasionally 

producing significant power peaks [2]. Such amplitude variations cause several practical issues, 

including power amplifier inefficiency, since amplifiers must operate with a wide dynamic range to 

accommodate power peaks, which in turn reduces their power efficiency and increases energy 

consumption. When these peaks exceed the amplifier’s linear operating region, nonlinear distortions 

occur, leading to inter-carrier interference (ICI) and inter-symbol interference (ISI) [5][6]. These 

distortions degrade the BER performance and impose hardware constraints that require high-resolution 

Analog-to-Digital Converters (ADCs) and Digital-to-Analog Converters (DACs) to handle the wide 

dynamic range [1][3]. In a MIMO-OFDM system with N subcarriers and M transmit antennas, the time- 

domain signal transmitted from the m-th antenna can be expressed as [8]: 
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𝑥𝑚 

1 
(𝑡) = 

𝑁−1 

∑ 𝑋𝑚,𝑘 

 

𝑒𝑗2𝜋𝑘∆𝑓𝑡 , 0 ≤ 𝑡 < 𝑇 1 

√𝑁 
𝑘=0 

 

where𝑋𝑚,𝑘 denotes the modulated symbol on the k-th subcarrier of the m-th antenna, ∆f is the subcarrier 

spacing, and T is the OFDM symbol duration. The PAPR for the m-th antenna is defined as [3]: 

𝑚𝑎𝑥0≤𝑡<𝑇|𝑥𝑚(𝑡)|2 

𝑃𝐴𝑃𝑅𝑚 = 
𝔼[|𝑥  (𝑡)|2] 

2 

𝑚 

Theoretically, for N subcarriers with random modulation, the maximum PAPR can reach[1]: 

𝑃𝐴𝑃𝑅𝑚𝑎𝑥 = 10 log10(𝑁) 𝑑𝐵 3 

 

This relationship indicates that the PAPR increases logarithmically with the number of subcarriers, 

making the problem particularly critical in modern OFDM systems that employ a large number of 

subcarriers [4]. The main objectives of this research are to develop an intelligent PAPR reduction 

method capable of predicting the optimal clipping threshold for each OFDM symbol, optimizing the 

PAPR–complexity trade-off by maintaining an acceptable computational cost while maximizing PAPR 

reduction, and preserving signal quality by minimizing distortions introduced during the clipping 

process to maintain an acceptable BER [12]. The proposed approach is also experimentally validated 

through comprehensive simulations and compared with conventional techniques. 

 

The major contributions of this paper can be summarized as follows: (1) the proposal of an adaptive 

neural architecture specifically designed to predict the optimal clipping threshold based on the 

instantaneous statistical characteristics of the OFDM signal; (2) the achievement of a substantial PAPR 

reduction of **68.4%** compared to the original OFDM signal and **31.2%** compared to 

conventional fixed clipping; (3) the maintenance of minimal complexity, with only a **10%** 

computational overhead compared to the original OFDM system, making the method practical for real- 

time implementation; and (4) a comprehensive comparative performance evaluation in terms of average 

PAPR, Complementary Cumulative Distribution Function (CCDF), computational complexity, and 

processing time. 
 
The remainder of this paper is organized as follows. Section 2 surveys recent PAPR-reduction 

techniques, with emphasis on learning-based approaches relevant to 5G/6G systems. Section 3 presents 

the MIMO-OFDM system model and formulates the PAPR minimization problem. Section 4 details the 

proposed ANN-Clipping method, including feature design, network architecture, training procedure, 

and the adaptive inference pipeline. Section 5 reports simulation settings and results, providing a 

comparative analysis in terms of average PAPR, CCDF, spectral regrowth (PSD), and computational 

complexity. Finally, Section VI concludes the paper and outlines future research directions. 

 

2. LITERATURE REVIEW 
 

PAPR reduction techniques in OFDM systems can be categorized into several main classes according 

to their operational principles and characteristics. Signal distortion techniques deliberately modify the 

transmitted waveform to reduce power peaks, among which clipping is the simplest and most widely 

used method [3]. It limits the signal amplitude to a predefined threshold, and mathematically, for an 

OFDM signal x(t), the clipped signal is given by[1]: 

 

𝑥(𝑡), |𝑥(𝑡)| ≤ 𝐴 

𝑥𝑐(𝑡) = {
𝐴 
𝑥(𝑡) 

|𝑥(𝑡)| 
, |𝑥(𝑡)| > 𝐴 

4 
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where A denotes the clipping threshold, usually expressed as a function of the average signal power: 

𝐴 = √ α . 𝑃𝑎𝑣𝑔 5 

 

where α represents the Clipping Ratio (CR) [1][8]. The main advantages of the clipping technique lie in 

its implementation simplicity, very low computational complexity, and immediate efficiency in PAPR 

reduction. However, it also presents several drawbacks, including nonlinear distortion (clipping noise), 

ICI, increased out-of-band emissions, and BER degradation. Several studies have attempted to optimize 

the clipping process. Notably, Y.-C. Wang and Z.-Q. Luo proposed an iterative clipping and filtering 

technique to reduce out-of-band emissions [6]. More recently, Ben Salah et al. (2025) introduced an 

adaptive clipping method with dynamic thresholds for enhanced PAPR reduction in OFDM systems [1]. 

