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ABSTRACT

A high peak-to-average power ratio (PAPR) is one of the most critical challenges in Orthogonal Frequency
Division Multiplexing (OFDM) systems. It limits the efficiency of high power amplifiers and increases signal
distortion. This problem is aggravated in Multiple-Input Multiple-Output (MIMO) OFDM systems due to the
simultaneous transmission of multiple data streams, resulting in degraded Bit Error Rate (BER) performance and
reduced power efficiency. To address this, we propose an intelligent PAPR reduction scheme based on Artificial
Neural Networks (ANNs) to dynamically optimise the clipping threshold. Unlike traditional clipping techniques,
which use a fixed threshold, our adaptive ANN-Clipping method learns to determine the optimal threshold
according to the instantaneous statistical properties of the transmitted signal. This enables an efficient trade-off
to be made between PAPR reduction and signal distortion while maintaining low computational complexity.
Simulation results demonstrate the effectiveness of the proposed method, achieving an average PAPR of 2.76 dB,
compared to 4.01 dB for conventional fixed clipping and 8.74 dB for the original OFDM signal. Furthermore, at
a CCDF probability of 107, the ANN-Clipping scheme achieves a PAPR of 3.04dB, which is a significant
improvement on conventional PAPR reduction methods. These results confirm that the proposed approach
significantly improves the performance of 5G and 6G wireless communication systems in terms of efficiency and
robustness.
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1. INTRODUCTION

Next-generation wireless communication systems, particularly 5G and beyond, demand high data rates,
optimal spectral efficiency, and enhanced reliability. OFDM has emerged as a preferred modulation
technique in such systems due to its robustness against frequency-selective fading channels and its
ability to efficiently exploit the available spectrum [1]. The integration of OFDM with MIMO systems
further enhances performance in terms of data rate and reliability through spatial diversity and
multiplexing gains. However, OFDM suffers from a major drawback its inherently high PAPR. This
large PAPR results from the constructive superposition of multiple orthogonal subcarriers, occasionally
producing significant power peaks [2]. Such amplitude variations cause several practical issues,
including power amplifier inefficiency, since amplifiers must operate with a wide dynamic range to
accommodate power peaks, which in turn reduces their power efficiency and increases energy
consumption. When these peaks exceed the amplifier’s linear operating region, nonlinear distortions
occur, leading to inter-carrier interference (ICI) and inter-symbol interference (ISI) [5][6]. These
distortions degrade the BER performance and impose hardware constraints that require high-resolution
Analog-to-Digital Converters (ADCs) and Digital-to-Analog Converters (DACs) to handle the wide
dynamic range [1][3]. In a MIMO-OFDM system with N subcarriers and M transmit antennas, the time-
domain signal transmitted from the m-th antenna can be expressed as [8]:
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whereX;,  denotes the modulated symbol on the k-th subcarrier of the m-th antenna, Af'is the subcarrier
spacing, and T is the OFDM symbol duration. The PAPR for the m-th antenna is defined as [3]:
maxo<e<r|xm(O)[?

PAPR_ = 2
" Ellx (O]
m
Theoretically, for N subcarriers with random modulation, the maximum PAPR can reach[1]:
PAPR,,, = 101logo(N) dB 3

This relationship indicates that the PAPR increases logarithmically with the number of subcarriers,
making the problem particularly critical in modern OFDM systems that employ a large number of
subcarriers [4]. The main objectives of this research are to develop an intelligent PAPR reduction
method capable of predicting the optimal clipping threshold for each OFDM symbol, optimizing the
PAPR—complexity trade-off by maintaining an acceptable computational cost while maximizing PAPR
reduction, and preserving signal quality by minimizing distortions introduced during the clipping
process to maintain an acceptable BER [12]. The proposed approach is also experimentally validated
through comprehensive simulations and compared with conventional techniques.

The major contributions of this paper can be summarized as follows: (1) the proposal of an adaptive
neural architecture specifically designed to predict the optimal clipping threshold based on the
instantaneous statistical characteristics of the OFDM signal; (2) the achievement of a substantial PAPR
reduction of **68.4%** compared to the original OFDM signal and **31.2%** compared to
conventional fixed clipping; (3) the maintenance of minimal complexity, with only a **10%**
computational overhead compared to the original OFDM system, making the method practical for real-
time implementation; and (4) a comprehensive comparative performance evaluation in terms of average
PAPR, Complementary Cumulative Distribution Function (CCDF), computational complexity, and
processing time.

