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ABSTRACT

During the last decade, there has been a massive development of wireless networks, and nowadays 4G and
5G technologies are a usual thing. The next generation 6G standard is even more promiscuous, such as
improved artificial intelligence (Al). In order to maximize resource allocation on 6G networks, the study
suggests Horned Lizard Ensemble VotingResource Allocation (HLEVRA) model. HLEVRA uses Al methods
to compute user needs on resources and distribute them to them. In simulating an environment of a 6G
network using NS3, the HLEVRA performance is measured according to the most important parameters,
including throughput, data transfer rate, energy consumption, communication delay and packet drop. The
findings reveal that HLEVRA is effective in the management of resources in a 6G network. HLEVRA
recorded a spectacular throughput of 14.7 Ghps, data rate of 840 Kbps, 0.33 mW of energy usage, 20 ms
of communication delay and packet drop rate of 12.5 with 100 users connected. These results indicate that
HLEVRA is an effective strategy to optimize the 6G network performance.
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1. INTRODUCTION

Voice and data services are the primary goals of 2G, 3G, and 4G networks [1], whereas industrial
environments are the focus of 5G [2]. The revolutionary services that are supported with emerging
6G technology include mixed reality and high-resolution sensing and demand extreme throughput
and reliability [3]. It is anticipated that the wireless networks will substitute the traditional
industrial wired networks because of the higher rate of data transmission, reduced latency, and
enhanced reliability [4]. The 6G visions are recent, and they have X-subnetworks as the means of
achieving extreme connectivity [5, 6]. These subnetworks appear in various contexts including
in-vehicles, aeroplanes, in-robots, and bodies [7], handling scenarios from static devices to quick
drones linked to cellular networks [8]. Wireless connections use the same frequency ranges as
cellular phones among controllers, actuators, and sensors [9]. Subnetworks provide highly reliable
performance even with weak or nonexistent links to broader networks [10]. However, quick
mobility can cause highly dynamic interference and high transmission failure rates [11]. Resource
allocation algorithms maximize multidimensional resources under interference and delay
constraints [12], though these problems are non-convex with NP-hardness [13]. Various strategies
address these computationally intractable problems [14].
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Current algorithms rely on information challenging to obtain in real networks, like channels
between sub-networks [15, 16, 18]. While 5G shows good potential for 10E services, it cannot
satisfy all the requirements of new smart programs [17]. Deep reinforcement learning (DRL) has
solved radio resource allocation problems well recently [19], though existing strategies have
unsolvable issues [20]. Despite their effectiveness, most existing techniques do not
explicitly consider the uncertainty inherent in server resource allocation and utilization
[40].

The Existing system often lacks effectiveness due to poor prediction of desired resources.
Considering these drawbacks, the present work has aimed to incorporate the optimization with
the ensemble mode as the prediction mechanism. Key contributions to the proposed HLEVRA
are listed below

e Introduced HLEVRA, a novel hybrid framework combining the Horned Lizard
Optimization algorithm with ensemble-based predictive modeling for real-time resource
allocation in 6G networks.

e Implemented and tested the HLEVRA framework in a multi-cellular user 6G environment
using the NS3 programming environment, evaluating its performance based on critical
metrics like throughput, delay, and energy consumption.

e Showed that HLEVRA provides superior efficiency over recent 6G algorithms, achieving
high throughput and a high predictive model accuracy of 99.25% while significantly
reducing delay and packet drop.

The latter part of the investigation was explained as follows; the latest study papers are described
in the 2" section. The 3™ section includes a brief description of the proposed methodology. The
4™ section contains the outcomes of the resource-sharing framework and its correlation with the
recent models. In the end, the 5% section concludes the study.

2. RELATED WORK

Some of the recent works related to this research study area are described as follows, Recent
works deal with the issues of 6G resource management. Xia et al. [21] proposed an Attention-
based Graph Neural structure (A-GNS) based on power received and signal strength, which
attained a better convergence, but low scalability. A dynamic resource model suggesting the
modification of KuhnMunkres algorithm and Lagrangian decomposition to achieve energy
efficiency in 6G-10T networks was proposed by James et al. [22], but has been applied to multi-
objective problems. Quingtian et al. [23] applied a double deep Q network (DDQN) with the
highest complexity but with ultra-low latency [23] through optimal resource allocation. The
Markovian decision process and dynamic nested neural structure designed by Kai et al. [24]
minimized the delay time but had resource conflicts during the simultaneous execution of these
tasks. Ramoni et al. [25] proposed the concept of multi-agent Q learning, Q-heuristics channel
and power selection that enhanced convergences but had low percentiles. Khan et al. [32] came
up with high-gain metamaterial-based antennas with an additional gain of over 34 dBi in Sub-
THz frequencies. Chandel et al. [33] proposed small-scale triple-band orthogonal MIMO antennas
to operate in the C band, Wi-Fi 6E and X bands. Ouaissa and Ouaissa et al. [34] considered the
radio resource management of M2M communications revealing the congestion in radio resources
and computational complexities of scheduling algorithms in dense environments. Yan et al. [38]
proposes a dynamic resource allocation framework for 5G network slicing using DRL. By
integrating an Advantage Actor-Critic (A2C) algorithm with Massive MIMO technology, the
system autonomously manages bandwidth and power across different network slices. Arefin and
Azad [39] introduce a Prioritized Scheduling Routing Protocol for Wireless Body Area Networks
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(WBANS) to enhance medical data reliability. The protocol categorizes sensor data based on
urgency, ensuring that critical health alerts are prioritized during transmission to prevent packet