Their approach demonstrated that dynamically adjusting the clipping threshold according to the 

instantaneous characteristics of the signal achieves significant PAPR reduction while maintaining a good 

trade-off between induced distortion and BER performance. Nevertheless, determining the optimal 

clipping threshold remains a major challenge: a low threshold introduces excessive distortion, while a 

high threshold fails to achieve sufficient PAPR reduction. This issue motivates the exploration of 

intelligent and adaptive optimization strategies, particularly those based on neural networks, capable of 

achieving an optimal balance between PAPR reduction, distortion control, and computational efficiency. 

Other distortion-based techniques include peak windowing [8], which applies a weighting window to 

peaks exceeding a given threshold according to: 

 

𝑥𝑤(𝑡) = 𝑥(𝑡) − ∑ 𝑤(𝑡 − 𝑡𝑖). [𝑥(𝑡𝑖) − 𝐴] 6 
𝑖 

 

where w(t) is a window function, and 𝑡𝑖 are the instants where peaks are detected. Peak cancellation 

techniques have also been proposed, where a correction signal is generated to specifically target and 

cancel high peaks [8]. Coding techniques have also been explored for PAPR reduction, where specific 

error-correcting codes are designed to avoid data sequences that produce high PAPR. For instance, 

modified Reed–Muller codes proposed by Jones et al. achieve PAPR mitigation at the expense of 

reduced data throughput [9]. 

 

Another important class of methods includes scrambling techniques, such as the Selected Mapping 

(SLM) scheme proposed by Bauml et al. which generates U candidate OFDM signals by multiplying 

the input data by different random phase sequences [7]: 

 

𝑋𝑢(𝑘) = 𝑋(𝑘). 𝑃𝑢(𝑘), 𝑢 = 1,2, … , 𝑈 7 

where 𝑃𝑢(𝑘) are phase sequences, and the candidate with the minimum PAPR is selected for 

transmission: 

 

𝑢∗ = 𝑎𝑟𝑔 min 𝑃𝐴𝑃𝑅(𝑥𝑢(𝑡)) 8 
𝑢 

 

 

The main advantages of the SLM technique include distortion-free transmission and significant PAPR 

reduction. However, its disadvantages are a complexity proportional to the number of candidates U, the 

need to transmit side information, and the requirement of U IFFT operations [12][10]. 

 

The Partial Transmit Sequence (PTS) method, introduced by Müller and Huber , partitions the 

subcarriers into V disjoint subblocks and applies optimal phase rotation factors according to[7][3]: 
 

𝑉 

𝑥(𝑡) = ∑ 𝑏𝑣 . 𝑥𝑣(𝑡) 9 
𝑣=1 
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where bv=ejϕv are the optimized phase rotation factors minimizing the PAPR [11]. PTS provides 

flexibility in subblock partitioning and avoids signal distortion, but it suffers from high computational 

complexity due to the exhaustive search of WV −1 phase combinations, where W is the number of 

candidate phases, and also requires side information transmission. 

 

The Tone Reservation (TR) technique, proposed by Tellado and Cioffi , reserves a subset of subcarriers 

to generate a correction signal according to[6]: 

 
 

 

𝑋𝑇𝑅 
(𝑘) = {

0, 𝑘 ∈ 𝐷 

𝐶(𝑘), 𝑘 ∈ 𝑅 
 

where D represents data subcarriers and R denotes reserved tones. The correction signal is optimized 

to reduce peaks [12]. Table I compares the main characteristics of representative PAPR-reduction 

techniques. Recently, learning-based methods have gained traction for optimizing this trade-off. 

Comprehensive surveys highlight how machine learning reshapes the PAPR landscape and 

implementation choices [15]. In particular, conditionally applied neural networks can trigger clipping 

only when beneficial, improving distortion–complexity balance [11]. Autoencoder-based designs learn 

constellation/processing mappings that inherently lower peaks without exhaustive search [13]. Deep- 

learning-assisted tone reservation further reduces PAPR while curbing iterative optimization overheads 

[14], and generative approaches have been explored to synthesize low-PAPR OFDM waveforms [10]. 

