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ABSTRACT 
 

During the last decade, there has been a massive development of wireless networks, and nowadays 4G and 

5G technologies are a usual thing. The next generation 6G standard is even more promiscuous, such as 

improved artificial intelligence (AI). In order to maximize resource allocation on 6G networks, the study 

suggests Horned Lizard Ensemble VotingResource Allocation (HLEVRA) model. HLEVRA uses AI methods 

to compute user needs on resources and distribute them to them. In simulating an environment of a 6G 

network using NS3, the HLEVRA performance is measured according to the most important parameters, 

including throughput, data transfer rate, energy consumption, communication delay and packet drop. The 

findings reveal that HLEVRA is effective in the management of resources in a 6G network. HLEVRA 

recorded a spectacular throughput of 14.7 Gbps, data rate of 840 Kbps, 0.33 mW of energy usage, 20 ms 

of communication delay and packet drop rate of 12.5 with 100 users connected. These results indicate that 

HLEVRA is an effective strategy to optimize the 6G network performance. 
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1. INTRODUCTION 
 

Voice and data services are the primary goals of 2G, 3G, and 4G networks [1], whereas industrial 

environments are the focus of 5G [2]. The revolutionary services that are supported with emerging 

6G technology include mixed reality and high-resolution sensing and demand extreme throughput 

and reliability [3]. It is anticipated that the wireless networks will substitute the traditional 

industrial wired networks because of the higher rate of data transmission, reduced latency, and 

enhanced reliability [4]. The 6G visions are recent, and they have X-subnetworks as the means of 

achieving extreme connectivity [5, 6]. These subnetworks appear in various contexts including 

in-vehicles, aeroplanes, in-robots, and bodies [7], handling scenarios from static devices to quick 

drones linked to cellular networks [8]. Wireless connections use the same frequency ranges as 

cellular phones among controllers, actuators, and sensors [9]. Subnetworks provide highly reliable 

performance even with weak or nonexistent links to broader networks [10]. However, quick 

mobility can cause highly dynamic interference and high transmission failure rates [11]. Resource 

allocation algorithms maximize multidimensional resources under interference and delay 

constraints [12], though these problems are non-convex with NP-hardness [13]. Various strategies 

address these computationally intractable problems [14]. 
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Current algorithms rely on information challenging to obtain in real networks, like channels 

between sub-networks [15, 16, 18]. While 5G shows good potential for IoE services, it cannot 

satisfy all the requirements of new smart programs [17]. Deep reinforcement learning (DRL) has 

solved radio resource allocation problems well recently [19], though existing strategies have 

unsolvable issues [20]. Despite their effectiveness, most existing techniques do not 

explicitly consider the uncertainty inherent in server resource allocation and utilization 
[40]. 

 

The Existing system often lacks effectiveness due to poor prediction of desired resources. 

Considering these drawbacks, the present work has aimed to incorporate the optimization with 

the ensemble mode as the prediction mechanism. Key contributions to the proposed HLEVRA 

are listed below 

 

 Introduced HLEVRA, a novel hybrid framework combining the Horned Lizard 

Optimization algorithm with ensemble-based predictive modeling for real-time resource 

allocation in 6G networks. 

 Implemented and tested the HLEVRA framework in a multi-cellular user 6G environment 

using the NS3 programming environment, evaluating its performance based on critical 

metrics like throughput, delay, and energy consumption. 

 Showed that HLEVRA provides superior efficiency over recent 6G algorithms, achieving 

high throughput and a high predictive model accuracy of 99.25% while significantly 

reducing delay and packet drop. 

 

The latter  part of the investigation was explained as follows; the latest study papers are described 

in the 2nd section. The 3rd section includes a brief description of the proposed methodology. The 

4th section contains the outcomes of the resource-sharing framework and its correlation with the 

recent models. In the end, the 5th section concludes the study. 

 

2. RELATED WORK 
 

Some of the recent works related to this research study area are described as follows, Recent 

works deal with the issues of 6G resource management. Xia et al. [21] proposed an Attention-

based Graph Neural structure (A-GNS) based on power received and signal strength, which 

attained a better convergence, but low scalability. A dynamic resource model suggesting the 

modification of KuhnMunkres algorithm and Lagrangian decomposition to achieve energy 

efficiency in 6G-IoT networks was proposed by James et al. [22], but has been applied to multi-

objective problems. Quingtian et al. [23] applied a double deep Q network (DDQN) with the 

highest complexity but with ultra-low latency [23] through optimal resource allocation. The 

Markovian decision process and dynamic nested neural structure designed by Kai et al. [24] 

minimized the delay time but had resource conflicts during the simultaneous execution of these 

tasks. Ramoni et al. [25] proposed the concept of multi-agent Q learning, Q-heuristics channel 

and power selection that enhanced convergences but had low percentiles. Khan et al. [32] came 

up with high-gain metamaterial-based antennas with an additional gain of over 34 dBi in Sub-

