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ABSTRACT

Deep and machine learning (DL/ML) models are extensively used in cybersecurity for threat detection,
particularly in Network Intrusion Detection Systems (NIDS). However, these models remain vulnerable to
adversarial attacks, which can significantly compromise their reliability. Among these threats, black-box
targeted attacks pose a critical risk, where adversaries craft perturbations to disguise malicious activities,
such as DDoS and Botnet traffic, as benign without having direct access to the target model. This study
investigates the impact of two advanced adversarial strategies—Carlini & Wagner (C&W) and Jacobian
Saliency Map Attack (JSMA)—on ML/DL-based NIDS using the CICDD0S2019 dataset, a widely recognized
benchmark for modern cyber threats. The study analysis reveals that C&W reduces classifier accuracy by
31.33% through precise gradient-driven perturbations, while JSMA causes a 26.58% accuracy drop by
strategically modifying key network traffic features like flow duration and packet length. Both attacks operate
under black-box conditions, demonstrating their effectiveness without prior knowledge of the model’s
internal workings. Experiment results observe a trade-off between C&W'’s high-precision perturbations and
JSMA’s efficiency in feature manipulation, highlighting the evolving nature of adversarial threats in
cybersecurity. These findings underscore the urgent need to reassess the robustness of ML/DL-based NIDS
and develop more resilient defense mechanisms.
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1. INTRODUCTION

Traditional Network Intrusion Detection Systems (NIDS) rely heavily on rule-based mechanisms
that use predefined signatures to identify known threats such as malware and port scans, as seen in
tools like Snort (Martin Roesch, 1999) [1]. Although effective for documented attacks, these
systems struggle to detect emerging and adaptive threats, including zero-day exploits and
sophisticated Distributed Denial-of-Service (DDoS) attacks (Khraisat et al., 2019) [2]. Their
dependence on static rules necessitates frequent manual updates, limits scalability, and increases
vulnerability to evasion. Additionally, high false-positive rates often overwhelm security analysts,
reducing overall operational efficiency (Sarker et al., 2020) [3]. These limitations underscore the
growing need for intelligent and adaptive intrusion detection mechanisms capable of identifying
new attack patterns in real time.
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Machine Learning (ML) and Deep Learning (DL) have significantly advanced NIDS by enabling
automated, data-driven threat detection. ML models such as Random Forests and Gradient
Boosting achieve detection accuracies exceeding 98% by analyzing traffic features like packet size
and flow duration (Hasan et al., 2021) [4]. Deep learning architectures, including CNNs, further
enhance performance by learning patterns directly from raw network data (Wang, 2018) [5];
(Alhajjar et al., 2021) [6]. Despite these improvements, ML/DL models remain highly susceptible
to adversarial attacks, where subtle, crafted perturbations mislead classifiers into misclassifying
malicious traffic as benign. Attackers can manipulate features such as packet headers or flow
durations to evade detection (Roshan et al., 2024) [7]; (Haque, 2024) [8], with methods like FGSM
exploiting model sensitivities to drastically reduce detection accuracy (Sheikh & Zafar, 2025) [9];
(Papernot et al., 2017) [10].

Adversarial threats are broadly categorized into white-box and black-box attacks, with the latter
being more realistic since attackers often lack access to model internals (Khraisat et al., 2019) [2].
This work focuses on targeted black-box attacks, where adversaries aim to misclassify specific
malicious flows (e.g., DDoS or botnet traffic). These attacks leverage surrogate models and
adversarial transferability—perturbations crafted for one model successfully deceiving another
(Guo et al., 2021) [11]; (Hirano et al., 2019) [12]; (Govindarajulu et al., 2023) [13]. Using the
CICDD0S2019 dataset (Shafi et al., 2024) [14], this study evaluates two prominent black-box
attacks: Carlini & Wagner (C&W) [15] and the Jacobian Saliency Map Attack (JSMA) [16]. Both
attacks substantially degrade model performance by perturbing features such as flow bytes per
second and packet length. Experimentally, C&W reduced accuracy by 42%, while JSMA caused a
37% reduction, demonstrating the severe vulnerability of ML-based NIDS.

To the best of our knowledge, this work is among the first to experimentally evaluate black-box
adversarial transferability within deep learning-based NIDS. Although numerous studies have
examined adversarial attacks in cybersecurity (Rosenberg et al., 2021) [17]; (Sheikh & Zafar, 2025)
[18]; (Shree V.G. et al., 2025) [19]; (Roshan & Zafar, 2024) [20]; (Vijayalakshmi & Venkatesan,
2025) [21], few have assessed the practical transferability of adversarial examples across different
models. By comparing C&W and JSMA under consistent settings, this study provides critical
insights into the susceptibility of DL-based NIDS and highlights the urgent need for robust defense
strategies.

The main contributions of this paper are:

o Comprehensive evaluation of black-box targeted adversarial attacks (C&W, JSMA) on
ML/DL-based NIDS.

o Analysis of adversarial attack effectiveness using the benchmark CICDD0S2019 dataset.

o Demonstration of model vulnerability with C&W reducing accuracy by 42% and JSMA
by 37%.

o Investigation of adversarial transferability under realistic black-box attack scenarios.

¢ Highlighting the urgent need for robust defenses in ML-driven intrusion detection systems.