drops and reduce latency. Table 1 provides the difficulties of the available literature.
Table 1: Challenges of Existing Method

Author Technic Advantage Disadvantage
Name
Xiaetal. [21] A-GNS Improved convergence Limited scalability
speed with better feature | for massive datasets.
extraction for resource
management.
James et al. Hybrid Modified Enhanced energy Limited to single-
[22] Kuhn—Munkres and efficiency in large-scale objective
Lagrangian 6G-10T networks. optimization; lacks
Decomposition multi-objective
capability.
Quingtian et DDQN Achieves ultra-low High computational
al. [23] latency in 6G networks. complexity.
Kai et al. [24] Dynamic Nested Reduced delay time with Resource conflicts
Neural Structure with improved average hit from parallel task
Markovian Decision rate. execution.
Process
Ramoni et al. Multi-Agent Q- Improved convergence Low performance at
[25] Learning with Q- rate with high resilience lower percentiles.
Heuristics to sensing and
quantization delays.
Khan et ANT-A and ANT-B Achieves gains over 34 Requires advanced
al.[32] dBi across Sub-THz resource allocation to
bands for high-capacity | utilize capacity under
communication. dynamic conditions
fully.
Chandel et al. | Compact Triple-Band | Supports multiple bands Needs robust
[33] Orthogonal MIMO with improved isolation | resource allocation to
Antenna and radiation manage spectrum and
performance. interference under
high user density.
Ouaissaand | RRM Techniques for | Comprehensive analysis | Focused on LTE-era
Ouaissa et al. M2M of scheduling systems, requiring
[34] Communications in mechanisms to improve adaptation for 6G’s
LTE fairness and efficiency. higher density and
stricter QoS needs.
Yan et al. DRL It optimizes resources in High computational
[38] real-time and complexity
significantly boost
spectral efficiency
Arefin and Prioritized Very effective in Complex multi-level
Azad [39] Scheduling Routing minimizing life-critical scheduling can
Protocol packet drops in WBANS. increase processing
overhead

The literature indicates that the current research has made vital advancements in 6G resources
management but there are major shortcomings that include a high level of computational
complexity, low scalability, single-objective optimization, and a lack of adaptability in dense
networks. Most methods achieve energy optimization, latency optimization, or neither both,
without considering a combination of measures of multiple performance. In white of these gaps,
the proposed HLEVRA framework combines Horned Lizard Optimization with ensemble
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learning in order to meet the goals of multi-objective resources allocation, adaptive and energy-
efficient resources allocation. This method increases the scalability and reduces throughput delay,
along with high throughput, even in ultra-dense 6G conditions.

3. PROPOSED METHODOLOGY

The HLEVRA strategy deals with essential constraints of current approaches to resource
allocation of 6G. The traditional approaches to optimization, Q-learning and deep reinforcement
learning have the disadvantage of being unable to change the schedule dynamically or even in
dense environments, and reliant on full channel state information. The proposed method of
HLEVRA is a hybrid one that incorporates bio-inspired Horned Lizard Optimization with
ensemble-based predictive modeling. The dual-layer design will allow real time search adaptation
of resources and anticipate user specific demand trends to utilize in uplink and downlink
scheduling. As far as we know, this is the first publication to bring these methodologies together
in 6G resource allocation in a realistic framework of NS3 simulation. The innovation offers
predictive foresight and optimization agility, and facilitates high-performance in terms of
throughput, latency, energy savings and packet management in ultra-dense environments with
low latency requirements. Fig 1 is a summary of the overall methodology.

) )
%G%ﬂ& Monitoring
Desired resource
6G Cellular HLEVRA £72

network E

[ Resource
-—
] gﬁ@ prediction

Performance Data transfer Resource allocation
analysis

Fig.1 Proposed methodology
3.1 69 Cellular Systems

6G cellular systems function in the frequency range of 101 GHz to 3 THz, enabling ultra-high-
speed data transmission and extremely low latency for next-generation communication networks.
However, managing massive data remains challenging. As 6G focuses on high-quality service
and terabit wireless performance, standardization efforts for terahertz communication are still in
their early stages. The formally accepted 300 GHz band supports numerous encoding modules.
General Parameters of 6G Cellular Systems Shown in Table 2.

