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ABSTRACT 

 
Deep and machine learning (DL/ML) models are extensively used in cybersecurity for threat detection, 

particularly in Network Intrusion Detection Systems (NIDS). However, these models remain vulnerable to 

adversarial attacks, which can significantly compromise their reliability. Among these threats, black-box 

targeted attacks pose a critical risk, where adversaries craft perturbations to disguise malicious activities, 

such as DDoS and Botnet traffic, as benign without having direct access to the target model. This study 
investigates the impact of two advanced adversarial strategies—Carlini & Wagner (C&W) and Jacobian 

Saliency Map Attack (JSMA)—on ML/DL-based NIDS using the CICDDoS2019 dataset, a widely recognized 

benchmark for modern cyber threats. The study analysis reveals that C&W reduces classifier accuracy by 

31.33% through precise gradient-driven perturbations, while JSMA causes a 26.58% accuracy drop by 

strategically modifying key network traffic features like flow duration and packet length. Both attacks operate 

under black-box conditions, demonstrating their effectiveness without prior knowledge of the model’s 

internal workings. Experiment results observe a trade-off between C&W’s high-precision perturbations and 

JSMA’s efficiency in feature manipulation, highlighting the evolving nature of adversarial threats in 

cybersecurity. These findings underscore the urgent need to reassess the robustness of ML/DL-based NIDS 

and develop more resilient defense mechanisms.  
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1. INTRODUCTION 

 

Traditional Network Intrusion Detection Systems (NIDS) rely heavily on rule-based mechanisms 
that use predefined signatures to identify known threats such as malware and port scans, as seen in 

tools like Snort (Martin Roesch, 1999) [1]. Although effective for documented attacks, these 

systems struggle to detect emerging and adaptive threats, including zero-day exploits and 
sophisticated Distributed Denial-of-Service (DDoS) attacks (Khraisat et al., 2019) [2]. Their 

dependence on static rules necessitates frequent manual updates, limits scalability, and increases 

vulnerability to evasion. Additionally, high false-positive rates often overwhelm security analysts, 

reducing overall operational efficiency (Sarker et al., 2020) [3]. These limitations underscore the 
growing need for intelligent and adaptive intrusion detection mechanisms capable of identifying 

new attack patterns in real time. 
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Machine Learning (ML) and Deep Learning (DL) have significantly advanced NIDS by enabling 
automated, data-driven threat detection. ML models such as Random Forests and Gradient 

Boosting achieve detection accuracies exceeding 98% by analyzing traffic features like packet size 

and flow duration (Hasan et al., 2021) [4]. Deep learning architectures, including CNNs, further 

enhance performance by learning patterns directly from raw network data (Wang, 2018) [5]; 
(Alhajjar et al., 2021) [6]. Despite these improvements, ML/DL models remain highly susceptible 

to adversarial attacks, where subtle, crafted perturbations mislead classifiers into misclassifying 

malicious traffic as benign. Attackers can manipulate features such as packet headers or flow 
durations to evade detection (Roshan et al., 2024) [7]; (Haque, 2024) [8], with methods like FGSM 

exploiting model sensitivities to drastically reduce detection accuracy (Sheikh & Zafar, 2025) [9]; 

(Papernot et al., 2017) [10]. 
 

Adversarial threats are broadly categorized into white-box and black-box attacks, with the latter 

being more realistic since attackers often lack access to model internals (Khraisat et al., 2019) [2]. 

This work focuses on targeted black-box attacks, where adversaries aim to misclassify specific 
malicious flows (e.g., DDoS or botnet traffic). These attacks leverage surrogate models and 

adversarial transferability—perturbations crafted for one model successfully deceiving another 

(Guo et al., 2021) [11]; (Hirano et al., 2019) [12]; (Govindarajulu et al., 2023) [13]. Using the 
CICDDoS2019 dataset (Shafi et al., 2024) [14], this study evaluates two prominent black-box 

attacks: Carlini & Wagner (C&W) [15] and the Jacobian Saliency Map Attack (JSMA) [16]. Both 

attacks substantially degrade model performance by perturbing features such as flow bytes per 
second and packet length. Experimentally, C&W reduced accuracy by 42%, while JSMA caused a 

37% reduction, demonstrating the severe vulnerability of ML-based NIDS. 

 

To the best of our knowledge, this work is among the first to experimentally evaluate black-box 
adversarial transferability within deep learning-based NIDS. Although numerous studies have 

examined adversarial attacks in cybersecurity (Rosenberg et al., 2021) [17]; (Sheikh & Zafar, 2025) 

[18]; (Shree V.G. et al., 2025) [19]; (Roshan & Zafar, 2024) [20]; (Vijayalakshmi & Venkatesan, 
2025) [21], few have assessed the practical transferability of adversarial examples across different 

models. By comparing C&W and JSMA under consistent settings, this study provides critical 

insights into the susceptibility of DL-based NIDS and highlights the urgent need for robust defense 

strategies. 
 

The main contributions of this paper are: 

 
 Comprehensive evaluation of black-box targeted adversarial attacks (C&W, JSMA) on 

ML/DL-based NIDS. 

 Analysis of adversarial attack effectiveness using the benchmark CICDDoS2019 dataset. 
 Demonstration of model vulnerability with C&W reducing accuracy by 42% and JSMA 

by 37%. 

 Investigation of adversarial transferability under realistic black-box attack scenarios. 

 Highlighting the urgent need for robust defenses in ML-driven intrusion detection systems. 
 