2. RELATED WORK

The security of DL-based NIDS has become a major concern due to increasingly sophisticated
adversarial attacks. While adversarial machine learning has been widely studied in computer vision
[22, 23], its application in network security remains limited [24—27]. Most prior studies focus on
gradient-based, evolutionary, and white-box attacks, with fewer addressing realistic black-box
scenarios where adversarial transferability is critical.

Alshahrani et al. [21] showed minimal perturbations can drastically reduce ML-based NIDS
detection accuracy. Clements et al. [28] demonstrated FGSM, JSMA, C&W, and ENM attacks
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degrade DL-based NIDS under white-box assumptions. Usama et al. [29] used GANSs to generate
adversarial traffic for multiple ML classifiers, revealing strong evasion while minimally altering
non-functional features. Pawlicki et al. [30] and Guo et al. [11] confirmed vulnerabilities under
FGSM, PGD, BIM, and BIM-based black-box attacks. Alhajjar et al. [6] applied evolutionary
approaches, showing high evasion rates across diverse ML models.

Earlier works, such as Grosse et al. [31], introduced adversarial training to improve robustness.
Debicha et al. [32] and Saha et al. [33] explored black-box evolutionary and stealthy backdoor
attacks. Sheatsley et al. [34] confirmed that minor perturbations degrade DL-NIDS performance.
Roshan et al. [20] and Sharma & Chen [35] demonstrated effective black-box transferability on
CICIDS and CICDD0S2019 datasets. Wu et al. [36] proposed a Transformer-based NIDS with
improved resilience, while Zhang et al. [37] and Chen et al. [38] highlighted vulnerabilities in
DRL- and ensemble-based NIDS under decision-based and model-substitution attacks.

Despite extensive research, most studies focus on white-box settings, specific models, or limited
attack types, with few providing uniform comparative analyses of targeted black-box attacks. Table
1 summarizes prior works’ datasets, models, attack methods, and evaluation metrics. In contrast,
this study evaluates black-box targeted attacks using surrogate-model transferability, comparing
C&W and JSMA on CICDD0S2019 [39], showing up to 32% accuracy degradation and

emphasizing the need for robust defenses.

Table 1:State-of-the-art adversarial attacks on NIDS and related research.

Study ML/DL Attack Technique Dataset Very Short Key
Algorithms Highlights
Alshahranietal. DT, RF, SVM FGSM, PGD, CIC-1DS-2017, Small perturbations
(2022) [21] JSMA NSL-KDD severely reduce NIDS
accuracy.
Clements et al. DL, AE, FGSM, JSMA, KitNET Model-aware attackers
(2021) [28] Kitsune C&W, ENM easily generate effective
adversarial inputs.
Usama et al. GAN, DNN, GAN Attack KDDCUP-99 GAN creates strong
(2019) [29] SVM, RF, etc. attacks while preserving
functional traffic.
Pawlicki et al. ANN, RF, FGSM, PGD, CICIDS-2017 Comprehensive
(2020) [30] SVM, BIM, C&W evaluation shows major
AdaBoost vulnerability across
models.
Guo et al. MLP, CNN, BIM KDDCUP-99, Black-box adversarial
(2021) [11] SVM, ResNet CSE-CIC- flows achieve high
IDS2018 evasion rates.
Alhajjar et al. SVM, DT, NB, PSO, GA, GAN NSL-KDD, Evolutionary methods
(2021) [6] KNN, RF, etc. UNSW-NB15 generate highly
misclassifying
adversarial samples.
Grosse et al. DNN FGSM NSL-KDD Early evidence of DNN
(2017) [31] vulnerability; introduced
adversarial training.
Debicha et al. CNN-based GA, RL CICDD0S2019 RL-based attacks
(2023) [32] NIDS outperform gradient-

based ones in black-box
settings.
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Saha et al. Deep Learning  Backdoor Attack

(2020) [33] models

Sheatsley etal. = Autoencoder AAE

(2022) [34] NIDS

Roshan et al. ML-based Transferability

(2024) [20] NIDS Attack

Sharma & Chen = DL-based NIDS = Black-box

(2024) [35] Perturbation

Wu et al. (2022) = Transformer- Adversarial

[36] based NIDS Robustness
Evaluation

Zhang et al. DRL-based Decision-based

(2020a) [37] NIDS Attack

Chen et al. Ensemble- Model

(2020) [38] based NIDS Substitution

3. MATERIAL AND METHODS

Custom

CICIDS-2017

CICIDS-2017,

NSL-KDD

CICDDo0S2019

Benchmark IDS

UNSW-NB15

CICIDS-2018

Hidden triggers enable
stealthy and hard-to-
detect attacks.
AAE-generated
perturbations drastically
reduce detection
accuracy.

Strong black-box
transferability observed
across models.

Tiny perturbations cause
severe degradation in DL
NIDS.

RTIDS shows better but
not perfect adversarial
resilience.

DRL NIDS highly
vulnerable to decision-
based evasion.
Surrogate ensemble
models generate strong
evasive samples.

