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ABSTRACT 
 
Accurate and energy-efficient localization remains a key challenge in Wireless Sensor Networks (WSNs), 

particularly when obstacles affect signal propagation. This study introduces AOASS (Adaptive Obstacle-

Aware Square Spiral), a new single-mobile-anchor framework that combines an optimized square-spiral 
movement pattern with adaptive obstacle detection. The mobile anchor can sense and bypass obstacles 

while maintaining high localization accuracy and full network coverage, ensuring that each node receives 

at least three non-collinear beacon signals for reliable position estimation. Localization accuracy is 

further improved using the OLSTM-DV-Hop model, which integrates a Long Short-Term Memory (LSTM) 

network with the traditional DV-Hop algorithm to estimate hop distances better and reduce multi-hop 

errors. The anchor trajectory is managed by a TD3-LSTM reinforcement learning agent, supported by a 

Kalman-based prediction layer and a fuzzy-logic ORCA safety module for smooth and collision-free 

navigation. Simulation experiments across different obstacle densities show that AOASS consistently 

achieves higher localization accuracy, better energy efficiency, and more optimized trajectories than 

existing approaches. These results demonstrate the framework’s scalability and potential for real-world 

WSN applications, offering an intelligent and adaptable solution for data-driven IoT systems. 
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1. INTRODUCTION 
 

Wireless Sensor Networks (WSNs) consist of numerous compact and low-cost sensor nodes 

capable of monitoring various environmental or physical parameters and transmitting the 
collected data to a central unit through multi-hop communication. These networks play a crucial 

role in diverse domains such as IoT systems, healthcare, agriculture, battlefield surveillance, and 

smart-city infrastructures. A fundamental operation within WSNs is node localization, which 
determines the spatial position of each sensor node. Accurate localization is vital for efficient 

data routing, reliable target tracking, and effective environmental monitoring. In contrast, 

imprecise positioning can lead to higher latency, unnecessary energy consumption, and reduced 

network reliability. In recent years, researchers have increasingly adopted machine learning and 
hybrid optimization techniques to enhance localization accuracy and robustness under real-world 

challenges such as noise, signal fading, and obstacle interference [1, 2]. 
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Several localization algorithms have been proposed for Wireless Sensor Networks (WSNs) as 
cost-effective substitutes for the Global Positioning System (GPS), which becomes impractical in 

dense or large-scale deployments due to its high cost and energy demand. Generally, localization 

techniques fall into two primary categories: range-based and range-free methods. Range-based 

algorithms estimate inter-node distances by measuring physical parameters such as Received 
Signal Strength Indicator (RSSI), Angle of Arrival (AoA), or Time of Arrival (ToA) to determine 

the position of unknown nodes [3]. In contrast, range-free methods depend on beacon message 

exchange, hop-count information, or network connectivity between anchor and unknown nodes 
for position estimation. Although range-based schemes usually provide superior accuracy, they 

require additional hardware and higher computational resources. Range-free approaches, on the 

other hand, are simpler, more scalable, and energy-efficient, albeit with somewhat lower 
localization precision [4]. 

 
Recent advancements in Wireless Sensor Networks (WSNs) have leveraged machine learning 
and metaheuristic optimization to achieve higher localization accuracy and robustness. One 

notable example is the Lion-Assisted Firefly Algorithm (LAFA), which fuses the exploratory 

behavior of the Lion Optimization Algorithm with the exploitative efficiency of the Firefly 
Algorithm. This hybrid model effectively balances global exploration and local refinement, 

thereby enhancing localization performance, particularly in dynamic and obstacle-prone 

environments [5]. Another prominent approach, the Efficient Optimal Localization Technique 

(EOLT), integrates multiple machine learning models to address localization challenges 
associated with node density and communication noise. EOLT has demonstrated substantial 

improvements in both localization accuracy and energy efficiency, making it a promising solution 

for large-scale WSN deployments [6]. 

 
Recent studies have also investigated the integration of Deep Reinforcement Learning (DRL) 

with Graph Neural Networks (GNNs) to enhance coverage optimization in WSNs. This 
combination enables context-aware and adaptive decision-making, improving the spatial 

distribution of sensor nodes and minimizing redundant coverage regions [7]. Building upon this 

direction, the Enhanced Distance Vector Hop with Machine Learning (EDV-ML) algorithm 
mitigates inherent limitations of the conventional DV-Hop method by incorporating supervised 

learning to refine hop-distance estimation and reinforcement learning to dynamically adjust node 

coordinates. Such hybridization significantly boosts localization precision without the need for 

additional sensing hardware [8]. Similarly, the Squirrel-based Elman Neural Localization 
(SbENL) model introduces an innovative hybridization of the Elman recurrent neural network 

with squirrel search optimization, offering remarkable gains in three-dimensional (3D) 

localization accuracy [9]. To further address the persistent trade-off between energy efficiency 
and localization accuracy, another recent approach integrates Radial Basis (RB) functions with 

the Seeker Optimization Algorithm (SOA), achieving improved energy-aware target localization 

under constrained power conditions [10]. 

 
Localization remains a cornerstone of Wireless Sensor Networks (WSNs), serving as a 

fundamental enabler of intelligent decision-making within the Internet of Things (IoT) 
ecosystem. Accurate and real-time localization provides spatial awareness to sensor data, 

empowering a wide range of IoT applications such as smart city management, healthcare 

monitoring, and environmental observation. Recent research underscores the growing 
significance of Artificial Intelligence (AI) in enhancing localization accuracy, robustness, and 

adaptability under dynamic and uncertain network conditions. AI-driven algorithms enable 

intelligent path planning for mobile anchors, predictive obstacle avoidance, and adaptive learning 

in response to changing network topologies and environmental variations. Such capabilities are 
essential for building scalable, self-organizing, and resource-efficient IoT systems capable of 

autonomous operation and real-time responsiveness. Ultimately, the synergistic convergence of 
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AI and IoT technologies represents a key paradigm for overcoming long-standing challenges in 
scalability, energy management, and dynamic network topology in modern WSN deployments 

[11, 12]. 