Table 2 General Parameters of 6G Cellular Systems

Indicators Values for 6G cellular systems
Dependability 99.99999%
Flexibility 998 km/h
Access Permit level Centimetre
Al Capability Full
Flutter Imicro-second
Density of connections 108
Spectrum Tera-Hz
Range of Frequency 9.8 THz
Width of Band 2.95 THz
Latency Less than 1 microsecond
Components for Smart City Included

92



International Journal of Computer Networks & Communications (IJCNC) Vol.18, No.1, January 2026

3.2 Horned Lizard Ensemble Voting Resource Allocation

HLEVRA combines Horned Lizard Optimization and the Ensemble Voting Resource Allocation
Technique to create an advanced resource allocation method for 6G systems. It tackles network
challenges using adaptive patterns and improves allocation and prediction through an enhanced
fitness function. The initiation of the connection of devices (E) in the proposed optimization is

expressed in Eqn (1) [23].This equation lists all devices in the network, where each E_ device is

denoted by a single letter. In HLEVRA, these devices serve as the starting point for resource
allocation and prediction, with all subsequent calculations based on this set of devices.

E={E,E,...E,} 1)

The data is processed from the transmitting point i to the receiving point j. For computing the task
of each connected device, the defining function of the optimization generated from the parameters

processing cycle (D;), task computing size (V,), and the necessary storage for computing the

task (W, ).Equation (2) [23] represents task allocation for each linked device, combining all task
parameters into one set to enable optimal resource allocation.

T={D,V, W} 0

Afterwards, the optimization's fitness function is triggered to determine the duration of data
processing in each connection with their tasks (F, ). And is denoed in Eqn (3) [23].This is used

to calculate processing time, helping HLEVRA allocate resources efficiently and reduce latency.

Fo=—t (3)

Where L, ; defines the distance between I and j and is given by \/(Xi -Xj)2 +(z, - zj)2 y and

defines the speed of data processing. The optimizer’s evaluation function, shown in Eqn (4) [25],
predicts task scheduling (S) based on connection count, distance, and processing speed. This helps
estimate task completion time and optimizes overall network performance.

$={5,S,,.......S,} (4)

The optimization's fitness function prioritizes the outcome of thei initial transmission node
S, — Higher Priority 's task scheduling and is defined in Eqn (5) [25]. It ranks scheduling

results by efficiency and suitability, enabling HLEVRA to choose the best strategy for maximum
throughput and minimal latency.

Upper (i) ={T,. S, <S, | 5)

Subsequently, the fitness function predicts an optimal point R, in the data movement path. This
U "P"is the time when the packet data enters the point R, andU >***" the time when it leaves the
optimal point. Equations (6 and 7) [26] iteratively optimize the process to improve efficiency and
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reduce computation load. Eqn (6) calculates task upload time, while Eqn (7) computes task
execution time based on device location, enhancing resource allocation and minimizing delays.

input __y joutput moving
Uit =U " +U (6)

U ioutput — U iinput + U : (7)

Where i=1,......,2n, When i = 1,U1inPUt =0and i = 2n, U,*" gives the overall delay in the
data processing. The U, term in Eqn(7) is determined based on the computational load on the data
processing pointsi, j. Consequently, the fitness function of the optimization determines the
optimal stay time (U, ) in the network using Eqn (8) [26]. It estimates task duration in the network
to minimize delays and enhance scheduling efficiency.

V% if i< |
U = ‘ 8

10 i
T output input e H
——+U jpperiy ~Yi if 1> ]
Ce

Where G, is the data transmission V, rate, is the computational size of the specific n task, O;
defines the particular time for computation, and C. represents the capability in calculating the

task. Th Kk is establishes the preference for the higher task, which is unloaded in the cloud storage
but still not finished when the data packets reach the optimal point R, . This develops two minor

output

conditions. The first Uupper(k

) > U™ is when it has to create a new additional task in computing

timeU S22, —U{™" . The optimal time for this condition isg—T+Uj;,§’;ﬁ‘(‘k) —ym™t | The
C

second condition isU o0, <U™" that the task is already computed; hence, the optimal time
isg—T—Ujg’;z;‘(tk) —U /™" Equation (9) [26] defines task priority, determining allocation order
C

so urgent tasks are processed first, enhancing responsiveness and system performance.

Uoe = max U2 i=1,....., 2n; )

upper(k)

The optimal limits of the computation process are generated by the prey-finding process of the
optimization as represented in Eqn (9), and the task is allocated based on the priority function

output
U upper(k) *

Algorithm 1: HLEVRA Resource Allocation using Horned Lizard Optimization
Start

{

initialization()
{
int E,T;

E :{El, E,,.E, }//using egn.(1)
T= {Di Vi, W, }//using eqn.(2)
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/Nnitialize the task inputs

initial task duration()

{
fix—"2 Initial duration
F = L /lusing egn.(3)
Ve

/linitialize the ideal value

optimal duration()

int U 'input’ U _output.