THz frequencies. Chandel et al. [33] proposed small-scale triple-band orthogonal MIMO antennas 

to operate in the C band, Wi-Fi 6E and X bands. Ouaissa and Ouaissa et al. [34] considered the 

radio resource management of M2M communications revealing the congestion in radio resources 

and computational complexities of scheduling algorithms in dense environments. Yan et al. [38] 

proposes a dynamic resource allocation framework for 5G network slicing using DRL. By 

integrating an Advantage Actor-Critic (A2C) algorithm with Massive MIMO technology, the 

system autonomously manages bandwidth and power across different network slices. Arefin and 

Azad [39] introduce a Prioritized Scheduling Routing Protocol for Wireless Body Area Networks 
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(WBANs) to enhance medical data reliability. The protocol categorizes sensor data based on 

urgency, ensuring that critical health alerts are prioritized during transmission to prevent packet 

drops and reduce latency. Table 1 provides the difficulties of the available literature. 
Table 1: Challenges of Existing Method 

 

Author 

Name 

Technic Advantage Disadvantage 

Xia et al. [21] A-GNS Improved convergence 

speed with better feature 

extraction for resource 

management. 

Limited scalability 

for massive datasets. 

James et al. 

[22] 

Hybrid Modified 

Kuhn–Munkres and 

Lagrangian 

Decomposition 

Enhanced energy 

efficiency in large-scale 

6G-IoT networks. 

Limited to single-

objective 

optimization; lacks 

multi-objective 

capability. 

Quingtian et 

al. [23] 

DDQN Achieves ultra-low 

latency in 6G networks. 

High computational 

complexity. 

Kai et al. [24] Dynamic Nested 

Neural Structure with 

Markovian Decision 

Process 

Reduced delay time with 

improved average hit 

rate. 

Resource conflicts 

from parallel task 

execution. 

Ramoni et al. 

[25] 

Multi-Agent Q-

Learning with Q-

Heuristics 

Improved convergence 

rate with high resilience 

to sensing and 

quantization delays. 

Low performance at 

lower percentiles. 

Khan et 

al.[32] 

ANT-A and ANT-B Achieves gains over 34 

dBi across Sub-THz 

bands for high-capacity 

communication. 

Requires advanced 

resource allocation to 

utilize capacity under 

dynamic conditions 

fully. 

Chandel et al. 

[33] 

Compact Triple-Band 

Orthogonal MIMO 

Antenna 

Supports multiple bands 

with improved isolation 

and radiation 

performance. 

Needs robust 

resource allocation to 

manage spectrum and 

interference under 

high user density. 

Ouaissa and 

Ouaissa et al. 

[34] 

RRM Techniques for 

M2M 

Communications in 

LTE 

Comprehensive analysis 

of scheduling 

mechanisms to improve 

fairness and efficiency. 

Focused on LTE-era 

systems, requiring 

adaptation for 6G’s 

higher density and 

stricter QoS needs. 

Yan et al. 

[38] 

DRL It optimizes resources in 

real-time and 

significantly boost 

spectral efficiency 

High computational 

complexity 

Arefin and 

Azad [39] 

Prioritized 

Scheduling Routing 

Protocol 

Very effective in 

minimizing life-critical 

packet drops in WBANs. 

Complex multi-level 

scheduling can 

increase processing 

overhead 

 

The literature indicates that the current research has made vital advancements in 6G resources 

management but there are major shortcomings that include a high level of computational 

complexity, low scalability, single-objective optimization, and a lack of adaptability in dense 

networks. Most methods achieve energy optimization, latency optimization, or neither both, 

without considering a combination of measures of multiple performance. In white of these gaps, 

the proposed HLEVRA framework combines Horned Lizard Optimization with ensemble 
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learning in order to meet the goals of multi-objective resources allocation, adaptive and energy-

efficient resources allocation. This method increases the scalability and reduces throughput delay, 

along with high throughput, even in ultra-dense 6G conditions. 

 

3. PROPOSED METHODOLOGY 
 

The HLEVRA strategy deals with essential constraints of current approaches to resource 

allocation of 6G. The traditional approaches to optimization, Q-learning and deep reinforcement 

learning have the disadvantage of being unable to change the schedule dynamically or even in 

dense environments, and reliant on full channel state information. The proposed method of 

HLEVRA is a hybrid one that incorporates bio-inspired Horned Lizard Optimization with 

ensemble-based predictive modeling. The dual-layer design will allow real time search adaptation 

of resources and anticipate user specific demand trends to utilize in uplink and downlink 

scheduling. As far as we know, this is the first publication to bring these methodologies together 

in 6G resource allocation in a realistic framework of NS3 simulation. The innovation offers 

predictive foresight and optimization agility, and facilitates high-performance in terms of 

throughput, latency, energy savings and packet management in ultra-dense environments with 

low latency requirements. Fig 1 is a summary of the overall methodology. 

 

6G Cellular 

network
HLEVRA

Monitoring 

Desired resource

Resource 

prediction

Resource allocationData transfer
Performance 

analysis  
 

Fig.1 Proposed methodology 

 

3.1 6g Cellular Systems 
 

6G cellular systems function in the frequency range of 101 GHz to 3 THz, enabling ultra-high-

speed data transmission and extremely low latency for next-generation communication networks. 