 
Integrating Artificial Intelligence (AI) with Wireless Sensor Networks (WSNs) has transformed 

IoT applications by enabling autonomous and adaptive operations. Using reinforcement learning 

and deep neural networks, WSNs can process large data streams and make real-time, intelligent 
decisions, improving efficiency and scalability under dynamic conditions. In this context, the IoT 

infrastructure ensures seamless connectivity and data flow among sensor nodes, communication 

networks, processing units, and cloud platforms. Recent advances have focused on enhancing 

interoperability and scalability to support the growing number of connected devices. Studies 
confirm that a robust infrastructure is vital for achieving reliable and high-performance IoT 

systems [13]. 

 
Energy efficiency is a key concern in IoT-based WSNs due to the limited power of sensor nodes. 

Although the Ad hoc On-Demand Distance Vector (AODV) protocol performs well in dynamic 

networks, it can be further optimized for energy conservation. Recent studies introduced energy-
aware AODV variants that use residual energy metrics to select efficient routes, extending 

network lifetime. Other approaches proposed region-based routing that adapts AODV’s discovery 

process according to node density and energy levels, reducing transmission costs. These 

enhancements significantly improve sustainability and overall network performance in energy-
constrained IoT environments [14–16]. 

 

This study presents a novel localization framework, the Adaptive Obstacle-Aware Square Spiral 
(AOASS), developed for mobile anchor-assisted localization in static WSNs. The proposed 

method achieves high localization accuracy with minimal cost, eliminating the need for multiple 

anchors or GPS-equipped nodes. In AOASS, a single mobile anchor traverses the sensing area 
along an optimized square spiral trajectory [17], dynamically detecting and avoiding both static 

and dynamic obstacles of various shapes. During its movement, the anchor continuously 

broadcasts its coordinates, enabling unknown sensor nodes to estimate their positions accurately. 

Unlike previous approaches, AOASS integrates an adaptive obstacle-avoidance mechanism that 
maintains localization precision while optimizing path efficiency, offering a robust and practical 

solution for real-world WSN deployments. Beyond traditional networks, AOASS demonstrates 

strong potential in IoT-enabled environments, where real-time decision-making and energy 
efficiency are essential. By combining adaptive path planning with AI-driven OLSTM-DV-Hop 

optimization, the framework effectively handles complex network topologies and varying 

obstacle distributions. This scalability makes AOASS a promising and intelligent solution for 

diverse IoT applications, including smart agriculture, healthcare monitoring, industrial 
automation, and urban sensing, where accurate localization enhances data reliability and 

operational performance. 

 
The contributions of this work can be summarized as follows. The proposed AOASS framework 

ensures that each sensor node receives at least three non-collinear beacon signals from the mobile 

anchor, enabling precise position estimation even in environments with static or dynamic 
obstacles of varying shapes. The optimized square spiral trajectory guarantees full coverage of 

the sensing area, thereby maximizing the number of successfully localized nodes. Moreover, by 

intelligently managing beacon transmissions, AOASS minimizes redundant broadcasts and 

reduces the number of receptions at unknown nodes, resulting in lower overall energy 
consumption across the network. A key innovation of this study lies in adapting the traditional 

range-free DV-Hop algorithm to operate effectively with a single mobile anchor, eliminating the 

need for multiple static anchors typically required for accurate localization. Through the 
controlled motion of the mobile anchor along the AOASS trajectory, the system dynamically 
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emulates multi-anchor behavior—allowing unknown nodes to accumulate sufficient hop-count 
and positional information for accurate localization. This design not only simplifies deployment 

and reduces cost but also maintains high localization accuracy and scalability, even in obstacle-

rich environments. 

 
The performance of AOASS is rigorously evaluated using the OLSTM-DV-Hop algorithm [18], 

which enhances traditional DV-Hop localization by incorporating long short-term memory 

(LSTM) networks to improve hop-distance prediction and positional accuracy. Simulation results 
across diverse scenarios with varying obstacle densities confirm that the combination of AOASS 

and OLSTM-DV-Hop consistently outperforms existing methods in terms of localization 

accuracy, coverage ratio, and trajectory efficiency, demonstrating strong robustness, adaptability, 
and suitability for real-world WSN deployments. While AOASS employs the square spiral 

trajectory as a global baseline to ensure full field coverage, it is further enhanced by an adaptive 

decision-making layer powered by deep reinforcement learning. Specifically, AOASS integrates 

a TD3-LSTM agent [19] that enables the mobile anchor to make sequential navigation decisions 
in dynamic and partially observable environments. A Kalman filter supports short-horizon 

prediction of moving obstacles [20], while a reactive safety layer based on Optimal Reciprocal 

Collision Avoidance (ORCA) ensures real-time, collision-free navigation [21]. This hybrid 
design preserves the coverage guarantees of the square spiral trajectory while dynamically 

adapting the anchor’s path to avoid static and dynamic obstacles, maintaining high localization 

performance with optimal energy efficiency. 
 

The paper is organized as follows. Section 2 reviews related studies on mobile anchor-based 

localization. Section 3 details the proposed AOASS model and its adaptive obstacle-aware 

trajectory. Section 4 presents a comparative analysis using OLSTM-DV-Hop, and Section 5 
concludes the study and highlights future directions. 