2. RELATED WORK 
 

The security of DL-based NIDS has become a major concern due to increasingly sophisticated 
adversarial attacks. While adversarial machine learning has been widely studied in computer vision 

[22, 23], its application in network security remains limited [24–27]. Most prior studies focus on 

gradient-based, evolutionary, and white-box attacks, with fewer addressing realistic black-box 

scenarios where adversarial transferability is critical. 
Alshahrani et al. [21] showed minimal perturbations can drastically reduce ML-based NIDS 

detection accuracy. Clements et al. [28] demonstrated FGSM, JSMA, C&W, and ENM attacks 
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degrade DL-based NIDS under white-box assumptions. Usama et al. [29] used GANs to generate 
adversarial traffic for multiple ML classifiers, revealing strong evasion while minimally altering 

non-functional features. Pawlicki et al. [30] and Guo et al. [11] confirmed vulnerabilities under 

FGSM, PGD, BIM, and BIM-based black-box attacks. Alhajjar et al. [6] applied evolutionary 

approaches, showing high evasion rates across diverse ML models. 
 

Earlier works, such as Grosse et al. [31], introduced adversarial training to improve robustness. 

Debicha et al. [32] and Saha et al. [33] explored black-box evolutionary and stealthy backdoor 
attacks. Sheatsley et al. [34] confirmed that minor perturbations degrade DL-NIDS performance. 

Roshan et al. [20] and Sharma & Chen [35] demonstrated effective black-box transferability on 

CICIDS and CICDDoS2019 datasets. Wu et al. [36] proposed a Transformer-based NIDS with 
improved resilience, while Zhang et al. [37] and Chen et al. [38] highlighted vulnerabilities in 

DRL- and ensemble-based NIDS under decision-based and model-substitution attacks. 

 

Despite extensive research, most studies focus on white-box settings, specific models, or limited 
attack types, with few providing uniform comparative analyses of targeted black-box attacks. Table 

1 summarizes prior works’ datasets, models, attack methods, and evaluation metrics. In contrast, 

this study evaluates black-box targeted attacks using surrogate-model transferability, comparing 
C&W and JSMA on CICDDoS2019 [39], showing up to 32% accuracy degradation and 

emphasizing the need for robust defenses. 

 
Table 1:State-of-the-art adversarial attacks on NIDS and related research. 

 
Study ML/DL 

Algorithms 

Attack Technique Dataset Very Short Key 

Highlights 

Alshahrani et al. 

(2022) [21] 

DT, RF, SVM FGSM, PGD, 

JSMA 

CIC-IDS-2017, 

NSL-KDD 

Small perturbations 

severely reduce NIDS 

accuracy. 

Clements et al. 

(2021) [28] 

DL, AE, 

Kitsune 

FGSM, JSMA, 

C&W, ENM 

KitNET Model-aware attackers 

easily generate effective 

adversarial inputs. 

Usama et al. 

(2019) [29] 

GAN, DNN, 

SVM, RF, etc. 

GAN Attack KDDCUP-99 GAN creates strong 

attacks while preserving 

functional traffic. 

Pawlicki et al. 
(2020) [30] 

ANN, RF, 
SVM, 

AdaBoost 

FGSM, PGD, 
BIM, C&W 

CICIDS-2017 Comprehensive 
evaluation shows major 

vulnerability across 

models. 

Guo et al. 

(2021) [11] 

MLP, CNN, 

SVM, ResNet 

BIM KDDCUP-99, 

CSE-CIC-

IDS2018 

Black-box adversarial 

flows achieve high 

evasion rates. 

Alhajjar et al. 

(2021) [6] 

SVM, DT, NB, 

KNN, RF, etc. 

PSO, GA, GAN NSL-KDD, 

UNSW-NB15 

Evolutionary methods 

generate highly 

misclassifying 

adversarial samples. 

Grosse et al. 

(2017) [31] 

DNN FGSM NSL-KDD Early evidence of DNN 

vulnerability; introduced 

adversarial training. 

Debicha et al. 

(2023) [32] 

CNN-based 

NIDS 

GA, RL CICDDoS2019 RL-based attacks 

outperform gradient-
based ones in black-box 

settings. 
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Saha et al. 

(2020) [33] 

Deep Learning 

models 

Backdoor Attack Custom Hidden triggers enable 

stealthy and hard-to-

detect attacks. 

Sheatsley et al. 

(2022) [34] 

Autoencoder 

NIDS 

AAE CICIDS-2017 AAE-generated 

perturbations drastically 

reduce detection 

accuracy. 

Roshan et al. 
(2024) [20] 

ML-based 
NIDS 

Transferability 
Attack 

CICIDS-2017, 
NSL-KDD 

Strong black-box 
transferability observed 

across models. 

Sharma & Chen 

(2024) [35] 

DL-based NIDS Black-box 

Perturbation 

CICDDoS2019 Tiny perturbations cause 

severe degradation in DL 

NIDS. 

Wu et al. (2022) 

[36] 

Transformer-

based NIDS 

Adversarial 

Robustness 

Evaluation 

Benchmark IDS RTIDS shows better but 

not perfect adversarial 

resilience. 

Zhang et al. 

(2020a) [37] 

DRL-based 

NIDS 

Decision-based 

Attack 

UNSW-NB15 DRL NIDS highly 

vulnerable to decision-

based evasion. 

Chen et al. 

(2020) [38] 

Ensemble-

based NIDS 

Model 

Substitution 

CICIDS-2018 Surrogate ensemble 

models generate strong 

evasive samples. 