However, managing massive data remains challenging. As 6G focuses on high-quality service 

and terabit wireless performance, standardization efforts for terahertz communication are still in 

their early stages. The formally accepted 300 GHz band supports numerous encoding modules. 

General Parameters of 6G Cellular Systems Shown in Table 2. 

 

Table 2 General Parameters of 6G Cellular Systems 

 

Indicators Values for 6G cellular systems 

Dependability 99.99999% 

Flexibility 998 km/h 

Access Permit level Centimetre 

AI Capability  Full 

Flutter 1micro-second 

Density of connections 108 

Spectrum Tera-Hz 

Range of Frequency 9.8 THz 

Width of Band 2.95 THz 

Latency Less than 1 microsecond 

Components for Smart City  Included 
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3.2 Horned Lizard Ensemble Voting Resource Allocation 
 

HLEVRA combines Horned Lizard Optimization and the Ensemble Voting Resource Allocation 

Technique to create an advanced resource allocation method for 6G systems. It tackles network 

challenges using adaptive patterns and improves allocation and prediction through an enhanced 

fitness function. The initiation of the connection of devices (E) in the proposed optimization is 

expressed in Eqn (1) [23].This equation lists all devices in the network, where each nE device is 

denoted by a single letter. In HLEVRA, these devices serve as the starting point for resource 

allocation and prediction, with all subsequent calculations based on this set of devices. 

 

 n21 ,.....EE,E E                                (1) 

 

The data is processed from the transmitting point i to the receiving point j. For computing the task 

of each connected device, the defining function of the optimization generated from the parameters 

processing cycle ( iD ), task computing size ( iV ), and the necessary storage for computing the 

task ( iW ).Equation (2) [23] represents task allocation for each linked device, combining all task 

parameters into one set to enable optimal resource allocation. 

 

 iii W,V,DT                                     (2) 

 

Afterwards, the optimization's fitness function is triggered to determine the duration of data 

processing in each connection with their tasks (
tF ). And is denoed in Eqn (3) [23].This is used 

to calculate processing time, helping HLEVRA allocate resources efficiently and reduce latency.  

 



ji

t

L
F

,
                                                 (3) 

 

Where
jiL ,
 defines the distance between I and j and is given by   22

ji )(x-x ji zz    and 

defines the speed of data processing. The optimizer’s evaluation function, shown in Eqn (4) [25], 

predicts task scheduling (S) based on connection count, distance, and processing speed. This helps 

estimate task completion time and optimizes overall network performance. 

 

 n21 ,.......SS ,SS                                (4) 

 

The optimization's fitness function prioritizes the outcome of the i  initial transmission node

PriorityHigherSi  's task scheduling and is defined in Eqn (5) [25]. It ranks scheduling 

results by efficiency and suitability, enabling HLEVRA to choose the best strategy for maximum 

throughput and minimal latency. 

 

 
iji S S ,T  (i) Upper                            (5) 

 

Subsequently, the fitness function predicts an optimal point 
iR in the data movement path. This 

input

iU is the time when the packet data enters the point
iR  and output

iU  the time when it leaves the 

optimal point. Equations (6 and 7) [26] iteratively optimize the process to improve efficiency and 
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reduce computation load. Eqn (6) calculates task upload time, while Eqn (7) computes task 

execution time based on device location, enhancing resource allocation and minimizing delays. 

 
moving

ii

output

i

input

i UUU ,11                                       (6) 

i

input

i

output

i UUU                                            (7) 

 

Where 2n 1,......, i  , When i = 1, 01 inputU and i = 2n, output

nU 2
 gives the overall delay in the 

data processing. The 
iU term in Eqn(7) is determined based on the computational load on the data 

processing points ji, . Consequently, the fitness function of the optimization determines the 

optimal stay time (
iU ) in the network using Eqn (8) [26]. It estimates task duration in the network 

to minimize delays and enhance scheduling efficiency. 

 




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


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G
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                 (8) 

 

Where 
tG is the data transmission nV  rate, is the computational size of the specific nth task, TO

defines the particular time for computation, and
CC  represents the capability in calculating the 

task.Th k is establishes the preference for the higher task, which is unloaded in the cloud storage 

but still not finished when the data packets reach the optimal point
iR . This develops two minor 

conditions. The first 
input

i

output

kupper UU )( is when it has to create a new additional task in computing 

time
input

i

output

kupper UU )( . The optimal time for this condition is input

i

output

kupper

C

T UU
C

O
 )(

. The 

second condition is
input

i

output

kupper UU )(  that the task is already computed; hence, the optimal time 

is input

i

output

kupper

C

T UU
C

O
 )(

. Equation (9) [26] defines task priority, determining allocation order 

so urgent tasks are processed first, enhancing responsiveness and system performance. 

 

  2n; 1,......, iUmax output

i)( output

kupperU                                (9) 

 

The optimal limits of the computation process are generated by the prey-finding process of the 

optimization as represented in Eqn (9), and the task is allocated based on the priority function
output

kupperU )( . 