This study uses a surrogate-model-based approach to evaluate targeted black-box adversarial
attacks on DL-based NIDS. As shown in Figure 1, a target DL-NIDS model is first trained on the
CICDD0S2019 dataset. A surrogate model is then trained separately without access to the target’s
internal structure to approximate its decision boundaries. Using C&W and JSMA attacks,
adversarial examples are generated on the surrogate model by modifying key network features
(e.g., flow duration, packet length) to misclassify targeted malicious traffic as benign. These
samples are then transferred to the target model to test their effectiveness. Results show that the
attacks significantly reduce detection performance, exposing critical vulnerabilities in current
ML/DL-based NIDS and emphasizing the need for stronger defenses.
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Figure 1: Proposed targeted attack on target NIDS
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3.1. Dataset description

The CICDD0S2019 dataset (Sharafaldin et al., 2019) is a modern benchmark created to overcome
the limitations of older IDS datasets like KDDCUP-99 and CICIDS-2017. It contains realistic
benign and DDoS attack traffic captured in a controlled network environment.

e Day 1: 7 attacks — NetBIOS, PortMap, LDAP, MSSQL, UDP, UDP-Lag, SYN

e Day 2: 12 attacks — including SSDP, SNMP, WebDDoS, NTP, DNS amplification, TFTP,

etc.

Traffic was collected using a testbed of Ubuntu servers, Windows clients, and Fortinet firewalls.
Benign traffic was generated using the B-Profile system. The dataset is widely used for evaluating
ML/DL-based IDS, especially under adversarial conditions (Goldschmidt et al., 2025). It is
available in:

e PCAP format (raw packets)

e CSV format (preprocessed flows)
Each flow includes 80+ features such as packet lengths, flow duration, packet rate, inter-arrival
times, and IP information.

3.2. Data Preprocessing

A balanced subset of 227,148 samples was selected (107,764 benign and 119,384 attack). Missing
or infinite values were replaced with feature-wise means. Data was split into 60% training and 40%
testing with a fixed random seed (42). All numeric features were standardized using formulae:

xscaled= xc;” where X is the raw feature value, p is the mean, and o is the standard deviation. This

preprocessing ensures the dataset's suitability for evaluating the performance and robustness of
ML/DL-based network intrusion detection systems under adversarial attack conditions. Table 2
details the dataset class distribution. Figure 2 demonstrates the data preprocessing steps.

Table 2: Dataset description

Category Value

Total Samples 227,148

Training Samples 136,288(60%)

Testing Samples 90,860(40%)

Training-testing split ratio 60:40

Random State 42

Total Benign and Attack Samples (BENIGN’, ’DDoS”) —(107,764 , 119,384)
Training Benign and Attack Samples | CBENIGN’, "DDoS’) — (64,517 , 71,717)
Testing Benign and Attack Samples | CBENIGN’, "DDoS’) — (43193, 47,667)

CiCIDDosS
Netwrok Traffic

Chie sel threshold

o Used correlation method to
identify relevant features.
Dataset «  Dropped features below a

«  Spht dataset into 60% training Training Dataset
and 40% testing (60%)
« Ensured balanced distribution
for model evaluation

Feature
Normalization

Training Data

lakse

«  Checked for null and infinity Feature
values. Selection
«  Replace missing values with
mean/median

« Applied StandardScaler to

« Ensured data consistency

b Y-

Testing Dataset
(40%)
Splitting

ze fi
normalize features Testing Data

for training
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Figure 2: Data preprocessing steps
3.3. Deep Learning-Based NIDS for binary classification (Benign vs. DDoS Detection)

A Deep Neural Network (DNN) forms the basis of both the target and surrogate models employed
in this study. The DNN is specifically designed for network traffic classification, enabling accurate
differentiation between benign and malicious traffic using extracted network flow features. The
network comprises multiple fully connected layers, with nonlinear activation functions applied
between layers to effectively model complex feature interactions inherent in network data.

In this study, network intrusion detection is formulated as a binary classification problem aimed at
distinguishing between benign and DDoS attack traffic. Given a labelled dataset D as shown in
Equation (1).

D={(x;,y)}y, x€R™ y;€{0,1} 1)

where x; represents the input feature vector extracted from network flows, consisting of m features,
and y; indicates the corresponding binary class label defined as:

_ {0 if x; is benign traffic
Yi=11 ifx; is DDoS attack traffic

The DL-based classifier (DenseNet-121 in this study) aims to approximate a function f,
parameterized by 6, to map each feature vector x; to a probability estimate ;, shown in Equation
(2). The training objective is to minimize the binary cross-entropy loss function £(8), defined in
Equation (3).

Yi=f(xi;0), $:€[0,1] )
v ®
£O) =~ ) [ylog() + (1 - ylog(1 - 39
i=1

During inference, the predicted probability y; is converted into a binary classification decision
Veass Dased on a threshold T, typically set at 0.5 :

A _ {1 ify, =T
Yelass 0 otherwise

The model performance is evaluated through standard classification metrics such as accuracy,
precision, recall, and F1-score, ensuring a comprehensive assessment of its ability to effectively
distinguish benign traffic from DDoS attack traffic.

3.4. Targeted NIDS model (model under attack)

In this study, the target NIDS refers to the main DL-based model that adversaries aim to deceive.
The attacker generates adversarially modified network packets to force the model into
misclassifying malicious traffic such as DDoS flows as benign. The target model is first trained
normally, without perturbations, to establish a strong baseline for accurate classification. This
allows a clear evaluation of how adversarial attacks degrade its performance.
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3.4.1.Architecture of target NIDS

The targeted NIDS uses a fully connected DNN optimized for binary traffic classification. It
includes three dense hidden layers with ReLU activation to learn complex patterns, along with
dropout to reduce overfitting. A final sigmoid layer outputs benign or malicious labels. The full
architecture is shown in Table 3.