The remainder of this paper is organized as follows. Section 2 surveys recent PAPR-reduction
techniques, with emphasis on learning-based approaches relevant to 5G/6G systems. Section 3 presents
the MIMO-OFDM system model and formulates the PAPR minimization problem. Section 4 details the
proposed ANN-Clipping method, including feature design, network architecture, training procedure,
and the adaptive inference pipeline. Section 5 reports simulation settings and results, providing a
comparative analysis in terms of average PAPR, CCDF, spectral regrowth (PSD), and computational
complexity. Finally, Section VI concludes the paper and outlines future research directions.

2. LITERATURE REVIEW

PAPR reduction techniques in OFDM systems can be categorized into several main classes according
to their operational principles and characteristics. Signal distortion techniques deliberately modify the
transmitted waveform to reduce power peaks, among which clipping is the simplest and most widely
used method [3]. It limits the signal amplitude to a predefined threshold, and mathematically, for an
OFDM signal x(t), the clipped signal is given by[1]:

x(t), [x(®)| < A

x(O={,*® >4 4
|x(t)]
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where A denotes the clipping threshold, usually expressed as a function of the average signal power:

A=V a. Payg 5

where o represents the Clipping Ratio (CR) [1][8]. The main advantages of the clipping technique lie in
its implementation simplicity, very low computational complexity, and immediate efficiency in PAPR
reduction. However, it also presents several drawbacks, including nonlinear distortion (clipping noise),
ICI, increased out-of-band emissions, and BER degradation. Several studies have attempted to optimize
the clipping process. Notably, Y.-C. Wang and Z.-Q. Luo proposed an iterative clipping and filtering
technique to reduce out-of-band emissions [6]. More recently, Ben Salah et al. (2025) introduced an
adaptive clipping method with dynamic thresholds for enhanced PAPR reduction in OFDM systems [1].
Their approach demonstrated that dynamically adjusting the clipping threshold according to the
instantaneous characteristics of the signal achieves significant PAPR reduction while maintaining a good
trade-off between induced distortion and BER performance. Nevertheless, determining the optimal
clipping threshold remains a major challenge: a low threshold introduces excessive distortion, while a
high threshold fails to achieve sufficient PAPR reduction. This issue motivates the exploration of
intelligent and adaptive optimization strategies, particularly those based on neural networks, capable of
achieving an optimal balance between PAPR reduction, distortion control, and computational efficiency.

Other distortion-based techniques include peak windowing [8], which applies a weighting window to
peaks exceeding a given threshold according to:

xw(t) = x(8) = T w(t — t). [x(t) — Al 6

where w(t) is a window function, and t; are the instants where peaks are detected. Peak cancellation
techniques have also been proposed, where a correction signal is generated to specifically target and
cancel high peaks [8]. Coding techniques have also been explored for PAPR reduction, where specific
error-correcting codes are designed to avoid data sequences that produce high PAPR. For instance,
modified Reed—Muller codes proposed by Jones et al. achieve PAPR mitigation at the expense of
reduced data throughput [9].

Another important class of methods includes scrambling techniques, such as the Selected Mapping
(SLM) scheme proposed by Bauml et al. which generates U candidate OFDM signals by multiplying
the input data by different random phase sequences [7]:

Xy(k) = X(k).P,(k), u=12..U 7
where P,(k) are phase sequences, and the candidate with the minimum PAPR is selected for
transmission:

u* = arg min PAPR (x.(t)) 8

u

The main advantages of the SLM technique include distortion-free transmission and significant PAPR
reduction. However, its disadvantages are a complexity proportional to the number of candidates U, the
need to transmit side information, and the requirement of U IFFT operations [12][10].

The Partial Transmit Sequence (PTS) method, introduced by Miiller and Huber , partitions the
subcarriers into V disjoint subblocks and applies optimal phase rotation factors according to[7][3]:

14
x(t) = 32 by . x,(0) 9

v=1
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where b,=¢/®" are the optimized phase rotation factors minimizing the PAPR [11]. PTS provides
flexibility in subblock partitioning and avoids signal distortion, but it suffers from high computational
complexity due to the exhaustive search of WY ~! phase combinations, where W is the number of
candidate phases, and also requires side information transmission.