 

Algorithm 1: HLEVRA Resource Allocation using Horned Lizard Optimization 

Start 

{ 

 

 

 

initialization() 

{ 

 ;,int TE  

 n21 ,.....EE,E E //using eqn.(1) 

 iii W,V,DT //using eqn.(2) 
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//Initialize the task inputs 

 } 

initial task duration() 

{ 

 durationlj  toi Initiafix   



L
Ft                                                                            //using eqn.(3) 

 //initialize the ideal value 

 } 

optimal duration() 

{ 

 ;,int output

i

input

i UU  

//initialize the input and output variables 
moving

ii

output

i

input

i UUU ,11   //using eqn.(6) 

i

input

i

output

i UUU  //using eqn.(7) 
















jiifUU
C

O

jiif

U
input

i

output

kupper

C

T
i

)(

t

n

G
V 

//using eqn.(8) 

// Applying for task allocation 

 } 

task allocation() 

{ 

 output

kupperU )(int ; 

//initialize the priority task 

  2n; 1,......, iUmax output

i)( output

kupperU //using eqn.(9) 

//Fixing the task allocation 

 } 

} 

End 

 

The HLEVRA framework is described in algorithm 1. The algorithm sets up candidate solutions 

that are resource allocation among users and base stations. The multi-objective function that is 

used to assess fitness takes into account the communication delay, energy consumption, and 

throughput (Eqns 3-5). The optimal solution is determined and the mechanism of finding prey of 

the Horned Lizard (Eqn 9) leads to population evolution to reach optimal allocations. This is 

repeated until convergence or set limit of iteration. The algorithm returns optimal resource 

allocation minimizing delay and energy while maximizing efficiency. 

 

Fig 2 illustrates the HLEVRA process. The 6G cellular environment is implemented in NS3 

simulator, and HLEVRA is activated to optimize data transmission. Optimization identifies 

network resource requirements, allocates resource tasks to specific functions, and processes data 

transmission. Performance is evaluated through energy consumption, communication delay, 

packet drop, data transfer rate, and throughput. Results are compared with recent techniques for 

validation. 
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Fig 2 Process Map of the Suggested HLEVRA Approach 

 

4. RESULTS AND DISCUSSION 
 

The 6G resource-sharing framework was simulated on Ubuntu 22.04.4 LTS using NS3 with 

Python bindings. HLEVRA managed resource allocation and evaluated performance through 

throughput, data rate, energy use, delay, and packet drop. A Horned Lizard Optimizer was used 

to simulate 20100 users in 88 urban grid (population = 10, iterations = 50). Latency and energy 

were determined using path length and Euclidean distance whereby the aim was to maximize 

throughput and minimize delay and energy. Prediction was improved with the help of a soft voting 

ensemble (Decision Tree, KNN, SVM), which models realistic dense 6G network dynamics. 

 

4.1. Case Study 
 

To ascertain the effectiveness of the suggested methodology, a valid functional analysis is carried 

out with a linear distribution of results. The study includes throughput, transfer rate of data, energy 

usage, drop in data packets, and delay in data communication. The optimization allocates the 

resources, and the data is processed. The acquired findings are matched and related to the latest 

model to interpret the advancement percentage in the model's effectiveness. This suggested 

technique attained superior outcomes in all correlated experiments. 

 

 
 

Fig 3 (a) Uplink 6G cellular network diagram         (b) Downlink 6G cellular network diagram 

 

The 6G cellular environment developed in the NS3 stimulator in uplink and downlink is shown 

in Fig 3. In the uplink Fig 3 (a), data flows from the red circles (users) to the blue circle (station). 

This represents the transmission of data from user devices to the network infrastructure. The 

performance metrics measured (throughput, transfer rate, energy usage, packet loss, and delay) 

would directly impact the uplink performance. For example, a high uplink throughput would 

indicate efficient transmission of data from users to the network. In the downlink Fig 3 (b), data 

flows from the blue circle (station) to the red circles (users). This refers to data transmission from 

the network to user devices. Key metrics like low packet loss indicate reliable and efficient 

downlink performance. 

 

4.1.1. Resource allocation 
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Figure 4.Resource allocation 

 

This confusion matrix illustrates the classification performance of the proposed HLEVRA model 

for resource allocation decisions. The matrix shows that the model correctly classified 29 

instances of Poor Allocation and 30 instances of Good Allocation, demonstrating strong 

prediction reliability. Only one case of Poor Allocation was misclassified as Good Allocation, 

and there were no misclassifications in the Good Allocation category. The high number of correct 

predictions and minimal error indicate that the model effectively distinguishes between poor and 

good allocation decisions with high accuracy and strong generalization capability. Resource 

allocation Shown in Figure 4 

 

4.1.2. HLEVRA Convergence Behavior 

 

 
 

Figure 5.HLEVRA Convergence Behavior 

 

The convergence behavior of the proposed HLEVRA algorithm is illustrated over 14 iterations. 

The graph shows the gradual decrease in the best fitness score, indicating the optimizer’s ability 

to progressively find better resource allocation solutions. Initially, the score is higher due to 

suboptimal allocations, but as iterations proceed, the adaptive prey-finding and escape strategies 

enable efficient exploration and exploitation of the solution space. The convergence trend 

demonstrates that HLEVRA quickly stabilizes within a few iterations, validating its 

computational efficiency and suitability for dynamic 6G network environments. HLEVRA 

Convergence Behavior shown in Figure 5. 