Building on this trend, our ANN-Clipping framework predicts an adaptive clipping ratio per frame to 

achieve strong PAPR suppression at very low added complexity [1]. 

 
Table 1. Comparison of PAPR Reduction Techniques 

 
Technique PAPR 

Reduction 

Complexity Distortion Side 

Info 

Rate 

Loss 

Clipping Moderate Very Low Yes No No 

SLM High High (U·IFFT) No Yes Neg. 

PTS High Very High No Yes Neg. 

TR Mod-High Moderate No No 3-10% 

ACE Low-Mod Low Minimal No No 

ANN-Clip Very High Very Low Moderate No No 

 

In view of the limitations of existing approaches, our proposed method leverages the learning capability 

of artificial neural networks to adaptively predict the optimal clipping threshold according to OFDM 

signal characteristics, minimize the PAPR distortion trade-off by learning the complex relationship 

between threshold level, PAPR reduction, and induced distortions, maintain low complexity using a 

compact neural model with fast inference, and eliminate the need for side information transmission 

compared to SLM and PTS techniques. 

 

3. SYSTEM MODEL AND PROBLEM FORMULATION 
 

Consider a MIMO-OFDM system with M transmit antennas, N OFDM subcarriers, and L receive 

antennas, where the overall architecture includes several baseband processing blocks. At the transmitter, 

binary information bits are first encoded using a Forward Error Correction (FEC) code, then interleaved 

and mapped onto a modulation constellation. The modulated symbol stream is then demultiplexed into 

M parallel substreams, one for each transmit antenna, where each substreams contains N complex 

symbols corresponding to the N OFDM subcarriers. For the m-th transmit antenna (m = 1, . . . , M), the 

frequency-domain symbols Xm(k), k = 0, . . . , N − 1, are transformed into the time domain using the 

IFFT according to: 

10 
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𝑁−1 

1 
𝑗2𝜋𝑘𝑛 

𝑥𝑚(𝑛) =  ∑ 𝑋𝑚(𝑘). 𝑒 𝑁 

√𝑁 
𝑘=0 

, 𝑛 = 0, … , 𝑁 − 1 11 

where n denotes the discrete time index. A cyclic prefix (CP) of length NCP samples is appended to 

mitigate inter-symbol interference (ISI) caused by the channel delay spread, where the CP length must 

satisfy NCP ≥ Lh, with Lh denoting the length of the channel impulse response. The PAPR of the OFDM 

signal for the m-th antenna is formally defined as [11]: 
 

𝑃𝑝𝑒𝑎𝑘,𝑚 

𝑃𝐴𝑃𝑅𝑚 = 
𝑃 

𝑚𝑎𝑥0≤𝑛<𝑁|𝑥𝑚(𝑛)|2 

=  1 𝑁 
12 

𝑎𝑣𝑔,𝑚 ∑ |𝑥 (𝑛)|2 
𝑁  𝑛=0  𝑚 

 

In decibels, it can be expressed as: 

𝑃𝐴𝑃𝑅𝑚[𝑑𝐵] = 10 log10(𝑃𝐴𝑃𝑅𝑚) 13 

For the entire MIMO system, the average PAPR across all transmit antennas is defined as: 
𝑀 

1 
𝑃𝐴𝑃𝑅𝑎𝑣𝑔 = 

𝑀 
∑ 𝑃𝐴𝑃𝑅𝑚 14 

𝑚=1 

The Complementary Cumulative Distribution Function of the PAPR characterizes the probability that 

the PAPR exceeds a given threshold: 

𝐶𝐶𝐷𝐹(𝑃𝐴𝑃𝑅0) = 𝑃(𝑃𝐴𝑃𝑅 > 𝑃𝐴𝑃𝑅0) 15 

For an OFDM signal with a large number of subcarriers, the CCDF can be approximated as: 

𝐶𝐶𝐷𝐹(𝑃𝐴𝑃𝑅0) ≈ 1 − (1 − 𝑒−𝑃𝐴𝑃𝑅0 )𝑁 16 

In the conventional clipping method, a fixed threshold A is uniformly applied to all OFDM symbols. 