The Tone Reservation (TR) technique, proposed by Tellado and Cioffi , reserves a subset of subcarriers
to generate a correction signal according to[6]:

0, keD
X (k) = { 10
Ck), keR

where D represents data subcarriers and R denotes reserved tones. The correction signal is optimized
to reduce peaks [12]. Table I compares the main characteristics of representative PAPR-reduction
techniques. Recently, learning-based methods have gained traction for optimizing this trade-off.
Comprehensive surveys highlight how machine learning reshapes the PAPR landscape and
implementation choices [15]. In particular, conditionally applied neural networks can trigger clipping
only when beneficial, improving distortion—complexity balance [11]. Autoencoder-based designs learn
constellation/processing mappings that inherently lower peaks without exhaustive search [13]. Deep-
learning-assisted tone reservation further reduces PAPR while curbing iterative optimization overheads
[14], and generative approaches have been explored to synthesize low-PAPR OFDM waveforms [10].
Building on this trend, our ANN-Clipping framework predicts an adaptive clipping ratio per frame to
achieve strong PAPR suppression at very low added complexity [1].

Table 1. Comparison of PAPR Reduction Techniques

Technique PAPR Complexity Distortion | Side | Rate
Reduction Info Loss
Clipping Moderate Very Low Yes No No
SLM High High (U-IFFT) No Yes Neg.
PTS High Very High No Yes Neg.
TR Mod-High Moderate No No | 3-10%
ACE Low-Mod Low Minimal No No
ANN-Clip | Very High Very Low Moderate No No

In view of the limitations of existing approaches, our proposed method leverages the learning capability
of artificial neural networks to adaptively predict the optimal clipping threshold according to OFDM
signal characteristics, minimize the PAPR distortion trade-off by learning the complex relationship
between threshold level, PAPR reduction, and induced distortions, maintain low complexity using a
compact neural model with fast inference, and eliminate the need for side information transmission
compared to SLM and PTS techniques.

3. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a MIMO-OFDM system with M transmit antennas, N OFDM subcarriers, and L receive
antennas, where the overall architecture includes several baseband processing blocks. At the transmitter,
binary information bits are first encoded using a Forward Error Correction (FEC) code, then interleaved
and mapped onto a modulation constellation. The modulated symbol stream is then demultiplexed into
M parallel substreams, one for each transmit antenna, where each substreams contains N complex

symbols corresponding to the N OFDM subcarriers. For the m-th transmit antenna (m =1, . . ., M), the
frequency-domain symbols Xm(k), k =0, ..., N — 1, are transformed into the time domain using the
IFFT according to:
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where n denotes the discrete time index. A cyclic prefix (CP) of length N¢p samples is appended to
mitigate inter-symbol interference (ISI) caused by the channel delay spread, where the CP length must
satisfy Ncp > Lp, with Ly denoting the length of the channel impulse response. The PAPR of the OFDM
signal for the m-th antenna is formally defined as [11]:

Ppeak,m maxOSn<N|xm(n) |2

PAPR, =~ =1 12

wgm % x @

N n=0 m

In decibels, it can be expressed as:

PAPR,,[dB] = 10log;o(PAPR,,) 13
For the entire MIMO system, the average PAPR across all transmit antennas is defined as:
M
1
PAPR g = > PAPR,, 14
m=1

The Complementary Cumulative Distribution Function of the PAPR characterizes the probability that
the PAPR exceeds a given threshold:

CCDF(PAPRy) = P(PAPR > PAPRy) 15
For an OFDM signal with a large number of subcarriers, the CCDF can be approximated as:
CCDF(PAPRy) =~ 1 — (1 — e~PAPRO)N 16

In the conventional clipping method, a fixed threshold A is uniformly applied to all OFDM symbols.
The clipping process introduces a distortion noise component defined as:
CR* = arg min{PAPR(CR)} s.t. SDR(CR) = SDR, 18
CR

4. PROPOSED ANN-CIPPING OPTIMIZATION METHOD

In this section, we present the proposed intelligent PAPR reduction approach based on a Artificial Neural
Network architecture that dynamically optimizes the clipping threshold in MIMO-OFDM systems. The
key idea of the proposed method, referred to as ANN-Clipping, is to adaptively determine the optimal
Clipping Ratio for each OFDM symbol frame according to the instantaneous statistical characteristics
of the signal, rather than using a fixed threshold as in conventional schemes.

4.1 Motivation

Traditional clipping techniques apply a uniform threshold A across all OFDM symbols. Although
simple, this approach is suboptimal because the signal amplitude distribution varies significantly from
one OFDM frame to another depending on the modulation order, the number of subcarriers, and the
channel conditions. Consequently, using a fixed threshold either results in excessive distortion (for low
A) or insufficient PAPR reduction (for high A). To overcome this limitation, we propose to employ a
data-driven neural model capable of learning the nonlinear relationship between signal features and the
optimal clipping threshold. The model predicts an adaptive value of a (or equivalently A) for each
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transmitted frame, allowing real-time control of the clipping process with minimal computational
overhead