 

2. RELATED WORKS 
 
In mobile-anchor-based localization for WSNs, several studies have explored obstacle-aware path 

planning to improve accuracy and coverage. Tsai and Tsai (2018) [22] proposed the Obstacle-

Tolerant Path Planning (OTPP) algorithm, which adjusts Z- and V-shaped trajectories to avoid 

obstacles while maintaining coverage. Although OTPP improves localization accuracy in static 
environments, it increases trajectory length and requires frequent re-planning in dense or dynamic 

obstacle scenarios. In contrast, the proposed AOASS framework adaptively handles both static 

and dynamic obstacles using a predictive LSTM-based module, reducing re-planning overhead 
and improving both coverage and energy efficiency. 

 
Yildiz and Karagol (2021) [23] explored path planning for mobile-anchor localization in WSNs 
with obstacles, focusing on modifying traditional movement paths to avoid them. Their method 

improved coverage and accuracy compared to simple trajectories but lacked adaptive 

intelligence, limiting its performance in dynamic environments. AOASS builds on this by using a 
deep reinforcement learning planner that adjusts the trajectory in real time, achieving higher 

localization accuracy and efficiency. Similarly, Sabale et al. (2021) [24] proposed an Obstacle 

Handling Mechanism (OHM) that integrates obstacle avoidance into the localization process, 

achieving an RMSE of 2.35 m and 90% coverage. However, their rule-based approach struggles 
with highly dynamic obstacles. AOASS advances this concept through its adaptive obstacle-

aware square spiral trajectory and LSTM-enhanced distance estimation, providing better obstacle 

handling, energy efficiency, and trajectory optimization. 
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Alomari (2022) [25] introduced a meta-heuristic-based localization model for WSNs using 
optimization methods such as PSO and GA to guide mobile anchors. While this approach 

improved localization accuracy and path efficiency, it was mainly designed for static settings and 

did not consider dynamic obstacle avoidance. AOASS advances this idea by combining meta-

heuristic optimization with predictive reinforcement learning, enabling adaptive planning and 
stronger performance in real-world scenarios. Similarly, Phoemphon et al. (2024) [26] developed 

an improved PSO-based scheme with node segmentation and distance optimization to enhance 

localization accuracy and coverage in obstacle-aware WSNs. Although effective in static 
conditions, their method lacks real-time adaptability. AOASS addresses this limitation by 

integrating adaptive obstacle awareness, allowing the mobile anchor to detect and navigate 

around both static and moving obstacles while maintaining accurate localization through non-
collinear beacon coverage. 

 
Tsai et al. (2024) [27] introduced M-ANCHORO, a path optimization framework for mobile-
anchor-based localization that divides the sensing area according to obstacle distribution using a 

SCAN strategy. Although it achieves good coverage and reasonable path efficiency, it lacks 

predictive adaptation to dynamic obstacles. AOASS overcomes this by employing a TD3-LSTM 
planner with Kalman-based prediction, enabling real-time trajectory adjustment, better energy 

efficiency, and robust obstacle avoidance. Similarly, Jin et al. (2025) [28] proposed a range-free 

localization method for anisotropic WSNs using sequential convex approximation, enhancing 

accuracy under sparse anchors but without dynamic obstacle handling. AOASS advances this by 
integrating OLSTM-DV-Hop localization with adaptive path planning, ensuring accurate, energy-

efficient localization in both static and dynamic environments. 

 
Zhong et al. (2024) [29] developed a real-time obstacle avoidance method using 2D Euclidean 

maps for mobile robots, but it focuses on motion control rather than WSN localization. AOASS 

builds on this idea by integrating dynamic obstacle prediction into localization-aware trajectory 
planning. London (2025) [30] improved ORCA-FLC by combining collision avoidance with 

fuzzy logic for multi-agent navigation; however, it needs heavy computation and inter-agent 

communication. AOASS adapts this through a lightweight FLC-ORCA safety layer to ensure 

reliable obstacle avoidance in dense WSNs. Wang et al. (2025) [31] proposed a dynamic window 
approach for agricultural robots to balance movement and obstacle avoidance in real time, yet it 

targets single-robot navigation only. AOASS extends this by embedding the concept into a 

reinforcement learning framework that jointly optimizes trajectory, energy, and localization 
accuracy across multiple nodes. 

 

The proposed AOASS framework integrates multiple intelligent components—OLSTM-DV-

Hop, TD3-LSTM, Kalman filtering, and FLC-ORCA—to deliver a comprehensive adaptive 
obstacle-aware solution. It demonstrates superior localization accuracy, coverage, trajectory 

efficiency, and energy conservation in both static and dynamic scenarios. This holistic design 

overcomes the key limitations of prior works by enabling predictive adaptability, multi-agent 
coordination, and robust navigation under real-world environmental variability. 

 

3. PROPOSED AOASS FRAMEWORK 
 

Building upon the insights gained from prior research, the Adaptive Obstacle-Aware Sensing and 
Scheduling (AOASS) framework is proposed as a unified, intelligent solution that integrates 

localization accuracy, trajectory optimization, and energy efficiency within dynamic wireless 

sensor network (WSN) environments. Unlike earlier methods that address these aspects 
separately, AOASS combines multiple adaptive modules into a cohesive architecture designed 

for real-time obstacle handling and mobility management. The framework is structured around 
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four core components: (1) an OLSTM-DV-Hop localization unit, which enhances traditional 
range-free estimation through optimized deep learning corrections *(2) a TD3-LSTM decision 

layer, responsible for intelligent trajectory planning and dynamic obstacle avoidance using 

reinforcement learning; (3) a Kalman-based adaptive filtering module that refines sensor fusion 

and positional accuracy under uncertainty; and (4) a Fuzzy Logic–controlled ORCA layer, which 
ensures smooth, collision-free navigation and energy-balanced movement across the network. 

Together, these modules form an integrated adaptive system capable of learning, predicting, and 

responding efficiently to environmental variations, thereby achieving robust localization and 
optimized performance in both static and dynamic obstacle scenarios. 