 

3. MATERIAL AND METHODS 
 

This study uses a surrogate-model-based approach to evaluate targeted black-box adversarial 

attacks on DL-based NIDS. As shown in Figure 1, a target DL-NIDS model is first trained on the 
CICDDoS2019 dataset. A surrogate model is then trained separately without access to the target’s 

internal structure to approximate its decision boundaries. Using C&W and JSMA attacks, 

adversarial examples are generated on the surrogate model by modifying key network features 
(e.g., flow duration, packet length) to misclassify targeted malicious traffic as benign. These 

samples are then transferred to the target model to test their effectiveness. Results show that the 

attacks significantly reduce detection performance, exposing critical vulnerabilities in current 

ML/DL-based NIDS and emphasizing the need for stronger defenses. 
 

 
 

Figure 1: Proposed targeted attack on target NIDS 
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3.1. Dataset description 

 
The CICDDoS2019 dataset (Sharafaldin et al., 2019) is a modern benchmark created to overcome 

the limitations of older IDS datasets like KDDCUP-99 and CICIDS-2017. It contains realistic 

benign and DDoS attack traffic captured in a controlled network environment. 
 Day 1: 7 attacks — NetBIOS, PortMap, LDAP, MSSQL, UDP, UDP-Lag, SYN 

 Day 2: 12 attacks — including SSDP, SNMP, WebDDoS, NTP, DNS amplification, TFTP, 

etc. 

Traffic was collected using a testbed of Ubuntu servers, Windows clients, and Fortinet firewalls. 
Benign traffic was generated using the B-Profile system. The dataset is widely used for evaluating 

ML/DL-based IDS, especially under adversarial conditions (Goldschmidt et al., 2025). It is 

available in: 
 PCAP format (raw packets) 

 CSV format (preprocessed flows) 

Each flow includes 80+ features such as packet lengths, flow duration, packet rate, inter-arrival 

times, and IP information. 
 

3.2. Data Preprocessing 
 

A balanced subset of 227,148 samples was selected (107,764 benign and 119,384 attack). Missing 

or infinite values were replaced with feature-wise means. Data was split into 60% training and 40% 

testing with a fixed random seed (42). All numeric features were standardized using formulae: 

xscaled=  
𝑥−𝛍

𝛔
, where x is the raw feature value, μ is the mean, and σ is the standard deviation. This 

preprocessing ensures the dataset's suitability for evaluating the performance and robustness of 
ML/DL-based network intrusion detection systems under adversarial attack conditions. Table 2 

details the dataset class distribution. Figure 2 demonstrates the data preprocessing steps. 

 
Table 2: Dataset description 

 
Category Value 

Total Samples 227,148 

Training Samples 136,288(60%) 

Testing Samples 90,860(40%) 

Training-testing split ratio 60:40 

Random State 42 

Total Benign and Attack Samples (’BENIGN’, ’DDoS’) –(107,764 , 119,384) 

Training Benign and Attack Samples (’BENIGN’, ’DDoS’) – (64,517 , 71,717) 

Testing Benign and Attack Samples (’BENIGN’, ’DDoS’) – (43193 , 47,667) 
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Figure 2: Data preprocessing steps 

 

3.3. Deep Learning-Based NIDS for binary classification (Benign vs. DDoS Detection) 
 
A Deep Neural Network (DNN) forms the basis of both the target and surrogate models employed 

in this study. The DNN is specifically designed for network traffic classification, enabling accurate 

differentiation between benign and malicious traffic using extracted network flow features. The 

network comprises multiple fully connected layers, with nonlinear activation functions applied 
between layers to effectively model complex feature interactions inherent in network data. 

 

In this study, network intrusion detection is formulated as a binary classification problem aimed at 

distinguishing between benign and DDoS attack traffic. Given a labelled dataset 𝐷 as shown in 

Equation (1). 

 

𝑫 = {(𝒙𝒊, 𝒚𝒊)}𝒊=𝟏
𝑵 , 𝒙𝒊 ∈ ℝ𝒎, 𝒚𝒊 ∈ {𝟎,𝟏} (1) 

 

where 𝑥𝑖 represents the input feature vector extracted from network flows, consisting of 𝑚 features, 

and 𝑦𝑖 indicates the corresponding binary class label defined as: 
 

𝑦𝑖 = {
0  if 𝑥𝑖 is benign traffic 

1  if 𝑥𝑖 is DDoS attack traffic 
 

 

The DL-based classifier (DenseNet-121 in this study) aims to approximate a function 𝑓, 

parameterized by 𝜃, to map each feature vector 𝑥𝑖 to a probability estimate 𝑦̂𝑖, shown in Equation 

(2). The training objective is to minimize the binary cross-entropy loss function ℒ(𝜃), defined in 
Equation (3). 

𝒚̂𝒊 = 𝒇(𝒙𝒊; 𝜽), 𝒚̂𝒊 ∈ [𝟎,𝟏] (2) 

 

𝓛(𝜽) = −
𝟏

𝑵
∑ 

𝑵

𝒊=𝟏

[𝒚𝒊𝐥𝐨𝐠⁡(𝒚̂𝒊) + (𝟏 − 𝒚𝒊)𝐥𝐨𝐠⁡(𝟏 − 𝒚̂𝒊)] 
(3) 

 

During inference, the predicted probability 𝑦̂𝑖 is converted into a binary classification decision 

𝑦̂class  based on a threshold 𝑇, typically set at 0.5 : 
 

𝑦̂class = {
1  if 𝑦̂𝑖 ≥ 𝑇
0  otherwise 

 

 

The model performance is evaluated through standard classification metrics such as accuracy, 
precision, recall, and F1-score, ensuring a comprehensive assessment of its ability to effectively 

distinguish benign traffic from DDoS attack traffic. 