4.2 Feature Extraction and Input Representation

For each OFDM symbol xm(n) generated before clipping, a set of statistical and spectral features is
extracted to characterize its temporal and power distribution. The feature vector f'is defined as:

f = [Pavg, Ppeak, 02, Kurt(x), Skew(x), SNR, N, M] 19
X
where Pavg and Ppeak denote the average and peak powers, 62 is the variance, Kurt(x) and Skew(x) are
the kurtosis and skewness of the amplitude distribution, regpectively, while N and M represent the
number of subcarriers and transmit antennas. These features are normalized and fed into the neural
network as input. The statistical parameters are computed as follows:

@B, P =maxlx I 20
P =—3Ix
avg N m peak n m
n=0
N-1 N-1
1 1
2 = M|-pn ), wu )| 21
0= X(x 3
m X X m
! Nn:() Nn=0

The higher-order statistical moments used as additional input features are the kurtosis and skewness,
defined respectively as:

Lyw-ix )l —p )

Kurt(x) = N om0 ) 22
1
C 2V x| —p )22
N n=0 m X
1
XN M) —p)?
=0
SkBW(X)= N * = z 23
1 3/2
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These higher-order features provide valuable information about the amplitude distribution of the OFDM
signal, allowing the neural network to better predict the optimal clipping threshold for each transmission
frame.

4.3 Artificial Neural Network Architecture

The proposed ANN is a fully connected feedforward model composed of three hidden layers. The input
layer receives the feature vector f, while the output layer produces the predicted optimal clipping ratio
&. The network is trained offline using supervised learning, where the ground-truth o® values are
obtained from extensive simulations that evaluate PAPR and BER performance for different clipping
ratios. The adopted architecture follows an 8-32—16—-1 structure:

Input layer: 8 neurons corresponding to the extracted features f,

Hidden layer 1: 32 neurons with ReLU (Rectified Linear Unit ) activation,

Hidden layer 2: 16 neurons with ReLU activation,

Output layer: 1 neuron with sigmoid activation, providing the predicted normalized clipping
ratio d.Each hidden layer uses the ReLU activation function to introduce nonlinearity and ensure
efficient gradient propagation, while the output layer employs a sigmoid activation function to
guarantee that & € [0, 2], consistent with practical clipping ratio ranges. The forward
propagation of the neural model is expressed as:

a = fnn(f,W,b) 24
where W and b represent the trainable weights and biases of the network. Given the architecture 8-32—
16—1, the total number of trainable parameters is computed as:

Nparams = (8 X 32+ 32) + (32X 16 + 16) + (16 x 1 + 1) = 833 25

where the first term corresponds to the connections and biases between the input and the first hidden
layer, the second to those between the two hidden layers, and the third to the output layer. This compact
configuration ensures a good balance between model expressiveness and computational efficiency,
making it suitable for real-time implementation.

4.4 Loss Function and Training Procedure

The network is trained to minimize the Mean Squared Error (MSE) between the predicted and optimal
clipping ratios, defined as:

Ns — — q*)2 26
" )
L= _Z(dl i
N
i=1

where N; is the number of training samples. The optimization is performed using the Adam algorithm
due to its fast convergence and adaptive learning rate properties. To prevent overfitting, dropout
regularization and early stopping are applied during training.

4.5 Adaptive Clipping Operation

During the testing (inference) phase, the trained ANN predicts ¢ in real time based on the extracted
features of the current OFDM frame. The adaptive clipping threshold is then computed as:
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Aopt = \/Cf Pavg

and applied to the transmitted signal:

xm(n), |Xm(7’l)| < Aopt
xm,clip(n) = {A Xm{1l
: , lx M| >A
opt Ixm(n)l m opt

27

28

This adaptive process ensures that the clipping threshold dynamically adjusts to each frame, achieving
a balanced tradeoff between PAPR reduction and signal distortion. The neural inference time is
negligible compared to the overall OFDM processing latency, making the method suitable for real-time

implementation in 5G and 6G baseband transmitters.

Figure 1. Overall architecture of the proposed MIMO-OFDM transmitter—receiver with the ANN-based
adaptive clipping module. The end-to-end signal chain from data generation to reception is shown, with
ANN-Clipping inserted after the IFFT at each transmit antenna. This placement enables real-time, per-
symbol optimization of the clipping threshold while preserving full compatibility with standard MIMO-

OFDM processing stages.
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Figure 1. Proposed system model
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The complete procedure of the proposed ANN_Clipping optimization is detailed in Algorithm 1,
which outlines both the training and inference phases of the method.