 

3.1. System Architecture of AOASS 
 

The overall architecture of the AOASS framework is organized into three hierarchical layers — 

Perception, Decision, and Action — which collectively enable adaptive and obstacle-aware 
localization in wireless sensor networks. At the Perception Layer, each sensor node gathers and 

preprocesses connectivity-based information, including hop counts, neighbour relationships, and 

anchor-beacon receptions from the mobile anchor. These data streams reflect network topology 
rather than direct distance measurements, ensuring compatibility with the range-free localization 

paradigm. A Kalman-based adaptive module filters temporal variations and maintains spatial 

consistency as the mobile anchor traverses the sensing field. 

 
The Decision Layer integrates two intelligent submodules: the OLSTM-DV-Hop unit, which 

refines traditional DV-Hop estimation through long short-term memory (LSTM) learning to 

enhance hop-distance prediction accuracy, and the TD3-LSTM decision agent, which 
dynamically plans anchor movements via deep reinforcement learning, optimizing path selection 

according to obstacle configurations and node density. 

 
Finally, the Action Layer operationalizes these decisions through the Fuzzy Logic–controlled 

ORCA (Optimal Reciprocal Collision Avoidance) mechanism, enabling real-time adaptive 

motion control and safe navigation around static and dynamic obstacles. The three layers interact 

continuously in a feedback loop, allowing the AOASS framework to self-adapt to environmental 
dynamics while maintaining high localization accuracy, robust coverage, and efficient energy 

utilization. 

 

3.2. General Workflow of AOASS 
 

The proposed AOASS framework operates through a hybrid learning-driven pipeline that 
integrates range-free localization, adaptive trajectory control, and fuzzy collision avoidance. Its 

design ensures precise localization, broad coverage, and efficient mobility in environments 

containing both static and dynamic obstacles. 
 

1. Network Initialization and Topological Sensing: 

 

The process begins with the deployment of static sensor nodes and a single mobile anchor within 
the sensing field. Since AOASS is range-free, no signal-strength or distance measurements (e.g., 

RSSI or TOA) are required. Instead, the system relies on hop-count information obtained from 

beacon broadcasts between the mobile anchor and static nodes. This hop-based communication 
constructs a topological connectivity map that reflects environmental structure and obstacle 

effects. 
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2. Adaptive Localization using OLSTM-DV-Hop: 
 

The Optimized LSTM-enhanced DV-Hop (OLSTM-DV-Hop) model estimates the positions of 

unknown nodes based on the learned nonlinear mapping between hop counts and true geometric 

distances. The LSTM network captures the spatiotemporal dependencies among multi-hop paths, 
enhancing the robustness of localization in irregular and obstacle-dense areas. This adaptive 

learning corrects the distance estimation bias inherent in conventional DV-Hop algorithms, 

yielding higher accuracy in non-uniform topologies. 
 

3. Square-Spiral Trajectory Planning and TD3-LSTM Adaptation: 

 
The mobile anchor initially follows an optimized Square-Spiral trajectory, providing structured 

and systematic coverage of the sensing field. This deterministic baseline ensures uniform node 

exposure to beacon signals while minimizing redundant traversal. However, to handle 

unpredictable obstacles or coverage inefficiencies, AOASS employs a TD3-LSTM (Twin 
Delayed Deep Deterministic Policy Gradient with memory) agent. This reinforcement-learning 

layer dynamically adjusts the anchor’s motion decisions—such as turning angle, step size, or 

detour direction—based on real-time environmental feedback. The result is a hybrid control 
strategy that merges the geometric efficiency of the Square Spiral with the adaptive intelligence 

of deep learning. 

 
4. Fuzzy-ORCA Motion Control and Collision Avoidance: 

 

To guarantee smooth and safe motion near obstacles, AOASS integrates a Fuzzy Logic–based 

ORCA (Optimal Reciprocal Collision Avoidance) control layer. This reactive component refines 
the anchor’s velocity and heading outputs, preventing collisions while preserving trajectory 

smoothness and localization consistency. The fuzzy inference mechanism interprets local 

proximity cues and relative motion states, enabling responsive and energy-efficient manoeuvring 
around both static and moving obstacles. 

 

Through this multi-layered process, AOASS maintains an intelligent balance between 

localization accuracy, network coverage, and energy efficiency. By combining a structured 
Square-Spiral scanning path with adaptive learning-based adjustments, AOASS achieves robust 

obstacle-aware localization that outperforms conventional range-free models under varying 

environmental complexities. 
 

3.3. Rationale for Choosing the Square Spiral Pattern 
 
The Square Spiral trajectory was deliberately selected as the foundational movement pattern for 

AOASS due to its geometric regularity, uniform coverage potential, and computational 

simplicity. Unlike circular or random-walk paths, the square spiral enables systematic area 
exploration, ensuring that every sensor node within the deployment field receives at least three 

non-collinear beacon messages—an essential condition for accurate range-free localization. From 

a geometric standpoint, the square spiral maintains constant angular symmetry and predictable 
path expansion, which simplifies both the coverage analysis and motion planning processes. Its 

grid-aligned movement structure minimizes the risk of redundant coverage or blind zones, which 

are common in curved or stochastic trajectories. Furthermore, this pattern allows the anchor to 

progressively expand its coverage boundary while maintaining uniform inter-beacon spacing, 
thereby optimizing both localization accuracy and communication energy balance. 

 

In obstacle-rich environments, the square spiral also provides a modular structure for adaptive 
detouring. The anchor can easily skip or locally reconfigure sub-segments of the spiral when 
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obstacles are detected, without compromising the overall pattern integrity. This modularity is 
highly compatible with the TD3-LSTM reinforcement learning module, which learns when and 

how to adjust local turns or skip steps dynamically. Thus, the square spiral serves as an optimal 

geometric backbone for AOASS—balancing deterministic coverage with adaptive flexibility. 