Table 3: Architecture and Hyperparameters of Target NIDS

Layer Description Output Shape | Parameters
Input 80 (80 features) 80 -
Dense-1 128 neurons, Rel. U activation | 128 10,368
Dropout-1 | Dropout rate: 0.2 128 0
Dense-2 64 neurons, ReL U activation | 64 8,256
Dropout-2 | Dropout rate: 0.2 64 0
Dense-3 32 neurons, ReL U activation | 32 2,080
Output 1 neuron, sigmoid activation | 1 33

The purpose of developing and optimizing this targeted NIDS model is to create a realistic scenario
in which its robustness and vulnerabilities to adversarial attacks can be systematically evaluated.
The subsequent phase of this study (Section 5.3) involves constructing a surrogate model to craft
targeted adversarial attacks without access to the internal details of this targeted NIDS.

3.4.2.Model training and hyperparameters

To ensure effective performance, the parameters and hyperparameters selected to train and
optimize the target NIDS model are detailed in Table 4.

Table 4: Hyperparameters and Training Parameters

Parameter/Hyperparameter Selected Value
Input Feature Dimension 80
Optimizer Adam

Learning Rate
Loss Function

0.001

Binary Cross-Entropy

Batch Size 128

Epochs 40
Early Stopping Patience = 10 epochs

Dropout Rate 0.2

These parameters were chosen based on experimental tuning and standard NIDS best practices.
The fully connected layers (128—64—32) effectively capture hierarchical patterns, while ReLU
activations ensure stable convergence. A 0.2 dropout rate limits overfitting, and the sigmoid output
suits binary classification. Adam (learning rate 0.001) provides fast, adaptive optimization, and
binary cross-entropy is ideal for evaluating classification performance. Training for 50 epochs with
a batch size of 128 offers a strong balance between efficiency and convergence, with early stopping
further preventing overfitting.

3.5. Surrogate NIDS model (substitute model)
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In real-world cyberattacks, attackers typically have no access to a NIDS model’s internal
architecture or parameters, creating a black-box setting. To bypass this, they train a surrogate model
on the same dataset to approximate the target model’s behavior. Once the surrogate model achieves
similar decision boundaries reflected by comparable validation accuracy they generate adversarial
examples on it. Owing to adversarial transferability, these crafted samples can still mislead the
target NIDS, making the attack effective despite the lack of internal model knowledge. Equation
(4) represents this alignment.

fsurrogate (x) i ftarget (x) (4)

After achieving this approximation, the attacker crafts adversarial examples x* on the surrogate
model by perturbing an original malicious input sample x, as illustrated in Equation (5).

X*=x+6 (5)

Here, & represents a small perturbation strategically introduced using adversarial attack algorithms,
such as Carlini & Wagner (C&W) and Jacobian Saliency Map Attack (JSMA).

In a targeted black-box scenario, the malicious user specifically intends to mislead thle targeted
model into classifying malicious network traffic as benign ( e = 0 ). Mathematically, the

attacker seeks Equation (6).
f target (x*) = Yiarger = 0 (benign class) ©)

Thus, its architecture and hyperparameters are deliberately distinct from the targeted model. The
effectiveness of the surrogate model in approximating the targeted model’s decision boundary
significantly increases the likelihood that these adversarial examples successfully mislead the
targeted model, thus validating the susceptibility of the targeted NIDS under realistic black-box
attack scenarios.

3.5.1.Architecture of surrogate model

The surrogate model is intentionally designed with a different architecture and hyperparameters
than the target model to reflect realistic attacker conditions. It consists of an input layer, two dense
hidden layers with ReLLU activation and dropout to reduce overfitting, and a sigmoid output layer
for binary classification. Its main purpose is to approximate the target model’s decision boundaries
closely enough to generate adversarial examples that successfully transfer and deceive the target
NIDS. Table 5 outlines the surrogate model architecture, while Table 6 presents its training
parameters and hyperparameters

Table 5: Surrogate NIDS Model Architecture

Layer Description Output Shape | Parameters
Input Input features (80) 80 -

Dense-1 256 neurons, ReL U activation | 256 20,736
Dropout-1 | Dropout rate: 0.3 256 0

Dense-2 128 neurons, ReL U activation | 128 32,896
Dropout-2 | Dropout rate: 0.3 128 0

Output 1 neuron, sigmoid activation | 1 129

Table 6: Hyperparameters and Training Parameters of Surrogate NIDS
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Parameter/Hyperparameter | Selected Value

Input Feature Dimension 80

Optimizer Adam

Learning Rate 0.001

Loss Function Binary Cross-Entropy
Batch Size 64

Epochs 40

Dropout Rate 0.3

Early Stopping Patience = 10 epochs

3.6. Proposed targeted attack on target NIDS

This study employs two advanced adversarial attack techniques—JSMA and C&W—t0 assess
targeted vulnerabilities in the NIDS. In targeted attacks, adversarial examples are crafted to
intentionally mislead the model into classifying malicious traffic as benign. Algorithm 1
summarizes the generation process for these targeted adversarial packets. To replicate real-world
black-box conditions, the perturbations are created using the trained surrogate model and then
transferred to the target NIDS using the principle of adversarial transferability.