 

3.4. Targeted NIDS model (model under attack) 
 

In this study, the target NIDS refers to the main DL-based model that adversaries aim to deceive. 
The attacker generates adversarially modified network packets to force the model into 

misclassifying malicious traffic such as DDoS flows as benign. The target model is first trained 

normally, without perturbations, to establish a strong baseline for accurate classification. This 
allows a clear evaluation of how adversarial attacks degrade its performance. 
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3.4.1.Architecture of target NIDS 
 

The targeted NIDS uses a fully connected DNN optimized for binary traffic classification. It 

includes three dense hidden layers with ReLU activation to learn complex patterns, along with 
dropout to reduce overfitting. A final sigmoid layer outputs benign or malicious labels. The full 

architecture is shown in Table 3. 

 
Table 3: Architecture and Hyperparameters of Target NIDS 

 
Layer Description Output Shape Parameters 

Input 80 (80 features) 80 - 

Dense-1 128 neurons, ReLU activation 128 10,368 

Dropout-1 Dropout rate: 0.2 128 0 

Dense-2 64 neurons, ReLU activation 64 8,256 

Dropout-2 Dropout rate: 0.2 64 0 

Dense-3 32 neurons, ReLU activation 32 2,080 

Output 1 neuron, sigmoid activation 1 33 

 

The purpose of developing and optimizing this targeted NIDS model is to create a realistic scenario 

in which its robustness and vulnerabilities to adversarial attacks can be systematically evaluated. 
The subsequent phase of this study (Section 5.3) involves constructing a surrogate model to craft 

targeted adversarial attacks without access to the internal details of this targeted NIDS. 

 

3.4.2.Model training and hyperparameters 

 

To ensure effective performance, the parameters and hyperparameters selected to train and 

optimize the target NIDS model are detailed in Table 4. 
 

Table 4: Hyperparameters and Training Parameters 

 
Parameter/Hyperparameter Selected Value 

Input Feature Dimension 80 

Optimizer Adam 

Learning Rate 0.001 

Loss Function Binary Cross-Entropy 

Batch Size 128 

Epochs 40 

Early Stopping Patience = 10 epochs 

Dropout Rate 0.2 

 
These parameters were chosen based on experimental tuning and standard NIDS best practices. 

The fully connected layers (128→64→32) effectively capture hierarchical patterns, while ReLU 

activations ensure stable convergence. A 0.2 dropout rate limits overfitting, and the sigmoid output 

suits binary classification. Adam (learning rate 0.001) provides fast, adaptive optimization, and 
binary cross-entropy is ideal for evaluating classification performance. Training for 50 epochs with 

a batch size of 128 offers a strong balance between efficiency and convergence, with early stopping 

further preventing overfitting. 
 

3.5. Surrogate NIDS model (substitute model) 
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In real-world cyberattacks, attackers typically have no access to a NIDS model’s internal 
architecture or parameters, creating a black-box setting. To bypass this, they train a surrogate model 

on the same dataset to approximate the target model’s behavior. Once the surrogate model achieves 

similar decision boundaries reflected by comparable validation accuracy they generate adversarial 

examples on it. Owing to adversarial transferability, these crafted samples can still mislead the 
target NIDS, making the attack effective despite the lack of internal model knowledge. Equation 

(4) represents this alignment. 

 

𝒇surrogate (𝒙) ≈ 𝒇target (𝒙) (4) 

 

After achieving this approximation, the attacker crafts adversarial examples 𝑥∗ on the surrogate 

model by perturbing an original malicious input sample 𝑥, as illustrated in Equation (5). 

 

𝒙∗ = 𝒙 + 𝜹 (5) 

 

Here, 𝛿 represents a small perturbation strategically introduced using adversarial attack algorithms, 
such as Carlini & Wagner (C&W) and Jacobian Saliency Map Attack (JSMA). 

In a targeted black-box scenario, the malicious user specifically intends to mislead thle targeted 

model into classifying malicious network traffic as benign ( 𝑦target = 0 ). Mathematically, the 

attacker seeks Equation (6). 

 

𝒇target (𝒙
∗) = 𝒚target = 𝟎  (benign class)  (5) 

 

Thus, its architecture and hyperparameters are deliberately distinct from the targeted model. The 

effectiveness of the surrogate model in approximating the targeted model’s decision boundary 

significantly increases the likelihood that these adversarial examples successfully mislead the 
targeted model, thus validating the susceptibility of the targeted NIDS under realistic black-box 

attack scenarios. 

 

3.5.1.Architecture of surrogate model 

 

The surrogate model is intentionally designed with a different architecture and hyperparameters 
than the target model to reflect realistic attacker conditions. It consists of an input layer, two dense 

hidden layers with ReLU activation and dropout to reduce overfitting, and a sigmoid output layer 

for binary classification. Its main purpose is to approximate the target model’s decision boundaries 

closely enough to generate adversarial examples that successfully transfer and deceive the target 
NIDS. Table 5 outlines the surrogate model architecture, while Table 6 presents its training 

parameters and hyperparameters 

 
Table 5: Surrogate NIDS Model Architecture 

 
Layer Description Output Shape Parameters 

Input Input features (80) 80 - 

Dense-1 256 neurons, ReLU activation 256 20,736 

Dropout-1 Dropout rate: 0.3 256 0 

Dense-2 128 neurons, ReLU activation 128 32,896 

Dropout-2 Dropout rate: 0.3 128 0 

Output 1 neuron, sigmoid activation 1 129 

 
 

Table 6: Hyperparameters and Training Parameters of Surrogate NIDS 
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Parameter/Hyperparameter Selected Value 

Input Feature Dimension 80 

Optimizer Adam 

Learning Rate 0.001 

Loss Function Binary Cross-Entropy 

Batch Size 64 

Epochs 40 

Dropout Rate 0.3 

Early Stopping Patience = 10 epochs 

 

3.6. Proposed targeted attack on target NIDS 
 

This study employs two advanced adversarial attack techniques—JSMA and C&W—to assess 
targeted vulnerabilities in the NIDS. In targeted attacks, adversarial examples are crafted to 

intentionally mislead the model into classifying malicious traffic as benign. Algorithm 1 

summarizes the generation process for these targeted adversarial packets. To replicate real-world 
black-box conditions, the perturbations are created using the trained surrogate model and then 

transferred to the target NIDS using the principle of adversarial transferability. 