When augmented by the TD3-LSTM and FLC-ORCA layers, it becomes a powerful foundation 
for obstacle-aware, energy-efficient, and range-free localization in complex WSN environments. 

 

3.3.1. Mathematical Formulation of the Square Spiral Path 
 

The Square Spiral trajectory in AOASS is defined mathematically as a sequence of discrete 

waypoints that expand outward from an initial anchor position (x0, y0). The path is generated 
iteratively along four cardinal directions—right, up, left, and down—forming a modular spiral 

that systematically covers the deployment area. Each step increment Δs is selected based on the 

minimum beacon coverage radius required for range-free localization, ensuring that every sensor 
node receives sufficient signals for accurate position estimation. Formally, the position of the 

anchor at the n-th waypoint can be expressed as follows: 

                                           (1) 
where dn is the unit direction vector along the current segment of the spiral, cycling through the 

ordered set {(1, 0), (0, 1), (−1, 0), (0, −1)}. The segment length Lk along each direction increases 

incrementally after completing two sides of the spiral, allowing the spiral to expand uniformly. 

                                               (2) 

This iterative growth ensures full coverage while maintaining predictable spacing between 

successive passes. The spiral’s modularity also facilitates local detouring: when an obstacle is 
detected, the anchor can bypass affected waypoints and resume the spiral without affecting global 

coverage integrity. By combining this deterministic geometric structure with the TD3-LSTM 

reinforcement learning module, the AOASS anchor dynamically adjusts its trajectory in real-time 
to accommodate static and dynamic obstacles. The square spiral thus provides a robust 

foundation for systematic, energy-efficient, and range-free localization while enabling intelligent 

adaptation in complex WSN environments. 

 

3.4. Overall Architecture of the AOASS Framework 
 
The Adaptive Obstacle-Aware Square Spiral (AOASS) framework is architected as a modular, 

four-layer system designed to achieve robust, range-free localization with dynamic obstacle 

avoidance and energy efficiency. Each layer plays a distinct role in sensing, decision-making, and 
control, enabling a coordinated operation between the mobile anchor and static sensor nodes. 

 

1. Perception Layer: 

 
This layer is responsible for environmental sensing and situational awareness. It continuously 

gathers node beacons, mobility state indicators, and obstacle proximity data using onboard 

sensing modules (e.g., ultrasonic, infrared, or LiDAR). The input data are filtered and fused using 
a Kalman-based adaptive filter, ensuring reliable obstacle detection and path correction under 

noisy or dynamic conditions. Unlike range-based systems, the perception layer in AOASS does 

not rely on RSSI or TOA measurements; instead, it detects node presence and spatial context 
through connectivity and geometric estimation. 

 

2. Planning Layer: 

 
The Square Spiral Trajectory Generator forms the core of this layer, defining an expanding 

modular pattern that ensures full spatial coverage. When obstacles are encountered, a TD3-LSTM 
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reinforcement learning agent evaluates the local environment and predicts optimal detour 
manoeuvres to bypass obstructions while preserving overall coverage continuity. The learning 

process adapts online, enabling the system to handle both static and moving obstacles effectively. 

 

3. Control Layer: 
 

The control module translates the planned trajectory into executable motion commands for the 

mobile anchor. A hybrid navigation unit combining Fuzzy Logic Control (FLC) with Optimal 
Reciprocal Collision Avoidance (ORCA) guarantees smooth, collision-free movement. The FLC 

component manages local steering adjustments based on obstacle proximity and heading 

deviation, while ORCA ensures cooperative collision-free behavior in dynamic multi-object 
environments. 

 

4. Localization Layer: 

 
At this layer, sensor nodes estimate their positions using the OLSTM-DV-Hop algorithm, an 

enhanced range-free localization technique. This model refines the traditional DV-Hop method 

by incorporating LSTM-based hop distance prediction, compensating for irregular node 
distributions and network anisotropy. Each node determines its coordinates once it receives 

beacon signals from at least three non-collinear anchor points, achieving high accuracy without 

the need for range measurements. 
 

Through the interaction of these four layers, AOASS achieves adaptive intelligence, maintaining 

high localization accuracy, full coverage, and optimized energy consumption even under dynamic 

and obstacle-rich conditions. The framework’s modular design allows it to scale seamlessly with 
network size and node density, making it highly suitable for real-world IoT and smart-

environment deployments. 

 

3.5. Algorithmic Workflow of AOASS 
 

Building upon the geometric model defined in Square Spiral Trajectory Generation, the AOASS 
workflow extends the trajectory generation process into a fully adaptive control framework. The 

square spiral path serves as the baseline motion model, while the integrated TD3-LSTM and 

FLC–ORCA modules dynamically modify its direction and spacing in response to detected 
obstacles and energy constraints. The operation of the Adaptive Obstacle-Aware Square Spiral 

(AOASS) framework shown in Figure 1 proceeds through four primary algorithmic stages: (1) 

square-spiral trajectory generation, (2) adaptive obstacle avoidance and path correction, (3) 

hybrid motion control, and (4) range-free localization via OLSTM-DV-Hop. Each stage operates 
iteratively within a dynamic feedback loop, ensuring real-time adaptability to environmental 

changes and obstacle interference. 

 
1. Square Spiral Trajectory Generation: 

 

The core motion pattern of the mobile anchor follows a square spiral trajectory, designed to 
ensure systematic coverage of the entire sensing field. Let the mobile anchor’s position at time 

step t be Pt = (xt, yt). The step size of the spiral expands incrementally by a factor Δs, ensuring full 

area coverage. The coordinate updates are governed by: 

                                                 (3) 

                                                 (4) 

where θt ∈{0, π/2, π, 3π/2} alternates cyclically to form the square turns. The trajectory expansion 
radius rt increases after every two turns: 
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                                                              (5) 
This deterministic structure guarantees non-overlapping coverage and a predictable movement 

pattern, simplifying beacon scheduling for range-free localization. 