 

4.1.3. Throughput 

 

Throughput expressed in Gbps indicates the rate of data processing by the 6G network and 

represents its overall processing capacity, as Figure 6 and Table 3 indicate that throughput rises 

gradually as the number of users rises between 20 and 100 uplink to 34.8037 Gbps and downlink 

to 33.8478 Gbps. This steady enhancement ensures the capacity of the system to handle increased 
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user loads such that the data flow is balanced and the performance is reliable within the system 

when it comes to 6G technology. 

 

 
 

Fig 6 Throughput vs. number of users in the proposed uplink and downlink approach 

 
Table 3 Throughput vs. user numbers in the suggested approach 

 

Number of users 
Throughput (Gbps) 

uplink 

Throughput (Gbps) 

 downlink 

20 22.7791 21.8762 

40 25.9382 24.9142 

60 28.9131 27.7745 

80 31.8412 30.747 

100 34.8037 33.8478 

 

4.1.4. Data Transfer Rate 

 

Multi-input, multi-output approach ensures that there is stability of the data transfer rate in the 6G 

system. Fig 7 indicates the rate at which a user is able to transfer data when there is an increasing 

number of users in the proposed uplink and downlink system. Table 4 indicates that uplink and 

downlink rates increase (1688.58kbs to 2440.51kbs and 1680.49 to 2440.41 kbps respectively) 

with the number of users rising between 20 and 100. This proves effective scaling and balanced 

performance during management of increased traffic. 

 

 
 

Fig 7 Data transfer rate vs.user number in the suggested uplink and downlink approach 

 
Table 4Throughput vs. user number in the suggested approach 

 

Number of users 
Data Transfer Rate (kbps) 

uplink 

Data Transfer Rate (kbps) 

downlink 

20 1688.58 1680.49 

40 1870.49 1870.5 

60 2060.53 2060.66 

80 2250.51 2250.55 

100 2440.51 2440.41 

 

4.1.5. Energy Consumption 

 

With the growth in the capacity of the data, the energy consumption also rises. Energy efficiency 

is an important issue in 6G networks due to the fact that the increased speed and transmissions 

will be accompanied by high power consumption since the high-speed performance will require 

too much power. Fig 8 and Table 5 indicate that with increase in the number of users, uplink 

energy consumption also increases, as compared to 0.545mW at 20 users, 3.006mW at 100 users 
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and downlink energy consumption also increases, compared to 0.681mW at 20 users and 

3.079mW at 100users. It means that as the data traffic increases, the energy consumption increases 

at the same proportion. 

 

 
 

Fig 8 Energy consumption vs. user numbers in the suggested uplink and downlink approach 

 
Table 5 energy consumption vs. user number in the suggested approach 

 

Number of users 
Energy consumption (mW) 

Uplink 

Energy consumption (mW) 

Downlink 

20 0.545372 0.681157 

40 1.22895 1.41533 

60 1.86059 1.79932 

80 2.48624 2.42265 

100 3.00648 3.07951 

 

4.1.6. Communication Delay 

 

The delay in communication between the processing of data packets in the protocol stack and 

their delivery at the receiving layer of the target layer affects quality of service and the user 

experience. As seen in Fig 9 and Table 6, uplink delay increases to 4.610 and downlink to 1.050 

ms as the number of users (20 to 100) increase respectively. The increasing trend of latency at the 

higher user loads underscores that it is difficult to sustain low delay at high traffic. 

 

 
 

Fig 9Delay vs. number of users in the proposed uplink and downlink technique 

 
Table 6 Delay vs. number of users in the suggested approach 

  

Number of users Delay (ms) Uplink Delay (ms) Downlink 

20 0.833765 1.05071 

40 1.83229 1.96029 

60 2.78487 2.71608 

80 3.70573 3.75456 

100 4.61001 4.64571 

 

4.1.7 Packet Drop 

 

Packet Drop is a term that can be used to define data packets that do not make it to the receiver 

because of the poor signal strength or network congestion. Fig 10 and Table 7 indicate that the 

number of packets dropped in the proposed uplink scheme and downlink scheme varies 

proportional to the number of users instead of having a constant trend. Uplink and downlink drop 
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of packets range between -0.039 to 8.275 and 0.036 to 8.583 respectively among 20 to 100 users. 

Such fluctuations represent the different performance of the network when there are different 

loads. 

 

 
 

Fig 10 Packet drop vs. users in uplink and downlink for a simulation time of 50 seconds 

 
Table 7 Packet drop vs. number of users for simulation time of 50 seconds 

 

Number of users 
Packet drop (%) 

Uplink 

Packet drop (%) 

Downlink 

20 -0.0399663 0.0363147 

40 8.111044 8.161145 

60 0.285781 0.347411 

80 8.275484 0.459982 

100 0.513679 8.58309 

 

4.2. Comparison  
 

The performance of the proposed model was tested on the comparison with the recently published 

works such as 6G-DeFLI, IOO-VRF and V-GGRP. The metrics such as Throughput, Data Rate, 

Energy Consumption, Communication Delay, Accuracy and Packet Drop were used in 

comparison. The whole simulation was performed in an NS3 simulator with the standardized 

parameters of the 6G cellular system to enable a fair, rigorous, and transparent comparison. 