Algorithm 1 Proposed ANN-Clipping Algorithm

Require: Number of transmit antennas M, number of subcarriers N, modulation order Mmod ,trained
neural network fivw ()

Ensure: Clipped MIMO-OFDM signal X, ¢1ip(n) with reduced PAPR

1: -Offline Training Phase-

2: for each training OFDM frame i = 1 to N do

3: Generate modulated OFDM symbols x;(n)

4. compute statistical and spectral features:

fi = [Pavg: Ppeak, 0% Kurt(xi)! Skew(xi)' SNR, N, M]

5 for each candidate clipping ratio a; € [0.5,2] do

6: apply clipping with threshold A; = Va;. Pgyg
7: evaluate PAPR (a;)

8 end for

9: determinate optimal a; = arg mina ; {PAPR(a;)}

10: Store (f;, ;) as training sample

11: end for
12: Train neural network f4vy to minimize loss:
L= iZNS (@ — av)?
Ny =1 i i
13: Online Inference Phase
14: for each transmitted MIMO-OFDM frame do
15: for each transmit antennam = 1, ..., M do
16: Extract feature vector f;,, from input OFDM frame
17: Predict optimal clipping ratio:
& = fann(tm)
18 Compute adaptive clipping threshold:
Aopt,m = \/a?m Pavg.m
19: Apply adaptive clipping:
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xm(n)r |xm(n)| S Agpt
xm,clip(n) = {A xm(n) |x (n)l > A
vt x| ™ opt

20 : end for

21:  Transmit clipped MIMO-OFDM signal
M

{xm,clip (n) }m=1
22: end for

5. SIMULATION RESULTS AND ANALYSIS

All methods are compared under the same MIMO-OFDM framework and parameter configuration
parameters summarized in Table 2. The main objective is to evaluate the performance of the proposed
ANN-Clipping method in terms of: (i) PAPR reduction (average and CCDF distribution), (ii)
computational complexity, (iii) spectral quality

Table 2. Simulations Parameters

Parameter Value / Description
Number of transmit antennas (M) 2

Number of receiving antennas (L) 2

Number of subcarriers (N) 256

Modulation type 16-QAM

OFDM symbol duration (Ty) 66.7 us

Cyclic prefix length (Ncp) 128 samples

Channel model Rayleigh fading (multipath)
Channel taps (L) 8

SNR range 5-20dB

Number of OFDM frames simulated 10,000

Clipping ratio range (o) [0.5-2.0]

Neural network architecture 8-32-16-1

Activation functions ReLU (hidden), Sigmoid (output)
Training optimizer Adam (learning rate= 10)~
Loss function Mean Squared Error (MSE)
Dataset split 70% training, 15% validation, 15% test
Performance metrics PAPR, CCDF, PSD, Complexity
Simulation environment MATLAB R2025b

5.1 Average PAPR Reduction

Figure 2 and Table 3 present the average PAPR reduction achieved by the different methods. The
original OFDM signal exhibits a high PAPR of 8.74 dB, highlighting the fundamental limitation of
multicarrier transmission. Fixed clipping lowers this value to 4.01 dB (a 54.1% reduction), whereas the
proposed NN-Clipping achieves a PAPR of 2.76 dB, corresponding to an additional 31.2% reduction
compared to fixed clipping and a total improvement of 68.4% relative to the original OFDM signal. This
confirms that the adaptive neural threshold dynamically optimizes the clipping ratio to achieve an
efficient balance between PAPR suppression and signal fidelity
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Figure 2. Average PAPR Comparison

Table 3.PAPR Comparison

Method Avg. PAPR (dB) | Gain (dB) | Reduction (%)
Original OFDM 8.74 - -

Fixed Clipping 4.01 4.73 54.1
ANN-Clipping 2.76 5.98 68.4

5.2 CCDF Distribution Analysis

Figure 3 and 4 illustrate the CCD function of PAPR for all evaluated techniques. The CCDF quantifies
the probability that the instantaneous power of an OFDM symbol exceeds a specified threshold, thereby
providing a comprehensive statistical performance measure. The unmodified OFDM signal exhibits a
long tail distribution characteristic, with PAPR values surpassing 12 dB at a probability level of 10,
This behavior underscores the fundamental challenge of excessive peak power in OFDM systems,
necessitating substantial power amplifier back-off requirements.