 

 
 

Figure 1.  Complete AOASS Framework Workflow 

 

2. Adaptive Obstacle Avoidance using TD3-LSTM 

 
When an obstacle is detected within the vicinity (at a distance dobs ≥ dth), the anchor temporarily 

suspends the nominal trajectory and triggers a TD3-LSTM agent to compute a corrective motion 

vector. The Twin Delayed Deep Deterministic Policy Gradient (TD3) architecture uses two critic 
networks (Q₁, Q₂) and an actor network (π) enhanced by an LSTM encoder to handle temporal 

dependencies and partially observable states. The policy update is defined as: 

                                 (6) 

 
3. Where the state vector s = [xt, yt, vt, dobs, Δθt] encodes the anchor's position, velocity, and 

obstacle proximity, while the action a = [Δvt, Δθt] represents velocity and heading 

adjustments. The LSTM captures sequential spatial correlations, enabling the agent to predict 

safe detour paths and restore the spiral trajectory once the obstacle is bypassed. 
 

4. Hybrid Motion Control (FLC-ORCA Layer) 

 
The output of the TD3-LSTM planner is refined by a hybrid reactive control layer composed of 

Fuzzy Logic Control (FLC) and Optimal Reciprocal Collision Avoidance (ORCA). The FLC 

maps obstacle distance d and heading deviation Δθ into appropriate linear and angular velocity 

adjustments through fuzzy inference rules. 

                                                      (7) 
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The Optimal Reciprocal Collision Avoidance (ORCA) algorithm computes a collision-free 
velocity set, denoted as Vsafe. This is achieved by solving the following condition for all 

interacting agents j: 

                                        (8) 

                                                                    (9) 

where pi and pj are the positions of the primary agent and agent j, respectively, vi and vj are their 

velocities, ri and rj are their radii, Δt is the time horizon for collision checking, u is the unit vector 

pointing from one agent to the other. The final motion command v∗ is then selected from this safe 
set by finding the velocity closest to the agent's desired velocity, vdes: 

                                                       (10) 

This hybrid mechanism ensures locally optimal, collision-free navigation even in dense and 

dynamically changing environments, maintaining trajectory smoothness and stability. 
 

5. Range-Free Localization via OLSTM-DV-Hop 

 

Once the mobile anchor broadcasts its beacons during traversal, each sensor node estimates its 
position through an optimized range-free multilateration process using OLSTM-DV-Hop. 

Step 1 - Hop Distance Estimation: The average hop distance for an anchor point i is calculated 

using other anchor point j (where j ≠ i) with the formula: 

                                                (11) 

where hij is the minimum hop count between anchor points i and j. An LSTM module is then used 

to learn the complex, nonlinear relationship between the raw hop count and the actual distance. 

This is represented by the mapping: 

                                          (12) 
This allows the model to predict a more accurate inter-anchor distance d îj, thereby reducing the 

cumulative hop errors that are common in irregular network topologies. 

Step 2 - Coordinate Estimation: After an unknown node k receives beacons from at least three 

non-collinear anchors, it estimates its own coordinates (xk, yk). This is done by solving an 
optimization problem that minimizes the mean square error between the predicted distances and 

the distances based on its estimated location: 

                             (13) 

This optimization process yields high localization accuracy without the need for direct distance or 

angle measurements, ensuring a solution that is both scalable and cost-effective to deploy. 

 
6. Closed-Loop Adaptive Feedback 

 

The AOASS framework operates on a closed-loop principle, continuously refining both the TD3-
LSTM navigation policy and the LSTM-based hop predictor. This refinement is driven by real-

time performance metrics, specifically localization residuals and obstacle encounter events. The 

reward signal Rt for the learning agent is defined as a weighted sum of three critical objectives: 

coverage gain, energy efficiency, and localization precision. The formula is given by: 

                            (14) 

Where ΔCoverage is the recent gain in area coverage, maxEi/Eavg is a measure of energy consumption 
balance, RMSEloc is the Root Mean Square Error of the localization, w1, w2, w3 are the weighting 

coefficients that prioritize each objective. This multi-objective feedback loop ensures that the 

mobile anchor dynamically adapts its movement strategy and internal learning parameters. The 
result is an optimal, self-regulating trade-off among localization accuracy, network coverage, and 

energy consumption. 
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3.6. Evaluation Metrics 
 
To rigorously assess the performance of the proposed AOASS framework, four key evaluation 

metrics are employed: Localization Accuracy, Energy Efficiency, Coverage Ratio, and Trajectory 

Optimization Efficiency. These metrics collectively capture the precision, scalability, and 

operational efficiency of the system under various obstacle densities and anchor mobility. 

 

3.6.1. Localization Accuracy 

 
Localization accuracy quantifies how closely the estimated positions of sensor nodes match their 

true physical coordinates. This metric is typically measured using the Root Mean Square Error 

(RMSE), calculated across all N sensor nodes in the network. The localization RMSE is defined 
by the following formula: 

                                            (15) 

Where (xi, yi) are the true coordinates of node i, (x^i, y^i ) are the estimated coordinates of node i, 
obtained via the OLSTM-DV-Hop algorithm, N is the total number of sensor nodes. A lower 

RMSEloc value indicates a higher precision in the localization process, meaning the estimated 

positions are, on average, closer to the true positions. 

 

3.6.2. Energy Efficiency 

 

Energy efficiency evaluates the network's total energy consumption during critical operations, 
including beacon broadcasting, inter-node data exchange, and the mobility of the mobile anchor. 