The clipping process introduces a distortion noise component defined as: 

𝐶𝑅∗ = 𝑎𝑟𝑔 min{𝑃𝐴𝑃𝑅(𝐶𝑅)} 𝑠. 𝑡. 𝑆𝐷𝑅(𝐶𝑅) ≥ 𝑆𝐷𝑅𝑚𝑖𝑛 18 
𝐶𝑅 

 

4. PROPOSED ANN-CIPPING OPTIMIZATION METHOD 
 

In this section, we present the proposed intelligent PAPR reduction approach based on a Artificial Neural 

Network architecture that dynamically optimizes the clipping threshold in MIMO-OFDM systems. The 

key idea of the proposed method, referred to as ANN-Clipping, is to adaptively determine the optimal 

Clipping Ratio for each OFDM symbol frame according to the instantaneous statistical characteristics 

of the signal, rather than using a fixed threshold as in conventional schemes. 

 

4.1 Motivation 
 

Traditional clipping techniques apply a uniform threshold A across all OFDM symbols. Although 

simple, this approach is suboptimal because the signal amplitude distribution varies significantly from 

one OFDM frame to another depending on the modulation order, the number of subcarriers, and the 

channel conditions. Consequently, using a fixed threshold either results in excessive distortion (for low 

A) or insufficient PAPR reduction (for high A). To overcome this limitation, we propose to employ a 

data-driven neural model capable of learning the nonlinear relationship between signal features and the 

optimal clipping threshold. The model predicts an adaptive value of α (or equivalently A) for each 
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x 

x 

transmitted frame, allowing real-time control of the clipping process with minimal computational 

overhead 

 

4.2 Feature Extraction and Input Representation 
 

For each OFDM symbol xm(n) generated before clipping, a set of statistical and spectral features is 

extracted to characterize its temporal and power distribution. The feature vector f is defined as: 

 

f = [Pavg, Ppeak, σ2, Kurt(x), Skew(x), SNR, N, M] 19 
 

where Pavg and Ppeak denote the average and peak powers, σ2 is the variance, Kurt(x) and Skew(x) are 

the kurtosis and skewness of the amplitude distribution, respectively, while N and M represent the 

number of subcarriers and transmit antennas. These features are normalized and fed into the neural 

network as input. The statistical parameters are computed as follows: 
 

𝑁−1 

1 
P =  ∑|𝑥 

 
(𝑛)|2 , 𝑃 

 
= max|𝑥 

 
(𝑛)|2 20 

avg 𝑁 𝑚 

𝑛=0 

𝑝𝑒𝑎𝑘 
𝑛 

𝑚 

 

𝑁−1 

𝜎2 = 
1 
∑(|𝑥 

 
(𝑛)| − 𝜇 )2 

 
, 𝜇 

𝑁−1 

1 
=  ∑|𝑥 

 
(𝑛)| 21 

 

𝑥 𝑁 
𝑚 𝑥 

𝑛=0 
𝑥 𝑁 𝑚 

𝑛=0 

 

The higher-order statistical moments used as additional input features are the kurtosis and skewness, 

defined respectively as: 

 

1 
∑𝑁−1(|𝑥  (𝑛)| − 𝜇 )4 

𝐾𝑢𝑟𝑡(𝑥) = 𝑁 𝑛=0 𝑚 𝑥 
22 

(
 1 
∑𝑁−1(|𝑥  (𝑛)| − 𝜇 )2)2 

𝑁 𝑛=0 𝑚 𝑥 

1 
∑𝑁−1(|𝑥  (𝑛)| − 𝜇 )3 

𝑆𝑘𝑒𝑤(𝑥) = 𝑁 

1 

𝑛=0 𝑚 𝑥 

23 
3⁄2 
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𝑁=0 

𝑖 

(𝑁 ∑
𝑁−1(|𝑥𝑚(𝑛)| − 𝜇𝑥)2) 

 

These higher-order features provide valuable information about the amplitude distribution of the OFDM 

signal, allowing the neural network to better predict the optimal clipping threshold for each transmission 

frame. 

 

4.3 Artificial Neural Network Architecture 

 
The proposed ANN is a fully connected feedforward model composed of three hidden layers. The input 

layer receives the feature vector f, while the output layer produces the predicted optimal clipping ratio 

𝛼̂ . The network is trained offline using supervised learning, where the ground-truth α* values are 

obtained from extensive simulations that evaluate PAPR and BER performance for different clipping 

ratios. The adopted architecture follows an 8–32–16–1 structure: 

 

• Input layer: 8 neurons corresponding to the extracted features f, 

• Hidden layer 1: 32 neurons with ReLU (Rectified Linear Unit ) activation, 

• Hidden layer 2: 16 neurons with ReLU activation, 

• Output layer: 1 neuron with sigmoid activation, providing the predicted normalized clipping 

ratio 𝛼̂ .Each hidden layer uses the ReLU activation function to introduce nonlinearity and ensure 

efficient gradient propagation, while the output layer employs a sigmoid activation function to 

guarantee that 𝛼̂  ∈ [0, 2], consistent with practical clipping ratio ranges. The forward 

propagation of the neural model is expressed as: 