Algorithm 1: Proposed Targeted Black-box Adversarial Attack on NIDS

Input: Surrogate model: f;(x), Target NIDS model: f;(x), Original malicious sample: x €
R™, Target class (benign): Y. = d, Attack method: { JSMA, C&W }, Perturbation threshold
(e), iterations (T, learning rate (), confidence (k)
Output: Adversarial example x*
Initialize: Set adversarial example x* « x, perturbation § « 0.
Check Prediction: If f;(x*) = Yiuree , terminate; return x*
Surrogate Model Approximation: f;(x) = f;(x)
Attack Generation (on surrogate model):
If attack type = JISMA:
Generate adversarial perturbation: x* = JSMA(f, X, Yiarget » €)
Else if attack type = C&W :
Generate adversarial perturbation: x* = C&W (f;, X, Yiurget , ¢, @, , T)
Solve optimization: m(gin Il 6 ll,+ c-max (i:‘tmy[ax1 (Z(x+6))—Z(x+ ) yiarger * —;c)
arge!
Transferability: Transfer adversarial example x* from surrogate to target NIDS f; (x*)
Evaluate Attack Success:
If £ (X™) = Yiarget » attack succeeds.
else, attack fails.
Output adversarial example x*

3.6.1.Mathematical formulation of targeted attack

Given a trained surrogate model f; and a targeted NIDS f; both performing classification tasks

(x) : R™ - {0,1}, a targeted adversarial attack generates an adversarial example x* from a
malicious input sample x to achieve a specific target class (benign class yi,et = 0), as illustrated
in Equation (7).

ft(x*) = Ytarget x*=x+86, (7)
where 6 ll,<¢€
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Here, § represents the adversarial perturbation constrained by norm p, and € defines the
permissible perturbation magnitude.

3.6.2.Jacobian Saliency Map Attack (JSMA)

JSMA crafts adversarial examples by iteratively modifying input features based on their saliency
values, aiming to minimize the number of features changed. The Jacobian matrix J¢(x) of the
surrogate model f;(x) is computed as Equation (8). The saliency map S(x, ytarget) for input x
towards target class yi,.q is defined as Equation (9)

_of, 0 _[afken ?
L Y
af) target ) (7f2/ (x) ©)
0 Ifa—xi<00r1’¢yz: a_Xi>0
S . ) | target
( target )1 afo/target (%) aij (x) herwi
| z “ox | Cthenwise
J #Ytarget

At each iteration, features with the highest saliency scores are modified until the targeted
prediction is achieved, or a maximum perturbation threshold is reached.

3.7. Transferring adversarial examples to target NIDS

Adversarial transferability refers to the ability of adversarial examples crafted for one model (the
surrogate) to fool another model (the target) trained independently. Since real attackers lack access
to a NIDS’s internal architecture or parameters, they train a surrogate model on similar data to
approximate the target model’s decision boundaries.

After training, adversarial samples are generated on the surrogate model using C&W and JSMA
attacks. Because of transferability, these perturbations can still mislead the target NIDS, causing
malicious traffic to be classified as benign. This demonstrates that DL-based NIDS remain
vulnerable to realistic black-box adversarial attacks and require stronger defenses.

After generating adversarial examples x* using JSMA and C&W methods on the surrogate model
fs, these examples are evaluated against the targeted NIDS model f;. The attack's success rate is
quantified as the proportion of malicious examples classified as benign by the target model after
perturbation:

Number of Malicious Inputs Misclassified as Benign
Attack Success Rate =

Total Number of Malicious Inputs

This provides a direct measure of the targeted model's vulnerability to black-box targeted
adversarial attacks.

4. EXPERIMENT RESULTS AND DISCUSSION
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This section describes the experimental results, setup, including system configuration, supportive
libraries, testing environment, and evaluation metrics used for assessing the performance of the
proposed targeted adversarial attack against DL-based Network Intrusion Detection Systems
(NIDS).

4.1. Experimental environment and system configuration
The experimental evaluation was conducted on a dedicated workstation configured to handle
complex deep learning computations efficiently. Table 7 details the hardware and software

configuration used in this research.

Table 7: Experimental System Configuration

Component Specifications

Operating System Windows 11 (64-bit)

Processor Intel Core 19-12900H, 2.50 GHz
RAM 32 GB DDR5

GPU NVIDIA RTX 3070 (8 GB GDDR6)
Storage 1TB SSD

Python Python 3.10.5

CUDA Toolkit CUDA 12.0

Development Environment | Jupyter Notebook

This hardware and software configuration ensures sufficient computational power and efficiency
to handle extensive training, evaluation, and adversarial attack simulations required for this
research.

4.2. Testbed environment and supportive libraries

The experiments were carried out using the Jupyter Notebook environment, facilitating clear,
organized, and reproducible research workflows. All experimental files, including trained models,
logs, and output results, were systematically saved for easy retrieval and analysis. Various libraries
were utilized to streamline the research process, enhance productivity, and perform complex
computations efficiently, as detailed in Table 8.