 

4.2.1. Throughput 

 

Figure 11 and Tables 8-9 provide the throughput performance comparisons. The proposed method 

is much more effective than the existing 6G approaches, such as Conventional (3.852 users), Q-

learning (5.67 users) and DRL (6.48 users), whose throughput was 22.779134.8037users, 

respectively. This shows the outstanding scalability and efficiency of the proposed model in 

comparison to existing methods. 

 
Table 8 Correlation of throughput in Uplink the proposed approach with recent 6G algorithms 

 
Num 

Users 

Conventional 

methods 

Q-learning based 

methods 

DRL based 

methods 

Proposed 

method 

20 3.8 5.6 6.4 22.7791 

40 4.2 6.2 7.1 25.9382 

60 4.7 6.8 7.9 28.9131 

80 5.1 7.3 8.5 31.8412 

100 5.2 7.7 8.9 34.8037 
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(a) Uplink    (b) Downlink 

 
Fig 11 Correlation of throughput in the proposed approach with recent 6G algorithms 

 
Table 9 Correlation of throughput in the Downlink of the proposed approach with recent 6G algorithms 

 

Num 

Users 

Conventional 

methods 

Q-learning-based 

methods 

DRL based 

methods 

Proposed 

method 

20 3.7 5.5 6.2 21.8762 

40 4.1 6.0 6.9 24.9142 

60 4.6 6.6 7.7 27.7745 

80 5.0 7.2 8.3 30.747 

100 5.2 7.7 8.9 33.8478 

 

4.2.2. Data transfer rate 

 

Data Transfer Rate is used to quantify the rate of information transfers within the network 

elements. As Figure 12 (a) and Table 10 reveal, the proposed downlink method is more efficient 

in maximizing the rate of downlink, with the rate of 2440.52 being significantly higher than the 

existing approaches to 6G, including OMA (600), DRL (1300), actor-critic deep reinforcement 

learning- discrete action (ACDRL-D) [27] (1450), and actor-critic deep reinforcement learning- 

continuous action (ACDRL-C) [27] (1800), and demonstrates a better ability to maximize the 

efficiency of the downlink. Table 11 in the comparison of uplink data transfer rates shows that 

there are considerable improvements. OMA reaches 600, DRL reaches 1300, ACDRL-D reaches 

1450 and ACDRL-C reaches 1800. The presented approach provides the highest value of 2440.47 

as it is depicted in Figure 12 (b) and is mostly superior to all the other methods in maximizing the 

uplink data transfer rates. 

 
Table 10 Correlation of proposed Downlink throughput with recent 6G algorithms 

 
Number of 

Users 

OMA 

(Kbps) 

DRL 

(Kbps) 

ACDRL-D 

(Kbps) 

ACDRL-C 

(Kbps) 

Proposed 

(Kbps) 

20 480 1120 1250 1550 1688.58 

40 500 1200 1350 1680 1870.49 

60 530 1280 1358 1687 2060.53 

80 578 1295 1400 1785 2250.51 

100 600 1300 1450 1800 2440.51 

 

 
(a) Uplink  (b) Downlink 

 

Fig 12 Correlation of data transfer rate in the proposed approach with recent 6G algorithms 
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Table 11 Correlation of proposed UplinkData Transfer rate with recent 6G algorithms 

 
Number of 

Users 

OMA 

(Kbps) 

DRL (Kbps) ACDRL-D 

(Kbps) 

ACDRL-C 

(Kbps) 

Proposed 

(Kbps) 

20 480 1120 1250 1550 1688.58 

40 500 1200 1350 1680 1870.49 

60 530 1280 1358 1687 2060.53 

80 578 1295 1400 1785 2250.51 

100 600 1300 1450 1800 2440.51 

 

4.2.3. Energy consumption 

 

Energy Efficiency Analysis gives a comparison between the proposed approach and recent 6G 

models in Table 12, Table 13, and Figure 13. The uplink proposed is compared with Local 

computing (LC), MEC server computing (MC) algorithm, based on Hungarian and graph 

colouring (BHGC), and Joint task offloading and resource allocation in mobile edge computing 

with energy harvesting [28]. In the uplink, the suggested approach uses 3.02 mW, which is way 

less than LC (185 mW), MC (700 mW), BHGC (500 mW), and JTORAEH (300 mW), and it 

represents an unprecedented power optimization. In the case of the downlink, compared with 

Fixed Transmit Power (FTP) Algorithm, Zero-Forcing Beamforming (ZFBF) Algorithm, 

Random Offloading (RO) Algorithm, Average Computing Resources (ACR) Algorithm, and 

Heuristic Computing Offloading (HCO) Algorithm [29]. It has a 3.07 mW, which is better than 

FTP (830 mW), RO (800 mW), ZFBF (740 mW), ACR (730 mW), HCO (590 mW), and Satellite 

Terrestrial Computing (580 mW). The resulting extreme change underscores the high energy 

efficiency by the proposed model in the uplink and downlink communication. 