/linitialize the input and output variables
U™ =U 2™ +U ™ fusing eqn.(6)
U ouwet =y " U, /lusing eqn.(7)

V, s
ét ifi<]

U, = o _ /lusing eqn.(8)
C—T+Uj;;’;r“(tk) —y;me if i>]
C
/I Applying for task allocation
}
task allocation()
{
H output
Nt U yoperio
/finitialize the priority task
U oerio = MBX {U?“tp“t} i=1,......, 2; //using eqn.(9)
I[Fixing the task allocation
¥
}
End

The HLEVRA framework is described in algorithm 1. The algorithm sets up candidate solutions
that are resource allocation among users and base stations. The multi-objective function that is
used to assess fitness takes into account the communication delay, energy consumption, and
throughput (Egns 3-5). The optimal solution is determined and the mechanism of finding prey of
the Horned Lizard (Egn 9) leads to population evolution to reach optimal allocations. This is
repeated until convergence or set limit of iteration. The algorithm returns optimal resource
allocation minimizing delay and energy while maximizing efficiency.

Fig 2 illustrates the HLEVRA process. The 6G cellular environment is implemented in NS3
simulator, and HLEVRA is activated to optimize data transmission. Optimization identifies
network resource requirements, allocates resource tasks to specific functions, and processes data
transmission. Performance is evaluated through energy consumption, communication delay,
packet drop, data transfer rate, and throughput. Results are compared with recent techniques for
validation.
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Fig 2 Process Map of the Suggested HLEVRA Approach
4. RESULTS AND DISCUSSION

The 6G resource-sharing framework was simulated on Ubuntu 22.04.4 LTS using NS3 with
Python bindings. HLEVRA managed resource allocation and evaluated performance through
throughput, data rate, energy use, delay, and packet drop. A Horned Lizard Optimizer was used
to simulate 20100 users in 88 urban grid (population = 10, iterations = 50). Latency and energy
were determined using path length and Euclidean distance whereby the aim was to maximize
throughput and minimize delay and energy. Prediction was improved with the help of a soft voting
ensemble (Decision Tree, KNN, SVM), which models realistic dense 6G network dynamics.

4.1. Case Study

To ascertain the effectiveness of the suggested methodology, a valid functional analysis is carried
out with a linear distribution of results. The study includes throughput, transfer rate of data, energy
usage, drop in data packets, and delay in data communication. The optimization allocates the
resources, and the data is processed. The acquired findings are matched and related to the latest
model to interpret the advancement percentage in the model's effectiveness. This suggested
technique attained superior outcomes in all correlated experiments.

Fig 3 (a) Uplink 6G cellular network diagram (b) Downlink 6G cellular network diagram

The 6G cellular environment developed in the NS3 stimulator in uplink and downlink is shown
in Fig 3. In the uplink Fig 3 (a), data flows from the red circles (users) to the blue circle (station).
This represents the transmission of data from user devices to the network infrastructure. The
performance metrics measured (throughput, transfer rate, energy usage, packet loss, and delay)
would directly impact the uplink performance. For example, a high uplink throughput would
indicate efficient transmission of data from users to the network. In the downlink Fig 3 (b), data
flows from the blue circle (station) to the red circles (users). This refers to data transmission from
the network to user devices. Key metrics like low packet loss indicate reliable and efficient
downlink performance.

4.1.1. Resource allocation
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Confusion Matrix (HLEVRA)

Poor Allocation

True label

‘Good Allocation

Poor Allocation Good Allocation
Predicted label

Figure 4.Resource allocation

This confusion matrix illustrates the classification performance of the proposed HLEVRA model
for resource allocation decisions. The matrix shows that the model correctly classified 29
instances of Poor Allocation and 30 instances of Good Allocation, demonstrating strong
prediction reliability. Only one case of Poor Allocation was misclassified as Good Allocation,
and there were no misclassifications in the Good Allocation category. The high number of correct
predictions and minimal error indicate that the model effectively distinguishes between poor and
good allocation decisions with high accuracy and strong generalization capability. Resource
allocation Shown in Figure 4

4.1.2. HLEVRA Convergence Behavior

08
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£0s

Lo

02

01

Figure 5.HLEVRA Convergence Behavior

The convergence behavior of the proposed HLEVRA algorithm is illustrated over 14 iterations.
The graph shows the gradual decrease in the best fitness score, indicating the optimizer’s ability
to progressively find better resource allocation solutions. Initially, the score is higher due to
suboptimal allocations, but as iterations proceed, the adaptive prey-finding and escape strategies
enable efficient exploration and exploitation of the solution space. The convergence trend
demonstrates that HLEVRA quickly stabilizes within a few iterations, validating its
computational efficiency and suitability for dynamic 6G network environments. HLEVRA
Convergence Behavior shown in Figure 5.