 

Algorithm 1: Proposed Targeted Black-box Adversarial Attack on NIDS 

 

Input: Surrogate model: 𝑓𝑠(𝑥), Target NIDS model: 𝑓𝑡(𝑥),⁡Original malicious sample: 𝑥 ∈
ℝ𝑚 ,⁡Target class (benign): 𝑦target = 𝑑,⁡Attack method: { JSMA, C&W },⁡Perturbation threshold 

(𝜖), iterations (𝑇), learning rate (𝛼), confidence (𝜅) 

Output: Adversarial example 𝑥∗ 

Initialize: Set adversarial example 𝑥∗ ← 𝑥, perturbation 𝛿 ← 0. 

Check Prediction: If 𝑓𝑠(𝑥
∗) = 𝑦target , terminate; return 𝑥∗ 

Surrogate Model Approximation: 𝑓𝑠(𝑥) ≈ 𝑓𝑡(𝑥) 

Attack Generation (on surrogate model): 

If attack type = JSMA: 

               Generate adversarial perturbation: 𝑥∗ = 𝐽𝑆𝑀𝐴⁡(𝑓𝑠 , 𝑥, 𝑦target , 𝜖) 

Else if attack type = 𝐶&𝑊 : 

              Generate adversarial perturbation: 𝑥∗ = 𝐶&𝑊(𝑓𝑠 , 𝑥, 𝑦target , 𝑐, 𝛼, 𝜅, 𝑇) 

              Solve optimization: 𝑚𝑖𝑛
𝛿

  ∥ 𝛿 ∥2+ 𝑐 ⋅ 𝑚𝑎𝑥 ( 𝑚𝑎𝑥
𝑖≠𝑦target 

 (𝑍(𝑥 + 𝛿)𝑖) − 𝑍(𝑥 + 𝛿)𝑦target 
, −𝜅) 

Transferability: Transfer adversarial example 𝑥∗ from surrogate to target NIDS 𝑓𝑡(𝑥
∗) 

Evaluate Attack Success: 

If 𝑓𝑡(𝑥
∗) = 𝑦target , attack succeeds. 

else, attack fails. 

Output adversarial example 𝑥∗ 

 

3.6.1.Mathematical formulation of targeted attack 
 

Given a trained surrogate model 𝑓𝑠 and a targeted NIDS 𝑓𝑡𝑡
 both performing classification tasks 

(𝑥) : ℝ𝑚 → {0,1}, a targeted adversarial attack generates an adversarial example 𝑥∗ from a 

malicious input sample 𝑥 to achieve a specific target class (benign class 𝑦target = 0 ), as illustrated 

in Equation (7). 

 

𝒇𝒕(𝒙
∗) = 𝒚target , 𝒙∗ = 𝒙 + 𝜹,   

where ∥ 𝜹 ∥𝒑≤ 𝝐 

(7) 
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Here, 𝛿 represents the adversarial perturbation constrained by norm 𝑝, and 𝜖 defines the 

permissible perturbation magnitude. 

 

3.6.2.Jacobian Saliency Map Attack (JSMA) 
 

JSMA crafts adversarial examples by iteratively modifying input features based on their saliency 

values, aiming to minimize the number of features changed. The Jacobian matrix 𝐽𝑓(𝑥) of the 

surrogate model 𝑓𝑠(𝑥) is computed as Equation (8). The saliency map 𝑆(𝑥, 𝑦target ) for input 𝑥 

towards target class 𝑦target  is defined as Equation (9) 

𝑱𝒇(𝒙) =
𝛛𝒇𝒔(𝒙)

𝛛𝒙
= [

𝛛𝒇𝒔
𝒋
(𝒙)

𝛛𝒙𝒊
]

𝒊,𝒋

 
(8) 

 

 

(9) 

 
At each iteration, features with the highest saliency scores are modified until the targeted 

prediction is achieved, or a maximum perturbation threshold is reached. 

 

3.7. Transferring adversarial examples to target NIDS 

 

Adversarial transferability refers to the ability of adversarial examples crafted for one model (the 
surrogate) to fool another model (the target) trained independently. Since real attackers lack access 

to a NIDS’s internal architecture or parameters, they train a surrogate model on similar data to 

approximate the target model’s decision boundaries. 
 

After training, adversarial samples are generated on the surrogate model using C&W and JSMA 

attacks. Because of transferability, these perturbations can still mislead the target NIDS, causing 

malicious traffic to be classified as benign. This demonstrates that DL-based NIDS remain 
vulnerable to realistic black-box adversarial attacks and require stronger defenses. 

 

After generating adversarial examples 𝑥∗ using JSMA and C&W methods on the surrogate model 

𝑓𝑠, these examples are evaluated against the targeted NIDS model 𝑓𝑡 . The attack's success rate is 

quantified as the proportion of malicious examples classified as benign by the target model after 

perturbation: 
 

 Attack Success Rate =
 Number of Malicious Inputs Misclassified as Benign 

 Total Number of Malicious Inputs 
 

 

This provides a direct measure of the targeted model's vulnerability to black-box targeted 
adversarial attacks. 