Conventional PAPR reduction techniques demonstrate varied performance characteristics. Fixed
clipping effectively constrains PAPR to approximately 4.18 dB at 10 probability, though this
approach inherently introduces nonlinear distortions that may compromise spectral purity and bit error
rate performance. The Selected Mapping method achieves approximately 5.5 dB PAPR without
introducing distortion; however, this technique requires 16 IFFT operations and side-information
transmission, consequently increasing both computational complexity and system latency. PTS yields
comparable results around 5.2 dB but necessitates exhaustive phase optimization, resulting in
substantial computational overhead. Tone Reservation provides moderate improvement with PAPR
reaching 9.85 dB at 107, albeit at the expense of reduced throughput due to subcarrier reservation. In
contrast, the proposed ANN- Clipping methodology achieves an exceptionally low PAPR of 3.04 dB
at 10 probability, thereby outperforming all conventional approaches. This represents an
additional 1.14 dB
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reduction (27.3% improvement) compared to fixed clipping, an average 2.2 dB enhancement over
SLM and PTS, and more than 6.8 dB improvement relative to TR. Furthermore, the CCDF curve of
proposed method exhibits a steeper gradient at lower probability levels, indicating superior power
distribution uniformity across subcarriers. This characteristic demonstrates that the ANN architecture
effectively adapts the clipping threshold based on instantaneous signal characteristics, thereby
mitigating high-power outliers while preserving overall signal integrity. The proposed approach thus
combines the computational simplicity of traditional clipping with single-IFFT operation complexity
while incorporating the adaptive intelligence of learning- based optimization frameworks.

10°

T T T

T T
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Figure 3. CCDF off ANN-Clipping
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Figure 4. CCDF Comparison Of All Methods
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5.3 Complexity Analysis

The computational complexity of the proposed ANN-Clipping approach is mainly determined by the
number of neurons and matrix multiplications in the forward pass. For a network with L layers and m
neurons per layer, the total number of multiplications is on the order of:

-1
0 (O ni.ni+1) 29
=1

which remains significantly lower than probabilistic methods such as SLM or PTS that require multiple
IFFT operations per frame. Thus, the proposed method provides an excellent compromise between
computational efficiency and PAPR reduction capability. Table 4 presents a comparison of the
computational complexity among different PAPR reduction methods. All complexities and factors are
reported in the same setup and normalized to the baseline OFDM symbol (20.5 kOps).

Table 4. Comparison of Computional Complexity

Method Compexity Number | Multiplication Factor
Of IFFTs

Original OFDM O (Nlog N) 1 1.00
Fixed Clipping | O (Nlog N+ N) 1 1.01
NN-Clipping O (Nlog N+ N) 1 1.10
SLM (U=16) O(U.NlogN) U 16.00
PTS (V=8) O (WY, Nlog N) 1 30.00
TR (iterative) O(.Nlogh) =64 64.00

As observed from Figure 5, the proposed ANN-Clipping method introduces only a marginal
computational overhead of approximately 10% compared to conventional OFDM, while significantly
outperforming probabilistic techniques such as SLM and PTS, whose complexity increases
exponentially with the number of candidate sequences or phase combinations.
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Figure 5. Con?plexity Comparison of All Methods

The results in figure 6 further illustrate the efficiency of the proposed method. Although slightly more
demanding than fixed clipping, remains two to three times faster than the complex probabilistic
techniques (SLM and PTS) and performs within real-time processing constraints. Its computational cost
of 76.6 kOps is orders of magnitude lower than that of PTS (1130.5 kOps) or TR (691.2 kOps) in our
setup, confirming its suitability for low-power hardware implementations.
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Figure 6. Complexity Analysis
5.4 Power Spectral Density Analysis

Figure 7 presents the normalized PSD characteristics of the transmitted signals for different PAPR-
reduction techniques, revealing critical information about each method’s spectral efficiency and OOB
emission properties. The original OFDM signal exhibits the characteristic sinc-shaped spectrum with
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well-defined spectral confinement within the normalized frequency range of approximately +0.5. In
contrast, fixed clipping shows significant spectral regrowth and strong OOB radiation, with emissions
reaching approximately —15 dB due to the harmonic distortion introduced by the nonlinear operation.

The PTS method and SLM maintain superior spectral confinement comparable to the original OFDM
signal, with OOB emissions suppressed below —30 dB, confirming the absence of spectral distortion
despite their higher computational complexity. The proposed NN-Clipping method achieves a
remarkable balance between spectral efficiency and PAPR-reduction performance, with OOB
emissions remaining roughly 10—15 dB lower than those of fixed clipping across the entire frequency
spectrum, thereby approaching the spectral-confinement characteristics of distortionless methods. This
substantial improvement is attributed to the ANN-based adaptive threshold mechanism, which
minimizes clipping-induced distortion by leveraging the signal’s instantaneous statistics, establishing
ANN-Clipping as a practical solution for next-generation wireless systems where both spectral and
energy efficiency are critical design constraints.