4.1.3. Throughput

Throughput expressed in Gbps indicates the rate of data processing by the 6G network and
represents its overall processing capacity, as Figure 6 and Table 3 indicate that throughput rises
gradually as the number of users rises between 20 and 100 uplink to 34.8037 Gbps and downlink
to 33.8478 Gbps. This steady enhancement ensures the capacity of the system to handle increased
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user loads such that the data flow is balanced and the performance is reliable within the system
when it comes to 6G technology.

Fig 6 Throughput vs. number of users in the proposed uplink and downlink approach

Table 3 Throughput vs. user numbers in the suggested approach

Number of Users Throughp_ut (Gbps) Throughpu'g (Gbps)
uplink downlink
20 22.7791 21.8762
40 25.9382 24,9142
60 28.9131 27.7745
80 31.8412 30.747
100 34.8037 33.8478

4.1.4. Data Transfer Rate

Multi-input, multi-output approach ensures that there is stability of the data transfer rate in the 6G
system. Fig 7 indicates the rate at which a user is able to transfer data when there is an increasing
number of users in the proposed uplink and downlink system. Table 4 indicates that uplink and
downlink rates increase (1688.58kbs to 2440.51kbs and 1680.49 to 2440.41 kbps respectively)
with the number of users rising between 20 and 100. This proves effective scaling and balanced
performance during management of increased traffic.

IRERENARE)
IRERRERE

Fig 7 Data transfer rate vs.user number in the suggested uplink and downlink approach

Table 4Throughput vs. user number in the suggested approach

Number of users Data Transfe_r Rate (kbps) | Data Transfer _Rate (kbps)
uplink downlink
20 1688.58 1680.49
40 1870.49 1870.5
60 2060.53 2060.66
80 2250.51 2250.55
100 2440.51 2440.41

4.1.5. Energy Consumption

With the growth in the capacity of the data, the energy consumption also rises. Energy efficiency
is an important issue in 6G networks due to the fact that the increased speed and transmissions
will be accompanied by high power consumption since the high-speed performance will require
too much power. Fig 8 and Table 5 indicate that with increase in the number of users, uplink
energy consumption also increases, as compared to 0.545mW at 20 users, 3.006mW at 100 users
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and downlink energy consumption also increases, compared to 0.681mW at 20 users and
3.079mW at 100users. It means that as the data traffic increases, the energy consumption increases
at the same proportion.

Fig 8 Energy consumption vs. user numbers in the suggested uplink and downlink approach

Table 5 energy consumption vs. user number in the suggested approach

Number of users Energy consumption (mW) | Energy consum_ption (mw)
Uplink Downlink
20 0.545372 0.681157
40 1.22895 1.41533
60 1.86059 1.79932
80 2.48624 2.42265
100 3.00648 3.07951

4.1.6. Communication Delay

The delay in communication between the processing of data packets in the protocol stack and
their delivery at the receiving layer of the target layer affects quality of service and the user
experience. As seen in Fig 9 and Table 6, uplink delay increases to 4.610 and downlink to 1.050
ms as the number of users (20 to 100) increase respectively. The increasing trend of latency at the
higher user loads underscores that it is difficult to sustain low delay at high traffic.

e

.................

— e

Fig 9Delay vs. number of users in the proposed uplink and downlink technique

Table 6 Delay vs. number of users in the suggested approach

Number of users | Delay (ms) Uplink Delay (ms) Downlink
20 0.833765 1.05071
40 1.83229 1.96029
60 2.78487 2.71608
80 3.70573 3.75456
100 4.61001 4.64571

4.1.7 Packet Drop

Packet Drop is a term that can be used to define data packets that do not make it to the receiver
because of the poor signal strength or network congestion. Fig 10 and Table 7 indicate that the
number of packets dropped in the proposed uplink scheme and downlink scheme varies
proportional to the number of users instead of having a constant trend. Uplink and downlink drop
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of packets range between -0.039 to 8.275 and 0.036 to 8.583 respectively among 20 to 100 users.
Such fluctuations represent the different performance of the network when there are different
loads.

Uplink Packet Drop (%) Downlink Packet Drop (%)
—8— Node Ped o s Nade
[T / / -

Packet Drop (%)
RS
.