 

 

4. EXPERIMENT RESULTS AND DISCUSSION 
 

𝑆(𝑥, 𝑦target )𝑖
=

 
  
 

  
 0  if 

∂𝑓𝑥
𝜂 target (𝑥)

∂𝑥𝑖
< 0  or  ∑  

𝑗≠𝑦target 

 
∂𝑓2

𝑗 (𝑥)

∂𝑥𝑖
> 0

 
∂𝑓𝑥

𝑦target  (𝑥)

∂𝑥𝑖
 ⋅  ∑  

𝑗≠𝑦target 

 
∂𝑓𝑥

𝑗 (𝑥)

∂𝑥𝑖
  otherwise 
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This section describes the experimental results, setup, including system configuration, supportive 
libraries, testing environment, and evaluation metrics used for assessing the performance of the 

proposed targeted adversarial attack against DL-based Network Intrusion Detection Systems 

(NIDS). 

 

4.1. Experimental environment and system configuration 
 
The experimental evaluation was conducted on a dedicated workstation configured to handle 

complex deep learning computations efficiently. Table 7 details the hardware and software 

configuration used in this research. 

 
Table 7: Experimental System Configuration 

 
Component Specifications 

Operating System Windows 11 (64-bit) 

Processor Intel Core i9-12900H, 2.50 GHz 

RAM 32 GB DDR5 

GPU NVIDIA RTX 3070 (8 GB GDDR6) 

Storage 1 TB SSD 

Python Python 3.10.5 

CUDA Toolkit CUDA 12.0 

Development Environment Jupyter Notebook 

 

This hardware and software configuration ensures sufficient computational power and efficiency 
to handle extensive training, evaluation, and adversarial attack simulations required for this 

research. 

 

4.2. Testbed environment and supportive libraries 
 

The experiments were carried out using the Jupyter Notebook environment, facilitating clear, 
organized, and reproducible research workflows. All experimental files, including trained models, 

logs, and output results, were systematically saved for easy retrieval and analysis. Various libraries 

were utilized to streamline the research process, enhance productivity, and perform complex 
computations efficiently, as detailed in Table 8. 

 
Table 8: Supportive Libraries Used in Experiments 

 
Library Name Purpose/Functionality 

TensorFlow (v2.10.0) Training and evaluation of Deep Learning models 

Pandas (v2.2.0) Data manipulation, analysis, preprocessing 

NumPy (v1.25.0) Numerical data manipulation and feature scaling 

Scikit-learn (v1.2.1) Data preprocessing, scaling, train-test splitting, evaluation metrics 

Matplotlib (v3.7.1) Visualization of performance metrics 

ART (v1.15.1) Implementation of adversarial attacks and robustness evaluation 

 
The Adversarial Robustness Toolbox (ART) library was specifically utilized to implement and 

analyze the proposed black-box adversarial attacks (JSMA and C&W) effectively. 

 
 

4.3. Performance evaluation metrics 
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The evaluation of the DL-based NIDS performance under adversarial conditions employs several 
widely accepted metrics, including accuracy, precision, recall, F1-score, and the ROC-AUC curve. 

These metrics comprehensively assess the impact of targeted black-box adversarial attacks on the 

performance of the proposed NIDS model, ensuring a clear quantitative analysis of vulnerabilities 

and robustness. 
 

4.4. Results and discussion 
 

The study first evaluated the performance of the target and surrogate NIDS on clean (non-

adversarial) network data. Both models accurately classified benign and malicious traffic, 

demonstrating effective generalization. The surrogate model, trained independently to mimic the 
target model, then generated adversarial examples. When these adversarial samples were tested on 

the target model, they successfully fooled it, causing a significant drop in accuracy and confirming 

the model’s vulnerability to surrogate-based attacks. 
 

4.4.1.Performance of target and surrogate NIDS on clean data 
 
Using the CICDDoS-2019 dataset, both models were trained for 40 epochs with a batch size of 

4048 and a validation split of 0.2. The target model achieved peak training and validation 

accuracies of 98.45% and 98.51%, respectively, with minimal losses of 0.0356 (training) and 
0.0347 (validation). The close alignment of accuracy and loss curves (Figure 3) indicates strong 

generalization and minimal overfitting. 

 

 
 

Figure 3: Loss and accuracy curve of target model. 

 

The independently trained surrogate model achieved 99.12% training accuracy and 99.08% 
validation accuracy, demonstrating strong generalization without overfitting. Training and 

validation losses decreased to 0.0291 and 0.0302, respectively, confirming stable and effective 

learning. Figure 4 shows the accuracy and loss curves, which remain smooth and stable throughout 
training, indicating robust model performance. 
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Figure 4: Loss and accuracy curve of surrogate model 

 

Table 9 and Figure 5 show that the surrogate model slightly outperforms the target model across 

all metrics—accuracy, precision, recall, and F1‑score—indicating stronger generalization and 
better attack detection. Its close performance alignment with the target model confirms its 

suitability for generating effective adversarial samples. 

 
Table 9: comparison of target and surrogate model on clean data 

 
Metric Target Model (%) Surrogate Model (%) 

Accuracy 98.45 99.12 

Precision 97.57 99.05 

Recall 97.61 98.98 

F1-Score 97.57 99.01 

 

 
 

Figure 5: Comparison of metrics of target and surrogate model 

 

Figure 6 shows confusion matrices for both models on clean data. The target model achieved high 
accuracy but had 741 false positives and 490 false negatives. The surrogate model performed 

slightly better, with fewer false positives (541) and false negatives (255), indicating more effective 

detection of attacks and overall high classification accuracy with low misclassification rates. 
Overall, both models demonstrated high classification accuracy on clean data, effectively 

distinguishing between benign and attack network traffic while maintaining a relatively low 

misclassification rate. 