 
Table 12: Energy consumption in uplink 

 
Number of 

Users 

LC 

Algorithm 

(J) 

MC 

Algorithm 

(J) 

BHGC 

Algorithm 

(J) 

JTORAEH 

Algorithm 

(J) 

Proposed 

(J) 

20 160 670 480 290 2.82 

40 170 680 490 295 2.92 

60 175 690 495 298 2.97 

80 180 695 498 300 3.00 

100 185 700 500 300 3.02 

 

 
(a) Uplink    (b) Downlink 

 

Fig 13: Energy consumption in uplink 
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Table 13: Energy consumption in downlink 

 
Number 

of Users 

FTP 

algorit

hm 

RO 

Algorithm 

ZFBF 

Algorithm 

ACR 

Algorithm 

HCO 

algorithm 

Satellite 

terrestrial 

Computing 

Propo

sed 

20 600 580 570 550 480 470 3.00 

40 650 630 620 610 510 500 3.01 

60 700 680 660 640 530 520 3.02 

80 750 720 700 690 550 540 3.03 

100 830 800 740 730 590 580 3.05 

 

4.2.4. Communication delay 

 

The suggested downlink is contrasted with Deep Markov Decision Process (DMDP) and the 

Improved Ant Colony Optimization (IACO) [30]. Table 14 of Non-Orthogonal Multiple Access 

and Orthogonal Multiple Access Finite Block length theorem (FBT) [31] compares the proposed 

approach in uplink with the existing approaches. Table 15 records these readings. Figure 14 (a) 

demonstrates the correlation of communication delay in the suggested approach with the recent 

6G algorithms. Table 14 gives the values of values of communication delay in the downlink. The 

comparison of the results reveals that the given approach decreases the downlink communication 

delay to 4.67 milliseconds (ms) (Figure 14, b), which is significantly lower than the delay to 19.1 

milliseconds (Delays Minimization Dynamic Programming, DMDP) and 12.7 milliseconds 

(Iterative Ant Colony Optimization, IACO). This shows that it is more efficient in reducing delay. 

 
Table 14: Communication delays in uplink 

 

Number of Users NOMA OMA Proposed 

20 10.2 8.3 5.1 

40 9.8 7.9 4.8 

60 9.2 7.2 4.6 

80 8.8 6.9 4.5 

100 8.522 6.522 4.53 

 
Table 15: Communication delay in downlink 

 

Number of Users DMDP IACO Proposed 

20 22.3 16.5 5.30 

40 21.0 15.2 5.05 

60 20.0 14.0 4.85 

80 19.5 13.5 4.70 

100 19.1 12.7 4.67 

 

 
(a) Uplink   (b) Downlink 

 

Fig 14 Correlation of communication delay in the proposed approach with recent 6G algorithms 

 

4.2.5. Packet drop 
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Table 16, Table 17, and Figures 15 show Packet Drop Analysis of uplink and downlink. 

Compared to Conventional (3.6%), Q-learning (2.5%), and DRL (1%), the proposed method has 

the lowest percentage (0.6) in the uplink and downlink, which is minimized to minimum loss. 

This is a huge decrease made possible by the effectiveness of the proposed model in reducing the 

number of packets lost and increase the reliability of transmissions. 

 
Table 16: Packet drops in uplink 

 

Number of 

Users 

Conventional 

methods 

Q-learning 

based method 

DRL-based 

methods 

Proposed 

20 5.0 4.4 2.8 1.5 

40 4.7 3.8 2.4 1.2 

60 4.2 3.2 2.0 1.0 

80 3.8 2.8 1.6 0.8 

100 3.6 2.5 1.0 0.6 

 

 
(a) Uplink    (b) Downlink 

 

Fig15: Correlation of packet drop in the proposed approach with recent 6G algorithms 

 
Table 17: Packet drops in downlink 

 

Number 

of Users 

Conventional 

methods 

Q-learning 

based method 

DRL based 

methods 

Proposed 

20 5.0 4.4 2.8 1.5 

40 4.7 3.8 2.4 1.2 

60 4.2 3.2 2.0 1.0 

80 3.8 2.8 1.6 0.8 

100 3.6 2.5 1.0 0.5 

 

4.2.6. Accuracy 

 

Traditional approaches such as the 6G Distributed Hash Table and Blockchain-enabled Federated 

Learning for IoT (6G-DeFLI) [35], Enhanced Congestion Avoidance Model with V Gradient 

Geocast Routing Protocol (V-GGRP) [36] and the Intelligent Osprey Optimized Versatile 

Random Forest (IOO-VRF) model [37] are used for comparison. In 6G-enabled IoT networks, 

HLEVRA performs better with 99. 25 per cent accuracy compared to 6G-DeFLI (98), V- GGRP 

(98. 85), and IOO-VRF (98) (as indicated in Figure 16). It was also found to be robust, scalable, 

and efficient in 6G resource allocation using NS3 simulations of up to 20100 users, with up to 