Table 8: Supportive Libraries Used in Experiments

Library Name Purpose/Functionality

TensorFlow (v2.10.0) | Training and evaluation of Deep Learning models
Pandas (v2.2.0) Data manipulation, analysis, preprocessing
NumPy (v1.25.0) Numerical data manipulation and feature scaling

Scikit-learn (v1.2.1) | Data preprocessing, scaling, train-test splitting, evaluation metrics
Matplotlib (v3.7.1) Visualization of performance metrics
ART (v1.15.1) Implementation of adversarial attacks and robustness evaluation

The Adversarial Robustness Toolbox (ART) library was specifically utilized to implement and
analyze the proposed black-box adversarial attacks (JSMA and C&W) effectively.

4.3. Performance evaluation metrics
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The evaluation of the DL-based NIDS performance under adversarial conditions employs several
widely accepted metrics, including accuracy, precision, recall, F1-score, and the ROC-AUC curve.
These metrics comprehensively assess the impact of targeted black-box adversarial attacks on the
performance of the proposed NIDS model, ensuring a clear quantitative analysis of vulnerabilities
and robustness.

4.4. Results and discussion

The study first evaluated the performance of the target and surrogate NIDS on clean (non-
adversarial) network data. Both models accurately classified benign and malicious traffic,
demonstrating effective generalization. The surrogate model, trained independently to mimic the
target model, then generated adversarial examples. When these adversarial samples were tested on
the target model, they successfully fooled it, causing a significant drop in accuracy and confirming
the model’s vulnerability to surrogate-based attacks.

4.4.1.Performance of target and surrogate NIDS on clean data

Using the CICDD0S-2019 dataset, both models were trained for 40 epochs with a batch size of
4048 and a validation split of 0.2. The target model achieved peak training and validation
accuracies of 98.45% and 98.51%, respectively, with minimal losses of 0.0356 (training) and
0.0347 (validation). The close alignment of accuracy and loss curves (Figure 3) indicates strong
generalization and minimal overfitting.

Target Model Loss Target Model Accuracy

07 —— Training Loss —— Training Accuracy

validation Loss 095 Validation Accuracy
0.6
05
0.4
03

0.2

01

0.0

o 5 10 15 20 25 30 35 40 o 5 10 15 20 25 30 35 40
Epoch Epoch

Figure 3: Loss and accuracy curve of target model.

The independently trained surrogate model achieved 99.12% training accuracy and 99.08%
validation accuracy, demonstrating strong generalization without overfitting. Training and
validation losses decreased to 0.0291 and 0.0302, respectively, confirming stable and effective
learning. Figure 4 shows the accuracy and loss curves, which remain smooth and stable throughout
training, indicating robust model performance.

Surrogate Model Loss Surrogate Model Accuracy
1.00 4
0.6 — Training Loss —— Training Accuracy
validation Loss validation Accuracy

r T T T T T T T r T T T T T T T T T
1] 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Epoch Epoch
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Figure 4: Loss and accuracy curve of surrogate model

Table 9 and Figure 5 show that the surrogate model slightly outperforms the target model across
all metrics—accuracy, precision, recall, and F1-score—indicating stronger generalization and
better attack detection. Its close performance alignment with the target model confirms its
suitability for generating effective adversarial samples.

Table 9: comparison of target and surrogate model on clean data

Metric | Target Model (%) | Surrogate Model (%)
Accuracy 98.45 99.12
Precision 97.57 99.05

Recall 97.61 98.98
F1-Score 97.57 99.01

Classification Metrics - Surrogate and Target Models

100 o 29,12 98 .45

80
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" e
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Figure 5: Comparison of metrics of target and surrogate model

Figure 6 shows confusion matrices for both models on clean data. The target model achieved high
accuracy but had 741 false positives and 490 false negatives. The surrogate model performed
slightly better, with fewer false positives (541) and false negatives (255), indicating more effective
detection of attacks and overall high classification accuracy with low misclassification rates.
Overall, both models demonstrated high classification accuracy on clean data, effectively
distinguishing between benign and attack network traffic while maintaining a relatively low

misclassification rate.
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Figure 6: Confusion matrix of target and surrogate model

4.4.2 Evaluation of targeted attacks on target NIDS using JSMA and C&W
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This section provides a comprehensive evaluation of the JSMA and C&W attack on the targeted
NIDS model using a surrogate model for adversarial transferability. The experiments analyze the
impact of different perturbation control values on classification performance, measure key metrics
such as accuracy, precision, recall, and F1-score, and visualize model behavior using accuracy/loss
curves and confusion matrices.

4.4.2.1.Experimental setup for JISMA and C&W attacks

For a structured evaluation, we define the parameters of JSMA and C&W attacks arbitrarily while
ensuring a controlled adversarial attack scenario. Table 10 and 11 presents the selected parameters.
These tables define the core parameters used in JSMA and C&W attacks for adversarial sample
generation. The JSMA attack selects the most influential input features and modifies them
iteratively within a fixed perturbation budget (0). In contrast, the C& W attack optimizes adversarial
perturbations by minimizing the L2 norm while ensuring misclassification with high confidence

().