 
 

Figure 6: Confusion matrix of target and surrogate model 

 

4.4.2.Evaluation of targeted attacks on target NIDS using JSMA and C&W 
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This section provides a comprehensive evaluation of the JSMA and C&W attack on the targeted 
NIDS model using a surrogate model for adversarial transferability. The experiments analyze the 

impact of different perturbation control values on classification performance, measure key metrics 

such as accuracy, precision, recall, and F1-score, and visualize model behavior using accuracy/loss 

curves and confusion matrices. 
 

4.4.2.1.Experimental setup for JSMA and C&W attacks 
 
For a structured evaluation, we define the parameters of JSMA and C&W attacks arbitrarily while 

ensuring a controlled adversarial attack scenario. Table 10 and 11 presents the selected parameters. 

These tables define the core parameters used in JSMA and C&W attacks for adversarial sample 
generation. The JSMA attack selects the most influential input features and modifies them 

iteratively within a fixed perturbation budget (θ). In contrast, the C&W attack optimizes adversarial 

perturbations by minimizing the L2 norm while ensuring misclassification with high confidence 
(κ). 

 
Table 10: Parameters for JSMA Attack 

 

Parameter Value 

Perturbation Budget (θ) 0.1 

Maximum Feature Change (γ) 10% 

Iterations 100 

Feature Selection Method Saliency-Based 

Attack Type Targeted 

 
Table 11: Parameters for C&W Attack 

 
 

 
 
 
 

4.4.2.2.Evaluating the performance of JSMA 

and C&W under multiple paramterlevels 

 
Attacks were tested under five perturbation levels. Increasing θ and γ strengthens the attack, 

reducing accuracy, recall, and F1-score. At low perturbations (θ=0.1, γ=0.1), the target model 

achieves 96.45% accuracy, dropping to 72.54% at higher values (θ=0.5, γ=0.3). The surrogate 
model consistently performs slightly better, confirming its effectiveness in approximating the 

target model and generating transferable adversarial examples. 

 
Table 12: JSMA Attack Parameter Variations and Performance Metrics 

 
θ γ s Accura

cy 

(Target 
Model) 

Precisio

n (Target 

Model) 

Recall 

(Target 

Model) 

F1-

Score 

(Target 
Model) 

Accurac

y 

(Surroga
te 

Model) 

Precisi

on 

(Surrog
ate 

Model) 

Recall 

(Surrogat

e Model) 

F1-Score 

(Surrogat

e Model) 

0.1 0.1 50 96.45% 95.87% 95.92% 95.89% 97.12% 96.78% 96.84% 96.81% 

0.2 0.15 100 93.87% 93.45% 93.52% 93.48% 94.65% 94.28% 94.33% 94.30% 

0.3 0.2 150 89.34% 89.01% 89.08% 89.05% 91.23% 90.94% 90.98% 90.96% 

0.4 0.25 200 81.78% 81.32% 81.40% 81.36% 85.92% 85.43% 85.49% 85.46% 

0.5 0.3 250 72.54% 72.15% 72.21% 72.18% 78.65% 78.21% 78.28% 78.24% 

Parameter Value 

Optimization Constraint (c) 1.0 

Confidence Factor (κ) 0.5 

L2 Norm Minimization Enabled 

Iterations 1,000 

Attack Type Targeted 
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The C&W parameter variations in Table 13 show how changes in confidence (c), attack strength 

(κ), and learning rate (α) affect adversarial effectiveness. At low perturbation levels (c=0.5, κ=0.0), 

the target model maintains high accuracy (95.12%). As c and κ increase, the attack becomes 

stronger, reducing accuracy to 67.12% at the highest parameter setting. The surrogate model 
consistently performs 3–4% better across all configurations, indicating strong but not perfect 

transferability. Precision, recall, and F1‑score all decline as perturbation strength increases, 

reflecting growing misclassification and performance degradation.  
 

Table 13: C&W Attack Parameter Variations and Performance Metrics 

 

 
 

The confusion matrices in Figure 7 shows the confusion matrices for JSMA targeted attacks on the 

NIDS model. When targeting benign classification, 82.18% of DDoS attacks are misclassified as 

benign, increasing false negatives, while 93.33% of benign traffic is correctly classified. When 
targeting DDoS classification, 89% of benign samples are misclassified as attacks, raising false 

positives, and 92.72% of DDoS traffic remains correctly detected. These results demonstrate how 

JSMA can force specific misclassifications, highlighting the model’s vulnerability and the need for 
robust adversarial defenses. 

 

 

 
 

Figure 7: Confusion matrix of JSMAtargeted adversarial attack on target NIDS. 

 

The confusion matrices for the C&W targeted attack in Figure 8 shows the confusion matrices for 
C&W targeted attacks on the NIDS model. When targeting benign classification, 85.33% of DDoS 

attacks are misclassified as benign, while 89.18% of benign traffic is correctly classified, with 

10.82% false positives. When targeting DDoS classification, 87.75% of benign samples are 

misclassified as attacks, and 90.15% of DDoS traffic is correctly detected, with 9.85% false 
negatives. These results demonstrate that C&W attacks effectively manipulate classification, 

highlighting the model’s vulnerability and the need for stronger adversarial defenses. 
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Figure 8: Confusion matrix of C&W targeted adversarial attack on targeted NIDS. 

 

4.4.3.Comparative analysis of JSMA and C&W on Black-Box attacks on NIDS 

 

This section presents a detailed comparative analysis of the JSMA and C&W attacks on black-box 
NIDS. Both attacks generate adversarial examples that manipulate the NIDS into misclassifying 

network traffic, significantly affecting detection performance. However, these attacks differ in their 

effectiveness, computational cost, feature manipulation strategies, and impact on classification 

metrics. Table 14 briefly outlines the comparative performance of JSMA and C&W on various 
parameters. 