@ M @ 1
Number of Users Number of Users

Fig 10 Packet drop vs. users in uplink and downlink for a simulation time of 50 seconds

Table 7 Packet drop vs. number of users for simulation time of 50 seconds

Number of users Packet d_rop (%) | Packet dr(_)p (%)
Uplink Downlink
20 -0.0399663 0.0363147
40 8.111044 8.161145
60 0.285781 0.347411
80 8.275484 0.459982
100 0.513679 8.58309

4.2. Comparison

The performance of the proposed model was tested on the comparison with the recently published
works such as 6G-DeFLI, I0OO-VRF and V-GGRP. The metrics such as Throughput, Data Rate,
Energy Consumption, Communication Delay, Accuracy and Packet Drop were used in
comparison. The whole simulation was performed in an NS3 simulator with the standardized
parameters of the 6G cellular system to enable a fair, rigorous, and transparent comparison.

4.2.1. Throughput

Figure 11 and Tables 8-9 provide the throughput performance comparisons. The proposed method
is much more effective than the existing 6G approaches, such as Conventional (3.852 users), Q-
learning (5.67 users) and DRL (6.48 users), whose throughput was 22.779134.8037users,
respectively. This shows the outstanding scalability and efficiency of the proposed model in
comparison to existing methods.

Table 8 Correlation of throughput in Uplink the proposed approach with recent 6G algorithms

Num Conventional Q-learning based DRL based Proposed
Users methods methods methods method
20 3.8 5.6 6.4 22.7791
40 4.2 6.2 7.1 25.9382
60 4.7 6.8 7.9 28.9131
80 5.1 7.3 8.5 31.8412
100 5.2 7.7 8.9 34.8037
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Fig 11 Correlation of throughput in the proposed approach with recent 6G algorithms

Table 9 Correlation of throughput in the Downlink of the proposed approach with recent 6G algorithms

Num | Conventional | Q-learning-based | DRL based Proposed

Users methods methods methods method
20 3.7 5.5 6.2 21.8762
40 4.1 6.0 6.9 24.9142
60 4.6 6.6 7.7 27.7745
80 5.0 7.2 8.3 30.747

100 5.2 7.7 8.9 33.8478

4.2.2. Data transfer rate

Data Transfer Rate is used to quantify the rate of information transfers within the network
elements. As Figure 12 (a) and Table 10 reveal, the proposed downlink method is more efficient
in maximizing the rate of downlink, with the rate of 2440.52 being significantly higher than the
existing approaches to 6G, including OMA (600), DRL (1300), actor-critic deep reinforcement
learning- discrete action (ACDRL-D) [27] (1450), and actor-critic deep reinforcement learning-
continuous action (ACDRL-C) [27] (1800), and demonstrates a better ability to maximize the
efficiency of the downlink. Table 11 in the comparison of uplink data transfer rates shows that
there are considerable improvements. OMA reaches 600, DRL reaches 1300, ACDRL-D reaches
1450 and ACDRL-C reaches 1800. The presented approach provides the highest value of 2440.47
as it is depicted in Figure 12 (b) and is mostly superior to all the other methods in maximizing the
uplink data transfer rates.

Table 10 Correlation of proposed Downlink throughput with recent 6G algorithms

Number of OMA DRL ACDRL-D ACDRL-C Proposed
Users (Kbps) (Kbps) (Kbps) (Kbps) (Kbps)
20 480 1120 1250 1550 1688.58

40 500 1200 1350 1680 1870.49

60 530 1280 1358 1687 2060.53

80 578 1295 1400 1785 2250.51
100 600 1300 1450 1800 2440.51

14
Eom

@
Number f Usrs

(a) Uplink (b) Downlink

Fig 12 Correlation of data transfer rate in the proposed approach with recent 6G algorithms
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Table 11 Correlation of proposed UplinkData Transfer rate with recent 6G algorithms

Number of OMA DRL (Kbps) ACDRL-D ACDRL-C Proposed
Users (Kbps) (Kbps) (Kbps) (Kbps)
20 480 1120 1250 1550 1688.58

40 500 1200 1350 1680 1870.49

60 530 1280 1358 1687 2060.53

80 578 1295 1400 1785 2250.51
100 600 1300 1450 1800 2440.51

4.2.3. Energy consumption

Energy Efficiency Analysis gives a comparison between the proposed approach and recent 6G
models in Table 12, Table 13, and Figure 13. The uplink proposed is compared with Local
computing (LC), MEC server computing (MC) algorithm, based on Hungarian and graph
colouring (BHGC), and Joint task offloading and resource allocation in mobile edge computing
with energy harvesting [28]. In the uplink, the suggested approach uses 3.02 mW, which is way
less than LC (185 mW), MC (700 mW), BHGC (500 mW), and JTORAEH (300 mW), and it
represents an unprecedented power optimization. In the case of the downlink, compared with
Fixed Transmit Power (FTP) Algorithm, Zero-Forcing Beamforming (ZFBF) Algorithm,
Random Offloading (RO) Algorithm, Average Computing Resources (ACR) Algorithm, and
Heuristic Computing Offloading (HCO) Algorithm [29]. It has a 3.07 mW, which is better than
FTP (830 mW), RO (800 mW), ZFBF (740 mW), ACR (730 mW), HCO (590 mW), and Satellite
Terrestrial Computing (580 mW). The resulting extreme change underscores the high energy
efficiency by the proposed model in the uplink and downlink communication.