 

𝛼̂  = 𝑓𝑁𝑁(f, W, b) 24 
where W and b represent the trainable weights and biases of the network. Given the architecture 8–32– 

16–1, the total number of trainable parameters is computed as: 

𝑁𝑝𝑎𝑟𝑎𝑚𝑠 = (8 × 32 + 32) + (32 × 16 + 16) + (16 × 1 + 1) = 833 25 
 

where the first term corresponds to the connections and biases between the input and the first hidden 

layer, the second to those between the two hidden layers, and the third to the output layer. This compact 

configuration ensures a good balance between model expressiveness and computational efficiency, 

making it suitable for real-time implementation. 

 

4.4 Loss Function and Training Procedure 
 

The network is trained to minimize the Mean Squared Error (MSE) between the predicted and optimal 

clipping ratios, defined as: 

 
𝑁𝑠 

1 
ℒ = ∑(𝛼̂ 𝜄 

𝑁𝑠 
𝑖=1 

 
− 𝛼̂∗)2 26 

where Ns is the number of training samples. The optimization is performed using the Adam algorithm 

due to its fast convergence and adaptive learning rate properties. To prevent overfitting, dropout 

regularization and early stopping are applied during training. 

 

4.5 Adaptive Clipping Operation 
 

During the testing (inference) phase, the trained ANN predicts 𝛼̂  in real time based on the extracted 

features of the current OFDM frame. The adaptive clipping threshold is then computed as: 
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𝐴𝑜𝑝𝑡 = √𝛼̂ . 𝑃𝑎𝑣𝑔 27 
 

and applied to the transmitted signal: 

𝑥𝑚(𝑛), |𝑥𝑚(𝑛)| ≤ 𝐴𝑜𝑝𝑡 
𝑥𝑚,𝑐𝑙𝑖𝑝(𝑛) = {

𝐴 
 𝑥𝑚(𝑛)  

. , |𝑥 
28 

(𝑛)| > 𝐴 
𝑜𝑝𝑡 |𝑥𝑚(𝑛)| 𝑚 𝑜𝑝𝑡 

 

This adaptive process ensures that the clipping threshold dynamically adjusts to each frame, achieving 

a balanced tradeoff between PAPR reduction and signal distortion. The neural inference time is 

negligible compared to the overall OFDM processing latency, making the method suitable for real-time 

implementation in 5G and 6G baseband transmitters. 

 

Figure 1. Overall architecture of the proposed MIMO-OFDM transmitter–receiver with the ANN-based 

adaptive clipping module. The end-to-end signal chain from data generation to reception is shown, with 

ANN-Clipping inserted after the IFFT at each transmit antenna. This placement enables real-time, per- 

symbol optimization of the clipping threshold while preserving full compatibility with standard MIMO- 

OFDM processing stages. 

 

 
 

Figure 1. Proposed system model 
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x 

𝑖 

𝑖 

𝑗 

 

The complete procedure of the proposed ANN_Clipping optimization is detailed in Algorithm 1, 

which outlines both the training and inference phases of the method. 
 

Algorithm 1 Proposed ANN-Clipping Algorithm 
 

Require: Number of transmit antennas M, number of subcarriers N, modulation order Mmod ,trained 

neural network fANN (.) 

Ensure: Clipped MIMO-OFDM signal 𝑥𝑚,𝑐𝑙𝑖𝑝(𝑛) with reduced PAPR 

1: -Offline Training Phase- 

2: for each training OFDM frame 𝑖 = 1 to 𝑁𝑠 do 

3: Generate modulated OFDM symbols 𝑥𝑖(𝑛) 

4: compute statistical and spectral features: 

 

f𝑖 = [Pavg, Ppeak, σ2, Kurt(𝑥𝑖), Skew(𝑥𝑖), SNR, N, M] 
5: for each candidate clipping ratio 𝛼̂𝑗 ∈ [0.5,2] do 

6: apply clipping with threshold 𝐴𝑗 = √𝛼̂𝑗. 𝑃𝑎𝑣𝑔 

7: evaluate PAPR (𝛼̂𝑗) 

8: end for 

9: determinate optimal 𝛼̂∗ = arg 𝑚𝑖𝑛𝛼̂ {𝑃𝐴𝑃𝑅(𝛼̂𝑗)} 
10: Store (f𝑖, 𝛼̂∗) as training sample 

11: end for 

12: Train neural network fANN to minimize loss: 