 

 
 

4.4.3.1.Effectiveness and impact on model performance 
 

The C&W attack demonstrated a greater accuracy drop of 31.33% compared to JSMA, which 
reduced accuracy by 26.58%. Additionally, both attacks significantly reduced recall, leading to a 

substantial increase in false negatives. The recall of the target NIDS dropped from 97% to 20% 

under C&W attacks and 25% under JSMA attacks, meaning the model failed to detect most DDoS 
traffic. This highlights the severe impact of adversarial perturbations on the detection capability of 

ML-based NIDS. 

 

4.4.3.2.Computational cost and transferability 

 

The JSMA attack is more computationally efficient, requiring approximately 100 iterations per 

attack to craft adversarial examples. However, it modifies only a few important network features, 
making it easier to detect. In contrast, the C&W attack is computationally more expensive, 

requiring around 1,000 to 2,500 iterations per attack but achieving higher stealthiness by 

distributing perturbations across multiple features. 
 

Both attacks exhibit high transferability, meaning adversarial examples generated on the surrogate 

model were highly effective in fooling the target model, with only a 3-4% gap in misclassification 
rates between them. This confirms that black-box targeted adversarial attacks are feasible and 

effective even when the attacker lacks direct knowledge of the NIDS. 

 
Table 14: Comparative Analysis of JSMA and C&W Attacks on NIDS 

 

Aspect JSMA Attack C&W Attack 
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Both attacks significantly reduced precision, meaning the model classified more benign traffic as 
malicious. C&W reduced precision to 67%, whereas JSMA lowered precision to 72%, indicating 

that C&W causes more false positives. Similarly, the f1-score dropped from 97% to the mid-60s 

under JSMA and to the low-60s under C&W, confirming a substantial performance degradation 

across all classification metrics. 
 

Comparing JSMA and C&W attacks shows that C&W is more effective and stealthy but 

computationally intensive, while JSMA is faster but more detectable due to modifying fewer 
features. Both attacks degrade recall, increasing false negatives and allowing DDoS traffic to 

bypass detection. Their strong transferability confirms that adversarial examples from a surrogate 

model can successfully deceive the target NIDS, highlighting the vulnerability of ML-based 

intrusion detection systems and the need for robust defenses. 
 

5. LIMITATION AND FUTURE SCOPE 
 

This study demonstrates the susceptibility of ML-based NIDS to targeted black-box adversarial 
attacks but is constrained by several factors. The analysis is limited to two attack methods JSMA 

and C&W—excluding other powerful strategies such as DeepFool, AutoAttack, and decision-

based attacks. Experiments were conducted only on the CICDDoS2019 dataset, which may restrict 

generalizability to diverse network conditions. Additionally, the surrogate and target models were 
trained on the same dataset, whereas real-world attackers often rely on limited or mismatched data. 

The computational cost of the C&W attack further limits its practicality for real-time large-scale 

deployment, and the study focuses solely on deep learning models without examining advanced 
architectures like transformers, GNNs, or ensemble-based NIDS. 

 

Future research should broaden the evaluation by incorporating multiple datasets (e.g., NSL-KDD, 
CICIDS-2017, CSE-CIC-IDS2018) to enhance generalizability. Exploring additional adversarial 

attack techniques, optimizing low-cost attack strategies, and studying transferability across 

surrogate models trained on different data sources will provide deeper insights. Moreover, 

integrating defense strategies—including adversarial training, input preprocessing, and robust 
feature engineering—can help strengthen model resilience. Extending this framework to advanced 

model architectures and other cybersecurity areas such as malware detection, phishing, and 

anomaly analysis offers promising directions for future work. 
 

6. CONCLUSION 
 

Attack effectiveness Reduces accuracy by 26.58% Reduces accuracy by 31.33% 

Targeted 

misclassification 

82.18% of DDoS traffic misclassified 

as benign 

85.33% of DDoS traffic misclassified 

as benign 

Computational cost Low, requires around 100 iterations 

per attack 

High, requires around 1,000-2,500 

iterations per attack 

Transferability High, adversarial samples generated 

on the surrogate model misclassify the 

target model with small accuracy gap 

(3-4%) 

Very high, with an even greater ability 

to transfer adversarial examples 

effectively 

Impact on recall 
(detection of attacks) 

Recall dropped from 97% to 25%, 
increasing false negatives 

Recall dropped from 97% to 20%, 
significantly increasing false negatives 

Impact on precision More false positives, reducing 

precision to 72% 

Higher false positives, reducing 

precision to 67% 

Impact on f1-score F1-score dropped from 97% to mid-

60s 

F1-score dropped from 97% to low-60s 
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This study demonstrates the vulnerabilities of deep learning-based NIDS to targeted black-box 
adversarial attacks. Using a surrogate model, adversarial examples generated via JSMA and C&W 

attacks successfully misled the target NIDS, causing significant drops in detection accuracy. The 

C&W attack was more effective but computationally intensive, while JSMA offered a balance of 

efficiency and stealth. Both attacks notably increased false negatives, allowing malicious traffic to 
evade detection and highlighting serious cybersecurity risks. These findings underscore the 

importance of robust defense mechanisms, including adversarial training, feature selection, and 

hybrid strategies. Evaluating attacks across additional datasets and advanced models can further 
improve understanding of adversarial robustness. Overall, the study identifies critical weaknesses 

in existing NIDS and provides insights for designing more resilient and secure intrusion detection 

systems. 
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