Table 10: Parameters for JSMA Attack

Parameter Value
Perturbation Budget (0) 0.1
Maximum Feature Change (y) 10%
Iterations 100
Feature Selection Method Saliency-Based
Attack Type Targeted

Table 11: Parameters for C&W Attack

Parameter Value
Optimization Constraint (c) 1.0
Confidence Factor (k) 0.5
L2 Norm Minimization Enabled
. Iterations 1,000
4.4.2.2 Evaluating  the Attack Type Targeted performance of JSMA

and C&W under multiple paramterlevels
Attacks were tested under five perturbation levels. Increasing 6 and y strengthens the attack,
reducing accuracy, recall, and F1-score. At low perturbations (6=0.1, y=0.1), the target model
achieves 96.45% accuracy, dropping to 72.54% at higher values (6=0.5, y=0.3). The surrogate
model consistently performs slightly better, confirming its effectiveness in approximating the
target model and generating transferable adversarial examples.

Table 12: JSMA Attack Parameter Variations and Performance Metrics

0 Y S Accura | Precisio | Recall F1- Accurac | Precisi | Recall F1-Score
cy n (Target | (Target | Score y on (Surrogat | (Surrogat
(Target | Model) | Model) | (Target | (Surroga | (Surrog | e Model) | e Model)
Model) Model) | te ate

Model) Model)

0.1 |01 [50 |96.45% | 95.87% | 95.92% | 95.89% | 97.12% | 96.78% | 96.84% 96.81%

0.2 | 0.15] 100 | 93.87% | 93.45% | 93.52% | 93.48% | 94.65% | 94.28% | 94.33% 94.30%

0.3 | 0.2 | 150 | 89.34% | 89.01% | 89.08% | 89.05% | 91.23% | 90.94% | 90.98% 90.96%

04 [ 0.25] 200 | 81.78% | 81.32% | 81.40% | 81.36% | 85.92% | 85.43% | 85.49% 85.46%

05 |03 | 250 | 72.54% | 72.15% | 72.21% | 72.18% | 78.65% | 78.21% | 78.28% 78.24%
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The C&W parameter variations in Table 13 show how changes in confidence (c), attack strength
(x), and learning rate (o) affect adversarial effectiveness. At low perturbation levels (c=0.5, ¥=0.0),
the target model maintains high accuracy (95.12%). As ¢ and « increase, the attack becomes
stronger, reducing accuracy to 67.12% at the highest parameter setting. The surrogate model
consistently performs 3-4% better across all configurations, indicating strong but not perfect
transferability. Precision, recall, and Fl-score all decline as perturbation strength increases,
reflecting growing misclassification and performance degradation.

Table 13: C&W Attack Parameter Variations and Performance Metrics

Accuracy | Precision (131,?1‘“1 F1-Score | Accuracy Precision Recall F1-Score

c K a s (Target (Target ¢ g (Target | (Surrogate | (Surrogat | (Surrogat | (Surrogat
Model) Model) Model) Model) Model) e Model) e Model) e Model)

0.5 100 001 | 500 95.12% 94.85% | 94.89% | 94.87% 96.43% 96.15% 96.20% 96.17%
1.0 | 0.5 | 0.05 | 1000 90.67% 90.35% | 90.42% | 90.38% 92.18% 91.84% 91.90% 91.87%
15 | 1.0 ] 0.1 1500 84.23% 83.89% 83.95% | 83.92% 86.76% 86.34% 86.40% 86.37%
20 | 1.5] 0.15 | 2000 76.54% 76.12% | 76.19% | 76.15% 80.23% 79.78% 79.85% 79.81%
25 20] 02 | 2500 67.12% 66.78% | 66.84% | 66.81% 71.43% 71.05% 71.12% 71.08%

The confusion matrices in Figure 7 shows the confusion matrices for JSMA targeted attacks on the
NIDS model. When targeting benign classification, 82.18% of DDoS attacks are misclassified as
benign, increasing false negatives, while 93.33% of benign traffic is correctly classified. When
targeting DDoS classification, 89% of benign samples are misclassified as attacks, raising false
positives, and 92.72% of DDoS traffic remains correctly detected. These results demonstrate how
JSMA can force specific misclassifications, highlighting the model’s vulnerability and the need for
robust adversarial defenses.

JSMA Targeted Attack to Benign (Misclassifying DDoS as Benign) JSMA Targeted Attack to DDoS (Misclassifying Benign as DDoS)
40000
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Figure 7: Confusion matrix of JSMAtargeted adversarial attack on target NIDS.

The confusion matrices for the C&W targeted attack in Figure 8 shows the confusion matrices for
C&W targeted attacks on the NIDS model. When targeting benign classification, 85.33% of DDoS
attacks are misclassified as benign, while 89.18% of benign traffic is correctly classified, with
10.82% false positives. When targeting DDoS classification, 87.75% of benign samples are
misclassified as attacks, and 90.15% of DDoS traffic is correctly detected, with 9.85% false
negatives. These results demonstrate that C&W attacks effectively manipulate classification,
highlighting the model’s vulnerability and the need for stronger adversarial defenses.
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Figure 8: Confusion matrix of C&W targeted adversarial attack on targeted NIDS.
4.4.3.Comparative analysis of JSMA and C&W on Black-Box attacks on NIDS

This section presents a detailed comparative analysis of the JSMA and C&W attacks on black-box
NIDS. Both attacks generate adversarial examples that manipulate the NIDS into misclassifying
network traffic, significantly affecting detection performance. However, these attacks differ in their
effectiveness, computational cost, feature manipulation strategies, and impact on classification
metrics. Table 14 briefly outlines the comparative performance of JSMA and C&W on various
parameters.