45x higher throughput, and one hundred ninety percent lower energy consumption and delay and 

packet drop than Conventional, Q-learning, DRL, and Actor-Critic models. 
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Fig 16 Comparison analysis  of Accuracy 

 

4.3. Overall Performance 
 

The summary of Comprehensive Performance Evaluation can be seen in Table 18 which provides a detailed 

overview of the uplink and downlink performance of the proposed system, in 20-100 users, through 

throughput, data rate, energy consumed, delay, packet drop, and accuracy. The findings indicate scalable 

throughput and data rates, and energy consumption and delay increase with heavier loads, and there is also 

varied packet drop with conditions of the network. The suggested HLEVRA framework has a high accuracy 

of 99.25 which proves its high efficiency in 6G conditions. 

 

Table 18: Overall Performance Metrics vs. Number of Users in the Proposed Uplink and Downlink 

Approach  

 
Nu

mbe

r of 

User

s 

Uplink 

Throu

ghput 

(Gbps) 

Downl

ink 

Throu

ghput 

(Gbps) 

Upli

nk 

Data 

Tra

nsfe

r 

Rate 

(kbp

s) 

Dow

nlink 

Data 

Tran

sfer 

Rate 

(kbp

s) 

Uplink 

Energy 

Consu

mption 

(mW) 

Downli

nk 

Energy 

Consu

mption 

(mW) 

Upl

ink 

Del

ay 

(ms

) 

Dow

nlink 

Dela

y 

(ms) 

Upl

ink 

Pac

ket 

Dro

p 

(%) 

Do

wn

lin

k 

Pa

ck

et 

Dr

op 

(%

) 

Acc

ura

cy(

%) 

20 22.779

1 

21.876

2 

1688

.58 

1680.

49 

0.5454 0.6811 0.8

338 

1.050

7 

-

0.0

399 

0.0

36

3 

- 

40 25.938

2 

24.914

2 

1870

.49 

1870.

50 

1.2290 1.4153 1.8

323 

1.960

3 

8.1

110 

8.1

61

1 

- 

60 28.913

1 

27.774

5 

2060

.53 

2060.

66 

1.8606 1.7993 2.7

849 

2.716

1 

0.2

858 

0.3

47

4 

- 

80 31.841

2 

30.747

0 

2250

.51 

2250.

55 

2.4862 2.4227 3.7

057 

3.754

6 

8.2

755 

0.4

59

9 

- 

100 34.803

7 

33.847

8 

2440

.51 

2440.

41 

3.0065 3.0795 4.6

100 

4.645

7 

0.5

137 

8.5

83

1 

99.

25 

 

4.4. Strengths and Weaknesses 
 

The suggested approach has high throughput and low latency in uplink and downlink, effective 

energy consumption with capacity in high user density, and strong resource distribution by bio-

inspired optimization with ensemble prediction. Nonetheless, its analysis is only done in 

simulated conditions, it can add computational load to low-power devices, and it makes ideal 

conditions of channels that might not accurately represent the real-life conditions. 

 

4.5. Statistical Analysis 
 

To assess the statistical soundness of HLEVRA under different network loads, we performed a 

one-way ANOVA test on the throughput measurements inductive on the results in five different 

user situations (20, 40, 60, 80 and 100 users), and 10 randomized experiments. The ANOVA 
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showed a large F-value of 143.31 and p-value of 5.44 × 10 -5, which is statistically significant 

difference in throughput performance of the load conditions. Figure 17 provides a correlation 

between throughput and user load by the 95 percent confidence interval. On increasing the number 

of users, the average throughput tends to reduce slowly as the number of users rises to 100 since 

there is increased network contention. The error bars ensure that there is stable and reliable 

performance, and the robustness of HLEVRA and its stability in different load conditions can be 

determined. 

 

 
 

Fig 17 Throughput vs User Load with Confidence Intervals 

 

5. CONCLUSION 
 

This paper suggests the HLEVRA an intelligent resource allocation system that employs an 

ensemble voting-based approach, along with Horned Lizard Optimization, to offer substantial 

throughput, delay, energy consumption, and packet drop rates enhancements to next-generation 

6G wireless networks. The HLEVRA model was modeled using NS3 platform of multi-cellular 

users. With the increase in the number of users by 20 to 100, the uplink throughput improved 

further by 22.7791 to 34.8037 Gbps and the rate of data transfer rose by 1688.58 to 2440.51 Kbps 

with the energy consumption and delay also lying within acceptable ranges. There were 

improvements in downlink performance that were consistent. A comparative analysis revealed 

HLEVRA to be much more efficient, able to scale and be robust enough to be used in ultra-dense 

and latency-sensitive applications like autonomous car and industrial IoT. 

 

Mobility-conscious allocation of resources, heterogeneous network adaptation (multi-RAT and 

edge computing), energy efficient resource-scheduling modules (adaptive sleep scheduling and 

dynamic power management), multi-objective optimization, and federated learning-based 

distributed control are some of the improvements to be incorporated in the future. The in-the-loop 

testing will be used to verify the feasibility of 6G deployments. 
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