ℒ = 
1 
∑𝑁𝑠 (𝛼̂  − 𝛼̂∗)2 

𝑁𝑠  𝑖=1 𝑖 𝑖 

13: Online Inference Phase 

14: for each transmitted MIMO-OFDM frame do 

15: for each transmit antenna 𝑚 = 1, … , 𝑀 do 

16: Extract feature vector f𝑚 from input OFDM frame 

17: Predict optimal clipping ratio: 

𝛼̂ 𝑚 = 𝑓𝐴𝑁𝑁(f𝑚) 

18 Compute adaptive clipping threshold: 

𝐴𝑜𝑝𝑡,𝑚 = √𝛼̂ 𝑚. 𝑃𝑎𝑣𝑔.𝑚 

19: Apply adaptive clipping: 
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𝑥𝑚(𝑛), |𝑥𝑚(𝑛)| ≤ 𝐴𝑜𝑝𝑡 
𝑥𝑚,𝑐𝑙𝑖𝑝(𝑛) = {

𝐴 . 
 𝑥𝑚(𝑛) 

, |𝑥 (𝑛)| > 𝐴 
 

20 : end for 

𝑜𝑝𝑡 |𝑥𝑚(𝑛)| 𝑚 𝑜𝑝𝑡 

21 : Transmit clipped MIMO-OFDM signal 
𝑀 

{𝑥𝑚,𝑐𝑙𝑖𝑝(𝑛)}
𝑚=1 

 22: end for  

 

5. SIMULATION RESULTS AND ANALYSIS 
 

All methods are compared under the same MIMO-OFDM framework and parameter configuration 

parameters summarized in Table 2. The main objective is to evaluate the performance of the proposed 

ANN-Clipping method in terms of: (i) PAPR reduction (average and CCDF distribution), (ii) 

computational complexity, (iii) spectral quality 

 
Table 2. Simulations Parameters 

 

Parameter Value / Description 

Number of transmit antennas (M) 2 

Number of receiving antennas (L) 2 

Number of subcarriers (N) 256 

Modulation type 16-QAM 

OFDM symbol duration (Ts) 66.7 µs 

Cyclic prefix length (NCP) 128 samples 

Channel model Rayleigh fading (multipath) 

Channel taps (Lh) 8 

SNR range 5 – 20 dB 

Number of OFDM frames simulated 10,000 

Clipping ratio range (α) [0.5 – 2.0] 

Neural network architecture 8–32–16–1 

Activation functions ReLU (hidden), Sigmoid (output) 

Training optimizer Adam (learning rate= 10)-3 

Loss function Mean Squared Error (MSE) 

Dataset split 70% training, 15% validation, 15% test 

Performance metrics PAPR, CCDF, PSD, Complexity 

Simulation environment MATLAB R2025b 

 

5.1 Average PAPR Reduction 
 

Figure 2 and Table 3 present the average PAPR reduction achieved by the different methods. The 

original OFDM signal exhibits a high PAPR of 8.74 dB, highlighting the fundamental limitation of 

multicarrier transmission. Fixed clipping lowers this value to 4.01 dB (a 54.1% reduction), whereas the 

proposed NN-Clipping achieves a PAPR of 2.76 dB, corresponding to an additional 31.2% reduction 

compared to fixed clipping and a total improvement of 68.4% relative to the original OFDM signal. This 

confirms that the adaptive neural threshold dynamically optimizes the clipping ratio to achieve an 

efficient balance between PAPR suppression and signal fidelity 
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Figure 2. Average PAPR Comparison  

 
Table 3.PAPR Comparison 

 

Method Avg. PAPR (dB) Gain (dB) Reduction (%) 

Original OFDM 8.74 - - 

Fixed Clipping 4.01 4.73 54.1 

ANN-Clipping 2.76 5.98 68.4 

 

5.2 CCDF Distribution Analysis 
 

Figure 3 and 4 illustrate the CCD function of PAPR for all evaluated techniques. The CCDF quantifies 

the probability that the instantaneous power of an OFDM symbol exceeds a specified threshold, thereby 

providing a comprehensive statistical performance measure. The unmodified OFDM signal exhibits a 

long tail distribution characteristic, with PAPR values surpassing 12 dB at a probability level of 10⁻⁴. 

This behavior underscores the fundamental challenge of excessive peak power in OFDM systems, 

necessitating substantial power amplifier back-off requirements. 