Table 12: Energy consumption in uplink

Number of LC MC BHGC JTORAEH Proposed
Users Algorithm Algorithm Algorithm Algorithm ()
@) () () ()
20 160 670 480 290 2.82
40 170 680 490 295 2.92
60 175 690 495 298 2.97
80 180 695 498 300 3.00
100 185 700 500 300 3.02
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Fig 13: Energy consumption in uplink
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Table 13: Energy consumption in downlink

Number FTP RO ZFBF ACR HCO Satellite Propo
of Users | algorit | Algorithm | Algorithm | Algorithm | algorithm terrestrial sed
hm Computing
20 600 580 570 550 480 470 3.00
40 650 630 620 610 510 500 3.01
60 700 680 660 640 530 520 3.02
80 750 720 700 690 550 540 3.03
100 830 800 740 730 590 580 3.05

4.2.4. Communication delay

The suggested downlink is contrasted with Deep Markov Decision Process (DMDP) and the
Improved Ant Colony Optimization (IACO) [30]. Table 14 of Non-Orthogonal Multiple Access
and Orthogonal Multiple Access Finite Block length theorem (FBT) [31] compares the proposed
approach in uplink with the existing approaches. Table 15 records these readings. Figure 14 (a)
demonstrates the correlation of communication delay in the suggested approach with the recent
6G algorithms. Table 14 gives the values of values of communication delay in the downlink. The
comparison of the results reveals that the given approach decreases the downlink communication
delay to 4.67 milliseconds (ms) (Figure 14, b), which is significantly lower than the delay to 19.1
milliseconds (Delays Minimization Dynamic Programming, DMDP) and 12.7 milliseconds
(Iterative Ant Colony Optimization, IACO). This shows that it is more efficient in reducing delay.

Table 14: Communication delays in uplink

Number of Users | NOMA | OMA | Proposed
20 10.2 8.3 5.1
40 9.8 7.9 4.8
60 9.2 7.2 4.6
80 8.8 6.9 4.5
100 8.522 | 6.522 4.53

Table 15: Communication delay in downlink

Number of Users | DMDP | IACO | Proposed
20 22.3 16.5 5.30
40 21.0 15.2 5.05
60 20.0 14.0 4.85
80 19.5 13.5 4.70
100 19.1 12.7 4.67
|-
E R |
@ Uplinkmw (b) Downlink

Fig 14 Correlation of communication delay in the proposed approach with recent 6G algorithms

4.2.5. Packet drop
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Table 16, Table 17, and Figures 15 show Packet Drop Analysis of uplink and downlink.
Compared to Conventional (3.6%), Q-learning (2.5%), and DRL (1%), the proposed method has
the lowest percentage (0.6) in the uplink and downlink, which is minimized to minimum loss.
This is a huge decrease made possible by the effectiveness of the proposed model in reducing the
number of packets lost and increase the reliability of transmissions.

Table 16: Packet drops in uplink

Number of | Conventional Q-learning DRL-based Proposed
Users methods based method methods
20 5.0 4.4 2.8 15
40 4.7 3.8 2.4 1.2
60 4.2 3.2 2.0 1.0
80 3.8 2.8 1.6 0.8
100 3.6 2.5 1.0 0.6
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Figl15: Correlation of packet drop in the proposed approach with recent 6G algorithms

Table 17: Packet drops in downlink

Number | Conventional Q-learning DRL based | Proposed
of Users methods based method methods
20 5.0 4.4 2.8 1.5
40 4.7 3.8 2.4 1.2
60 4.2 3.2 2.0 1.0
80 3.8 2.8 1.6 0.8
100 3.6 2.5 1.0 0.5

4.2.6. Accuracy

Traditional approaches such as the 6G Distributed Hash Table and Blockchain-enabled Federated
Learning for loT (6G-DeFLlI) [35], Enhanced Congestion Avoidance Model with V Gradient
Geocast Routing Protocol (V-GGRP) [36] and the Intelligent Osprey Optimized Versatile
Random Forest (I00-VRF) model [37] are used for comparison. In 6G-enabled 10T networks,
HLEVRA performs better with 99. 25 per cent accuracy compared to 6G-DeFLI (98), V- GGRP
(98. 85), and I00-VRF (98) (as indicated in Figure 16). It was also found to be robust, scalable,
and efficient in 6G resource allocation using NS3 simulations of up to 20100 users, with up to
45x higher throughput, and one hundred ninety percent lower energy consumption and delay and
packet drop than Conventional, Q-learning, DRL, and Actor-Critic models.