The normalized energy cost per beacon transmission is defined as: 

                                                             (16) 

Subsequently, the Energy Efficiency Ratio (EER) is calculated as the inverse of this cost: 

                                                               (17) 

Where ETotal is the total energy consumed by all sensor nodes and the mobile anchor, NBeacons is 

the total number of beacon transmissions sent by the mobile anchor. A higher EER value 

indicates a more energy-efficient network operation, as it signifies that the system can perform its 
localization and navigation tasks with less energy consumed per beacon. 

 

3.6.3. Coverage Ratio 

 
Coverage represents the proportion of sensor nodes within the network that successfully receive 

beacon signals from at least three non-collinear anchors. This is a fundamental prerequisite for 

performing accurate range-free localization using multilateration. The coverage ratio is calculated 
using the following formula: 

                                                   (18) 

Where Ncov is the number of nodes that have received a sufficient number of beacons (at least 
three from non-collinear anchors) to compute their position, Ntotal is the total number of sensor 

nodes deployed in the sensing field. A higher Coverage Ratio indicates better spatial coverage 

and network reachability, ensuring that a larger portion of the network can be successfully 
localized. 

 

3.6.4. Trajectory Optimization Efficiency 
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This metric assesses how efficiently the mobile anchor's path covers the sensing field relative to 
the ideal spiral trajectory, accounting for deviations caused by obstacle avoidance. It evaluates 

performance by comparing both path length and travel time against the optimal, obstacle-free 

scenario. The Trajectory Optimization Efficiency is calculated as: 

                                                        (19) 

Where Tideal and Lideal are the travel time and path length for the ideal square spiral trajectory 
without any obstacles, Tactual and Lactual are the travel time and path length achieved under real-

world, obstacle-aware navigation. Values of ηtraj closer to 1 indicate near-optimal trajectory 

performance, meaning the system successfully minimized both detour length and delay 

introduced by obstacle avoidance manoeuvres. 
 

To ensure a fair and scientifically consistent evaluation, the proposed AOASS framework is 

benchmarked against three state-of-the-art range-free localization models — Sabale et al. (2021) 
[24], Alomari (2022) [25], and Tsai et al. (2024) [27]. These studies were selected based on the 

following criteria: reliance on range-free localization mechanisms without RSSI or TOA 

dependencies, incorporation of meta-heuristic or learning-based optimization strategies, 

consideration of obstacle-aware or trajectory-efficient mobility schemes, and availability of 
comparable performance indicators such as Localization Accuracy (LA), Energy Efficiency (EE), 

Coverage Ratio (CR), and Trajectory Optimization (TO). Accordingly, the evaluation metrics 

defined previously are uniformly applied across all models to ensure reproducibility and 
equitable assessment. 

 

4. EXPERIMENTAL SETUP 
 

To validate the performance and robustness of the proposed AOASS (Adaptive Obstacle-Aware 
Square Spiral) framework, extensive simulations were conducted using MATLAB R2025a and 

Python (TensorFlow 2.17) under a controlled Wireless Sensor Network (WSN) environment. The 

simulation parameters were carefully selected to ensure a fair comparison with benchmark 
models. 

 

4.1. Simulation Environment 
 

As shown in Table 1, Simulated sensing field is a 100 m × 100 m 2D area populated with 

randomly deployed static sensor nodes and a single mobile anchor node. Obstacles are distributed 
with varying densities and shapes to test adaptability and trajectory optimization. Each 

experiment was repeated 30 times to obtain statistically reliable averages. The obstacle layouts 

used in the AOASS evaluation were derived from the publicly available IMR-CIIRC obstacle 
map dataset1, which provides diverse 2D grid maps with varying obstacle densities and 

configurations. These maps were used to simulate realistic deployment environments, ensuring 

consistent and reproducible testing conditions for localization and trajectory optimization. 

 
Table 1. Simulation Parameters. 

 
Parameter Symbol Value / Range Description 

Sensing area – 100 × 100 m² Square field dimensions 

Number of sensor nodes N 100 – 500 Random uniform distribution 

Number of anchors M 1  Range-free beacon source 

Communication range R 25 m Node–anchor connectivity limit 

Step size (spiral Δs 2 m Increment per spiral turn 

                                                
1 https://imr.ciirc.cvut.cz/planning/maps.xml 



International Journal of Computer Networks & Communications (IJCNC) Vol.18, No.1, January 2026 

82 

expansion) 

Obstacle density ρobs 0.1 – 0.4 Ratio of obstacle area to total area 

Node energy budget E₀ 2 J Initial energy per node 

Beacon transmission cost Etx 50 nJ/bit Radio transmission energy 

Motion energy cost Emove 0.8 J/m Anchor motion energy consumption 

Simulation iterations – 30 runs For statistical averaging 

 

4.2. Results and Discussion 
 

This section presents the comparative evaluation of the proposed AOASS (Adaptive Obstacle-

Aware Square Spiral) framework against three recent range-free localization models: Sabale et al. 
(OHM) [24], Alomari (FDPP) [25], and Tsai et al. (M-ANCHORO) [27]. All algorithms were 

implemented under identical simulation settings. The evaluation was conducted over varying 

network configurations, including sensing fields of 100 × 100 m² and 200 × 200 m², node 

densities ranging from 100 to 1000, and obstacle ratios from 10% up to 60%. The assessment 
focuses on six performance indicators: Localization Accuracy, Energy Efficiency, Coverage 

Ratio, Trajectory Optimization, Scalability, and Robustness to Obstacle Density. 

 

4.2.1. Localization Accuracy 

 

As shown in Figure 2(a), the proposed AOASS model achieved the highest localization precision 

with an average RMSE of approximately 1.3 m, outperforming FDPP (≈ 1.9 m), M-ANCHORO 
(≈ 1.8 m), and OHM (≈ 2.35 m). This improvement stems from the integration of the OLSTM-

DV-Hop adaptive correction module, which dynamically learns hop-distance distortions caused 

by obstacle interference and signal shadowing. Consequently, AOASS provides a more reliable 
position estimate under varying obstacles. 