 

Conventional PAPR reduction techniques demonstrate varied performance characteristics. Fixed 

clipping effectively constrains PAPR to approximately 4.18 dB at 10⁻⁴ probability, though this 

approach inherently introduces nonlinear distortions that may compromise spectral purity and bit error 

rate performance. The Selected Mapping method achieves approximately 5.5 dB PAPR without 

introducing distortion; however, this technique requires 16 IFFT operations and side-information 

transmission, consequently increasing both computational complexity and system latency. PTS yields 

comparable results around 5.2 dB but necessitates exhaustive phase optimization, resulting in 

substantial computational overhead. Tone Reservation provides moderate improvement with PAPR 

reaching 9.85 dB at 10⁻⁴, albeit at the expense of reduced throughput due to subcarrier reservation. In 

contrast, the proposed ANN- Clipping methodology achieves an exceptionally low PAPR of 3.04 dB 

at 10⁻⁴ probability, thereby outperforming all conventional approaches. This represents an 

additional 1.14 dB 
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reduction (27.3% improvement) compared to fixed clipping, an average 2.2 dB enhancement over 

SLM and PTS, and more than 6.8 dB improvement relative to TR. Furthermore, the CCDF curve of 

proposed method exhibits a steeper gradient at lower probability levels, indicating superior power 

distribution uniformity across subcarriers. This characteristic demonstrates that the ANN architecture 

effectively adapts the clipping threshold based on instantaneous signal characteristics, thereby 

mitigating high-power outliers while preserving overall signal integrity. The proposed approach thus 

combines the computational simplicity of traditional clipping with single-IFFT operation complexity 

while incorporating the adaptive intelligence of learning- based optimization frameworks. 
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5.3 Complexity Analysis 
 

The computational complexity of the proposed ANN-Clipping approach is mainly determined by the 

number of neurons and matrix multiplications in the forward pass. For a network with L layers and 𝑛𝑙 
neurons per layer, the total number of multiplications is on the order of: 

 
𝐿−1 

𝒪 (∑ 𝑛𝑙. 𝑛𝑙+1) 29 
𝑙=1 

 
which remains significantly lower than probabilistic methods such as SLM or PTS that require multiple 

IFFT operations per frame. Thus, the proposed method provides an excellent compromise between 

computational efficiency and PAPR reduction capability. Table 4 presents a comparison of the 

computational complexity among different PAPR reduction methods. All complexities and factors are 

reported in the same setup and normalized to the baseline OFDM symbol (20.5 kOps). 

 
Table 4. Comparison of Computional Complexity 

 

Method Compexity Number 

Of IFFTs 

Multiplication Factor 

Original OFDM O (N log N) 1 1.00 

Fixed Clipping O (N log N + N) 1 1.01 

NN-Clipping O (N log N + N) 1 1.10 

SLM (U=16) O (U . N log N) U 16.00 

PTS (V=8) O (WV-1 . N log N) 1 30.00 

TR (iterative) O (I . N log N) I ≈ 64 64.00 

 

As observed from Figure 5, the proposed ANN-Clipping method introduces only a marginal 

computational overhead of approximately 10% compared to conventional OFDM, while significantly 

outperforming probabilistic techniques such as SLM and PTS, whose complexity increases 

exponentially with the number of candidate sequences or phase combinations. 
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Figure 5. Complexity Comparison of All Methods 

 

The results in figure 6 further illustrate the efficiency of the proposed method. Although slightly more 

demanding than fixed clipping, remains two to three times faster than the complex probabilistic 

techniques (SLM and PTS) and performs within real-time processing constraints. Its computational cost 

of 76.6 kOps is orders of magnitude lower than that of PTS (1130.5 kOps) or TR (691.2 kOps) in our 

setup, confirming its suitability for low-power hardware implementations. 
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Figure 6. Complexity Analysis 

 

5.4 Power Spectral Density Analysis 
 

Figure 7 presents the normalized PSD characteristics of the transmitted signals for different PAPR-

reduction techniques, revealing critical information about each method’s spectral efficiency and OOB 

emission properties. The original OFDM signal exhibits the characteristic sinc-shaped spectrum with 
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well-defined spectral confinement within the normalized frequency range of approximately ±0.5. In 

contrast, fixed clipping shows significant spectral regrowth and strong OOB radiation, with emissions 

reaching approximately −15 dB due to the harmonic distortion introduced by the nonlinear operation. 

 

The PTS method and SLM maintain superior spectral confinement comparable to the original OFDM 

signal, with OOB emissions suppressed below −30 dB, confirming the absence of spectral distortion 

despite their higher computational complexity. The proposed NN-Clipping method achieves a 

remarkable balance between spectral efficiency and PAPR-reduction performance, with OOB 

emissions remaining roughly 10–15 dB lower than those of fixed clipping across the entire frequency 

spectrum, thereby approaching the spectral-confinement characteristics of distortionless methods. This 

substantial improvement is attributed to the ANN-based adaptive threshold mechanism, which 

minimizes clipping-induced distortion by leveraging the signal’s instantaneous statistics, establishing 

ANN-Clipping as a practical solution for next-generation wireless systems where both spectral and 

energy efficiency are critical design constraints. 