Normalized PSD (dB)

Normalised Frenquency

— = -Clipping (CR=1.5) ==== NN-Clip

PTS senesees SLM
Figure 7. PSD Analysis

5.5 Neural Network Adaptation Behavior

To better understand the adaptive behavior of the proposed network, the distribution of clipping ratios (CR)
predicted for 10,000 OFDM symbols is shown in Figure 8. The predicted CRs follow an approximately
Gaussian distribution centered around 1.198 with a very low standard deviation (0.014), indicating a stable
and coherent decision process. The neural network thus identifies an optimal region around CR = 1.2,
balancing PAPR reduction and distortion minimization. The slight asymmetry of the histogram shows that
the model occasionally adapts the CR toward lower values (1.14) for symbols with naturally lower peaks
and higher values (1.24) for critical peak cases, confirming its dynamic response to instantaneous signal
characteristics
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5.6 Impact of Different Configuration
Tests conducted over various frame sizes (N = 128-1024) and modulation schemes (QPSK, 16- QAM,
64-QAM) confirm the robustness and generalization capability of the proposed method. As shown in
Table 5, the average PAPR gains achieved by NN-Clipping remain between 67% and 69% relative to

the original OFDM, demonstrating consistent performance without retraining.

Table 5. Impact of Different Frame Sizes Modulation Schemes

Configuration N | Modulation | Orig. PAPR (dB) | NN-Clip (dB) | Reduction (%)
Config 1 128 | QPSK 7.82 2.54 67.5
Config 2 256 | 16-QAM 8.74 2.76 68.4
Config 3 512 | 64-QAM 9.31 3.02 67.6
Config 4 1024 | 16-QAM 9.89 3.21 67.5
Config 5 256 | QPSK 8.21 2.61 68.2

Several network topologies were evaluated in terms of parameter count, achieved PAPR, and inference
time. The results in Table 6 show that the 8-32—16—1 architecture offers an excellent trade-off between
accuracy, latency, and complexity.

Table 6. Impact of Feature A rchitecture
Architecture | Parametres | Avg.PAPR (dB) | Inference Time (us)
8-16-1 145 3.12 8.2
8-32-1 289 2.89 11.5
8-31-16-1 833 2.76 12.8
8-64-32-1 2145 2.74 35.6
8-128-64-1 8321 2.73 78.3
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CONCLUSION

This paper introduced an innovative strategy for PAPR reduction in MIMO-OFDM systems by
optimizing the clipping threshold with artificial neural networks. The proposed compact architecture
(8-32-16—1, 833 trainable parameters) delivers strong results: an average PAPR of 2.76 dB,
corresponding to a 68.4% reduction relative to the original OFDM signal (8.74 dB) and a 31.2% gain
over conventional fixed clipping (4.01 dB). This reduction allows power amplifiers to operate closer to
saturation, yielding an estimated 15-25% improvement in energy efficiency, depending on PA
characteristics.

A head-to-head comparison with state-of-the-art baselines confirms the superiority of the proposed
method across multiple dimensions. In PAPR mitigation, ANN-Clipping outperforms fixed clipping,
SLM, PTS, and TR ; at the critical CCDF level of 1074, it achieves 3.04 dB versus 4.18 dB for fixed
clipping. In terms of complexity, the method adds only ~10% overhead relative to baseline OFDM
while preserving high throughput and real-time feasibility. A generalization study further shows
consistent 67-69% PAPR reduction across diverse frame sizes and modulation orders, supporting
robust adaptability to deployment scenarios.

Overall, embedding Al within the physical layer offers a powerful avenue for solving difficult
optimization problems. Our findings demonstrate that a compact, efficient neural network can
dynamically learn to optimize a critical system parameter, surpassing traditional fixed or heuristic
approaches. Looking ahead, 6G-and-beyond systems are poised to adopt learning- based strategies that
self-adapt to operating conditions and jointly optimize multiple performance metrics advancing toward
a cognitive, adaptive physical layer that approaches theoretical limits in practical environments.

CONFLICTS OF INTEREST

The authors declare no conflict of interest.

REFERENCES

Comput. Netw. Commun. (IJCNC), vol. 17, no. 1, pp. 1-13, 2025.

B. S. C. da Silva, L. C. do Nascimento, and R. D. Souza, “A survey of PAPR techniques based on machine learning,” Sensors, vol.
24, no. 6, 1918, 2024.

F. Ben Salah, A. Khlifi, M. Ryjili, and B. Chibani, “PAPR reduction in OTFS systems using multi-weighted fractional Fourier
transform analysis,” in Proc. 16th Int. Conf. Human System Interaction (HSI), Jul. 2024.