99.25%
99.25

99.00 98.85%
98.0% 98.0%

3
98.00
o2 1 1

6G-DeFLI V-GGRP I0O-VRF Proposed HLEVRA
Models
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Fig 16 Comparison analysis of Accuracy

4.3. Overall Performance

The summary of Comprehensive Performance Evaluation can be seen in Table 18 which provides a detailed
overview of the uplink and downlink performance of the proposed system, in 20-100 users, through
throughput, data rate, energy consumed, delay, packet drop, and accuracy. The findings indicate scalable
throughput and data rates, and energy consumption and delay increase with heavier loads, and there is also
varied packet drop with conditions of the network. The suggested HLEVRA framework has a high accuracy
of 99.25 which proves its high efficiency in 6G conditions.

Table 18: Overall Performance Metrics vs. Number of Users in the Proposed Uplink and Downlink

Approach
Nu | Uplink | Downl | Upli | Dow | Uplink | Downli | Upl | Dow | Upl | Do | Acc
mbe | Throu ink nk nlink | Energy nk ink | nlink | ink | wn | ura
rof | ghput | Throu | Data | Data | Consu | Energy | Del | Dela | Pac | lin | cy(
User | (Gbps) | ghput | Tra | Tran | mption | Consu ay y ket | k | %)
S (Gbps) | nsfe sfer (mW) mption | (ms | (ms) | Dro | Pa
r Rate (mW) ) p ck
Rate | (kbp (%) | et
(kbp S) Dr
S) op
(%
)
20 | 22.779 | 21.876 | 1688 | 1680. | 0.5454 | 0.6811 | 0.8 | 1.050 - 0.0 -
1 2 .58 49 338 7 0.0 | 36
399 | 3
40 | 25.938 | 24.914 | 1870 | 1870. | 1.2290 | 1.4153 | 1.8 | 1.960 | 8.1 | 8.1 -
2 2 49 50 323 3 110 | 61
1
60 | 28.913 | 27.774 | 2060 | 2060. | 1.8606 | 1.7993 | 2.7 | 2716 | 0.2 | 0.3 -
1 5 .53 66 849 1 858 | 47
4
80 | 31.841 | 30.747 | 2250 | 2250. | 2.4862 | 2.4227 | 3.7 | 3.754 | 8.2 | 0.4 -
2 0 51 55 057 6 755 | 59
9
100 | 34.803 | 33.847 | 2440 | 2440. | 3.0065 | 3.0795 | 4.6 | 4645 | 0.5 | 85| 99.
7 8 51 41 100 7 137 | 83 | 25
1

4.4. Strengths and Weaknesses

The suggested approach has high throughput and low latency in uplink and downlink, effective
energy consumption with capacity in high user density, and strong resource distribution by bio-
inspired optimization with ensemble prediction. Nonetheless, its analysis is only done in
simulated conditions, it can add computational load to low-power devices, and it makes ideal
conditions of channels that might not accurately represent the real-life conditions.

4.5. Statistical Analysis
To assess the statistical soundness of HLEVRA under different network loads, we performed a
one-way ANOVA test on the throughput measurements inductive on the results in five different

user situations (20, 40, 60, 80 and 100 users), and 10 randomized experiments. The ANOVA
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showed a large F-value of 143.31 and p-value of 5.44 x 10 -5, which is statistically significant
difference in throughput performance of the load conditions. Figure 17 provides a correlation
between throughput and user load by the 95 percent confidence interval. On increasing the number
of users, the average throughput tends to reduce slowly as the number of users rises to 100 since
there is increased network contention. The error bars ensure that there is stable and reliable
performance, and the robustness of HLEVRA and its stability in different load conditions can be
determined.

Throughput (Gbps)
N
b

20 40 60 80 100
Number of Users

Fig 17 Throughput vs User Load with Confidence Intervals

5. CONCLUSION

This paper suggests the HLEVRA an intelligent resource allocation system that employs an
ensemble voting-based approach, along with Horned Lizard Optimization, to offer substantial
throughput, delay, energy consumption, and packet drop rates enhancements to next-generation
6G wireless networks. The HLEVRA model was modeled using NS3 platform of multi-cellular
users. With the increase in the number of users by 20 to 100, the uplink throughput improved
further by 22.7791 to 34.8037 Gbps and the rate of data transfer rose by 1688.58 to 2440.51 Kbps
with the energy consumption and delay also lying within acceptable ranges. There were
improvements in downlink performance that were consistent. A comparative analysis revealed
HLEVRA to be much more efficient, able to scale and be robust enough to be used in ultra-dense
and latency-sensitive applications like autonomous car and industrial IoT.

Mobility-conscious allocation of resources, heterogeneous network adaptation (multi-RAT and
edge computing), energy efficient resource-scheduling modules (adaptive sleep scheduling and
dynamic power management), multi-objective optimization, and federated learning-based
distributed control are some of the improvements to be incorporated in the future. The in-the-loop
testing will be used to verify the feasibility of 6G deployments.
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