 

 
 

Figure 7. PSD Analysis 

 

5.5 Neural Network Adaptation Behavior 

 
To better understand the adaptive behavior of the proposed network, the distribution of clipping ratios (CR) 

predicted for 10,000 OFDM symbols is shown in Figure 8. The predicted CRs follow an approximately 

Gaussian distribution centered around 1.198 with a very low standard deviation (0.014), indicating a stable 

and coherent decision process. The neural network thus identifies an optimal region around CR ≈ 1.2, 

balancing PAPR reduction and distortion minimization. The slight asymmetry of the histogram shows that 

the model occasionally adapts the CR toward lower values (1.14) for symbols with naturally lower peaks 

and higher values (1.24) for critical peak cases, confirming its dynamic response to instantaneous signal 

characteristics
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.Figure 8. Distribution of Clipping Ratios Predicted by ANN 

 

5.6 Impact of Different Configuration 
 

Tests conducted over various frame sizes (N = 128–1024) and modulation schemes (QPSK, 16- QAM, 

64-QAM) confirm the robustness and generalization capability of the proposed method. As shown in 

Table 5, the average PAPR gains achieved by NN-Clipping remain between 67% and 69% relative to 

the original OFDM, demonstrating consistent performance without retraining. 

 
Table 5. Impact of Different Frame Sizes Modulation Schemes 

 

Configuration N Modulation Orig. PAPR (dB) NN-Clip (dB) Reduction (%) 

Config 1 128 QPSK 7.82 2.54 67.5 

Config 2 256 16-QAM 8.74 2.76 68.4 

Config 3 512 64-QAM 9.31 3.02 67.6 

Config 4 1024 16-QAM 9.89 3.21 67.5 

Config 5 256 QPSK 8.21 2.61 68.2 

 

Several network topologies were evaluated in terms of parameter count, achieved PAPR, and inference 

time. The results in Table 6 show that the 8–32–16–1 architecture offers an excellent trade-off between 

accuracy, latency, and complexity. 

 
Table 6. Impact of Feature A rchitecture 

 

Architecture Parametres Avg.PAPR (dB) Inference Time (µs) 

8-16-1 145 3.12 8.2 

8-32-1 289 2.89 11.5 

8-31-16-1 833 2.76 12.8 

8-64-32-1 2145 2.74 35.6 

8-128-64-1 8321 2.73 78.3 



International Journal of Computer Networks & Communications (IJCNC) Vol.18, No.1, January 2026 

47 

6. CONCLUSION 
 

This paper introduced an innovative strategy for PAPR reduction in MIMO-OFDM systems by 

optimizing the clipping threshold with artificial neural networks. The proposed compact architecture 

(8–32–16–1, 833 trainable parameters) delivers strong results: an average PAPR of 2.76 dB, 

corresponding to a 68.4% reduction relative to the original OFDM signal (8.74 dB) and a 31.2% gain 

over conventional fixed clipping (4.01 dB). This reduction allows power amplifiers to operate closer to 

saturation, yielding an estimated 15–25% improvement in energy efficiency, depending on PA 

characteristics. 

 

A head-to-head comparison with state-of-the-art baselines confirms the superiority of the proposed 

method across multiple dimensions. In PAPR mitigation, ANN-Clipping outperforms fixed clipping, 

SLM, PTS, and TR ; at the critical CCDF level of 10−4, it achieves 3.04 dB versus 4.18 dB for fixed 

clipping. In terms of complexity, the method adds only ~10% overhead relative to baseline OFDM 

while preserving high throughput and real-time feasibility. A generalization study further shows 

consistent 67–69% PAPR reduction across diverse frame sizes and modulation orders, supporting 

robust adaptability to deployment scenarios. 

 

Overall, embedding AI within the physical layer offers a powerful avenue for solving difficult 

optimization problems. Our findings demonstrate that a compact, efficient neural network can 

dynamically learn to optimize a critical system parameter, surpassing traditional fixed or heuristic 

approaches. Looking ahead, 6G-and-beyond systems are poised to adopt learning- based strategies that 

self-adapt to operating conditions and jointly optimize multiple performance metrics advancing toward 

a cognitive, adaptive physical layer that approaches theoretical limits in practical environments. 
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