E. E. Eldukhri, R. A. Saeed, and H. H. Saleh, “A conditionally applied neural network algorithm for PAPR reduction in OFDM
systems,” ETRI Journal, vol. 46, no. 2, pp. 229-241,2024.

E. Abdullah, S. Ikki, and Y. A. Eldosoky, “Deep leaming-based asymmetrical autoencoder for PAPR reduction of CP-OFDM
systems,” Engineering Science and Technology, an International Journal (JESTECH), vol. 49, 101601, 2024.

Y.-C. Wang and Z.-Q. Luo, “Optimized iterative clipping and filtering for PAPR reduction of OFDM signals,” IEEE Trans.
Commun., vol. 59, no. 1, pp. 33-37, Jan. 2011.

R. W. Bauml, R. F. H. Fischer, and J. B. Huber, “Reducing the peak-to-average power ratio of multicarrier modulation by selected
mapping,” Electronics Letters, vol. 32, no. 22, pp. 20562057, 1996.

S. H. Miiller and J. B. Huber, “OFDM with reduced peak-to-average power ratio by optimum combination of partial transmit
sequences,” Electronics Letters, vol. 33, no. 5, pp. 368-369, 1997.

J. Tellado, “Peak to Average Power Reduction for Multicarrier Modulation,” Ph.D. dissertation, Stanford Univ., Stanford, CA, USA,
2000.

[10] C. C. Gunturu and S. Mukherjee, “Peak-to-average power ratio reduction in OTFS using tone reservation: Clipping and windowing,”

Physical Communication, vol. 72, 102416, Oct. 2025.

[11] Y.-P. Tu, Y.-C. Chi, and C.-H. Yeh, “Two-stage improved tone reservation with side information for PAPR and complexity

reduction,” Sensors, vol. 23, no. 2, 950, 2023.

[12] Y. P.Li, Z. Li, and P. Cui, “Low-complexity PTS based on discrete particle swarm optimization,” [IET Communications, vol. 16, no.

3, pp. 271-281, 2022.

47



International Journal of Computer Networks & Communications (IICNC) Vol.18, No.1, January 2026
[13] A. Kumar and P. Gokulakrishnan, “PAPR reduction of OTFS using an automatic amplitude reduction neural network with
Vandermonde-matrix-based PTS and SLM algorithms,” EURASIP Journal on Wireless Communications and Networking, 2024.
[14] S. Sklar and A. Wunderlich, “Feasibility of modeling OFDM signals with unsupervised GANSs,” arXiv:2109.05107, 2021.
[15] L. Xu, F. Gao, W. Zhang, and S. Ma, “Model-aided deep leaming MIMO-OFDM receiver with nonlinear PAs,” arXiv:2105.14458,
2021.

AUTHORS

Fatma BEN SALAH, born in Gafsa, Tunisia, in 1989, earned her Bachelor's degree
in Engineering in 2014 from the National School of Engineers of Gabes(ENIG),
with a specialization in Communication and Networking. Presently, she is pursuing
her doctoral studies in Telecommunication Networks. Fatma is currently a
contracted professor at ENIG, where she imparts her knowledge and expertise to
students.

Abdelhakim KHLIFI serves as an assistant professor at the National Engineering
School of Gabes, Tunisia. He earned his Engineer degree in 2007, followed by a
Master's degree from the National Engineering School of Tunis in 2010, and a Ph.D.
degree in 2015. His teaching specializes in signal processing and digital
communications. His primary research interests center on the performance analysis
of waveform optimization in 5G/6G systems.

Marwa RJILI born in Medenine, Tunisia, in 1991, obtained her Bachelor's degree
in Engineering in 2014 specializing in Communication and Networking. She is
currently a doctoral student in Electrical Engineering at the same institution.
Additionally, Marwa serves as a contractual lecturer at the Higher Institute of
Computer Science and Multimedia of Gabes.

RHAIMI Belgacem Chibani is an Associate Professor in Computer Sciences &
Information Engineering (CSIE). He has been employed at the National Engineering
High School at Gabes (ENIG) since September 1991. After earning his Doctorate
Thesis at the National Engineering High School at Tunis (ENIT), he received his
Ph.D. degree from ENIG, University of Gabes, Tunisia, in 1992. He is a member of
the Research Laboratory MACS at ENIG, where he serves as an activities supervisor
in the field of Signal Processing and Communications Research. Currently, his
research areas encompass Signal Processing and Mobile Communications. He is
affiliated with the University of Gabes, and his research interests include
Information and Signal Processing, as well as Communications Engineering.

48