4.4.3.1.Effectiveness and impact on model performance

The C&W attack demonstrated a greater accuracy drop of 31.33% compared to JSMA, which
reduced accuracy by 26.58%. Additionally, both attacks significantly reduced recall, leading to a
substantial increase in false negatives. The recall of the target NIDS dropped from 97% to 20%
under C&W attacks and 25% under JSMA attacks, meaning the model failed to detect most DDoS
traffic. This highlights the severe impact of adversarial perturbations on the detection capability of
ML-based NIDS.

4.4.3.2.Computational cost and transferability

The JSMA attack is more computationally efficient, requiring approximately 100 iterations per
attack to craft adversarial examples. However, it modifies only a few important network features,
making it easier to detect. In contrast, the C&W attack is computationally more expensive,
requiring around 1,000 to 2,500 iterations per attack but achieving higher stealthiness by
distributing perturbations across multiple features.

Both attacks exhibit high transferability, meaning adversarial examples generated on the surrogate
model were highly effective in fooling the target model, with only a 3-4% gap in misclassification
rates between them. This confirms that black-box targeted adversarial attacks are feasible and
effective even when the attacker lacks direct knowledge of the NIDS.

Table 14: Comparative Analysis of JSMA and C&W Attacks on NIDS

Aspect | JSMA Attack | C&W Attack
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Attack effectiveness Reduces accuracy by 26.58% Reduces accuracy by 31.33%
Targeted 82.18% of DDoS traffic misclassified | 85.33% of DDoS traffic misclassified
misclassification as benign as benign
Computational cost Low, requires around 100 iterations High, requires around 1,000-2,500
per attack iterations per attack
Transferability High, adversarial samples generated Very high, with an even greater ability
on the surrogate model misclassify the to transfer adversarial examples
target model with small accuracy gap effectively
(3-4%)
Impact on recall Recall dropped from 97% to 25%, Recall dropped from 97% to 20%,
(detection of attacks) increasing false negatives significantly increasing false negatives
Impact on precision More false positives, reducing Higher false positives, reducing
precision to 72% precision to 67%
Impact on f1-score F1-score dropped from 97% to mid- | F1-score dropped from 97% to low-60s
60s

Both attacks significantly reduced precision, meaning the model classified more benign traffic as
malicious. C&W reduced precision to 67%, whereas JSMA lowered precision to 72%, indicating
that C&W causes more false positives. Similarly, the f1-score dropped from 97% to the mid-60s
under JSMA and to the low-60s under C&W, confirming a substantial performance degradation
across all classification metrics.

Comparing JSMA and C&W attacks shows that C&W is more effective and stealthy but
computationally intensive, while JSMA is faster but more detectable due to modifying fewer
features. Both attacks degrade recall, increasing false negatives and allowing DDoS traffic to
bypass detection. Their strong transferability confirms that adversarial examples from a surrogate
model can successfully deceive the target NIDS, highlighting the vulnerability of ML-based
intrusion detection systems and the need for robust defenses.

5. LIMITATION AND FUTURE SCOPE

This study demonstrates the susceptibility of ML-based NIDS to targeted black-box adversarial
attacks but is constrained by several factors. The analysis is limited to two attack methods JSMA
and C&W—excluding other powerful strategies such as DeepFool, AutoAttack, and decision-
based attacks. Experiments were conducted only on the CICDD0S2019 dataset, which may restrict
generalizability to diverse network conditions. Additionally, the surrogate and target models were
trained on the same dataset, whereas real-world attackers often rely on limited or mismatched data.
The computational cost of the C&W attack further limits its practicality for real-time large-scale
deployment, and the study focuses solely on deep learning models without examining advanced
architectures like transformers, GNNSs, or ensemble-based NIDS.

Future research should broaden the evaluation by incorporating multiple datasets (e.g., NSL-KDD,
CICIDS-2017, CSE-CIC-IDS2018) to enhance generalizability. Exploring additional adversarial
attack techniques, optimizing low-cost attack strategies, and studying transferability across
surrogate models trained on different data sources will provide deeper insights. Moreover,
integrating defense strategies—including adversarial training, input preprocessing, and robust
feature engineering—can help strengthen model resilience. Extending this framework to advanced
model architectures and other cybersecurity areas such as malware detection, phishing, and
anomaly analysis offers promising directions for future work.

6. CONCLUSION
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This study demonstrates the vulnerabilities of deep learning-based NIDS to targeted black-box
adversarial attacks. Using a surrogate model, adversarial examples generated via JSMA and C&W
attacks successfully misled the target NIDS, causing significant drops in detection accuracy. The
C&W attack was more effective but computationally intensive, while JSMA offered a balance of
efficiency and stealth. Both attacks notably increased false negatives, allowing malicious traffic to
evade detection and highlighting serious cybersecurity risks. These findings underscore the
importance of robust defense mechanisms, including adversarial training, feature selection, and
hybrid strategies. Evaluating attacks across additional datasets and advanced models can further
improve understanding of adversarial robustness. Overall, the study identifies critical weaknesses
in existing NIDS and provides insights for designing more resilient and secure intrusion detection
systems.
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