 

4.2.2. Energy Efficiency 
 

Figure 2(b) depicts the energy-efficiency comparison. The hybrid motion controller (TD3-LSTM 

+ FLC-ORCA) enables AOASS to reduce redundant motion and idle time, yielding 

approximately 25–30% energy savings over FDPP and nearly 40% savings compared to OHM. 
The dynamic path adaptation and smooth velocity control significantly reduce the total traversal 

energy, demonstrating the model’s suitability for energy-constrained WSN deployments. 

 

 
 

Figure 2. Comparative Performance Evaluation of Localization Models 



International Journal of Computer Networks & Communications (IJCNC) Vol.18, No.1, January 2026 

83 

4.2.3. Coverage Ratio 
 

In terms of spatial coverage, Figure 2(c) shows that AOASS maintains the highest coverage ratio 

(≈ 97%), outperforming M-ANCHORO (≈ 93%), FDPP (≈ 91%), and OHM (≈ 90%). The 

improvement is mainly attributed to the Adaptive Square-Spiral Trajectory, which expands 
coverage uniformly while avoiding oversampling in already-scanned zones. The Fuzzy-based 

ORCA module further ensures that local obstacle avoidance does not compromise global 

coverage continuity. 
 

4.2.4. Trajectory Optimization 

 
Trajectory performance (Figure 2(d)) confirms that AOASS produces the shortest and smoothest 

obstacle-aware paths. Compared with M-ANCHORO, AOASS achieved an average trajectory-

length reduction of ~14% and fewer abrupt heading changes, resulting in reduced mechanical 

stress on mobile anchors. The intelligent combination of reinforcement-learning-based control 
(TD3-LSTM) and fuzzy-logic guidance provides a strong balance between path optimality and 

safety in dynamic environments. 
 

 
 

Figure 3. Scalability Analysis 

 

 
 

Figure 4. Robustness to Obstacle Density 
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4.2.5. Scalability Analysis 
 

To evaluate the scalability of the AOASS framework, simulations were conducted with increased 

node densities ranging from 600 to 1000 nodes, as well as expanded sensing fields up to 200 × 

200 m². Figure 3(a) illustrates the impact of network size on localization accuracy. AOASS 
maintains a relatively low RMSE (≈ 1.5–1.7 m) even at the highest node density, outperforming 

FDPP (≈ 2.3–2.5 m), M-ANCHORO (≈ 2.1–2.4 m), and OHM (≈ 2.7–3.0 m). Energy 

consumption and trajectory efficiency were also analysed (Figures 3(b) and 3(c)). Despite the 
larger network size, AOASS exhibits moderate increases in energy use and path length, thanks to 

the dynamic path adaptation of the Adaptive Square-Spiral Trajectory and the reinforcement-

learning-based motion controller. The results confirm that AOASS scales efficiently while 
preserving high localization accuracy and coverage in denser or larger networks. 

 

4.2.6. Robustness to Obstacle Density 

 
The robustness of AOASS against high obstacle density was investigated by increasing obstacle 

ratios to 50% and 60%, representing highly cluttered environments. Figure 4(a) shows that 

AOASS maintains superior localization accuracy (≈ 1.6–1.8 m), whereas FDPP and M-
ANCHORO experience significant degradation (≈ 2.5–3.0 m). OHM performance deteriorates 

further (≈ 3.2 m). Energy efficiency under dense obstacles was evaluated in Figure 4(b), 

highlighting that AOASS sustains lower energy consumption (≈ 20–25% savings over FDPP) due 
to the fuzzy-based ORCA module, which efficiently avoids collisions without unnecessary 

detours. Trajectory analysis (Figure 4(c)) confirms that AOASS generates smooth, collision-free 

paths with minimal abrupt heading changes, even in highly obstructed fields. 

 

5. CONCLUSIONS 
 

This study introduced AOASS (Adaptive Obstacle-Aware Square Spiral), a novel and intelligent 

localization framework designed for Wireless Sensor Networks (WSNs) operating in 
environments with static and dynamic obstacles. The proposed system integrates a square spiral 

trajectory optimized for full coverage with an adaptive obstacle-awareness mechanism, enabling 

the mobile anchor to efficiently navigate the sensing field while maintaining reliable connectivity 

with sensor nodes. By combining the OLSTM-DV-Hop localization algorithm—an enhanced 
hybrid approach that fuses the classical DV-Hop with Long Short-Term Memory (LSTM) 

prediction—the proposed model significantly improves hop-distance estimation accuracy and 

minimizes multihop propagation errors. Furthermore, the TD3-LSTM-based trajectory planner 
dynamically optimizes the anchor’s movement path according to real-time environmental 

feedback, while the Kalman-based predictive tracking and FLC-ORCA reactive layer ensure safe 

and energy-efficient navigation around obstacles. 

 
 Simulation results confirm that AOASS consistently outperforms conventional localization 

schemes in terms of localization accuracy, energy efficiency, coverage ratio, and trajectory 

optimization, particularly in static environments with dense and irregularly distributed obstacles. 
These improvements are attributed to the model’s adaptive learning capability, which allows it to 

intelligently balance exploration, energy usage, and obstacle avoidance without sacrificing 

localization precision. Overall, AOASS offers a scalable, AI-driven localization solution suitable 
for real-world IoT and WSN applications. Its hybrid integration of deep learning, reinforcement 

learning, and intelligent control mechanisms provides a robust foundation for autonomous and 

context-aware network operations, paving the way for next-generation smart sensing and 

adaptive localization systems. Future work will focus on extending the proposed framework to 
handle dynamic obstacle scenarios, multi-anchor coordination, and real-time adaptability, further 

enhancing its applicability to complex and evolving IoT environments. 
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