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ABSTRACT

Network Function Virtualization (NFV) is a traditional network method, it’s replacing rigid, dedicated hardware
devices with flexible, software-based virtual network functions that can be dynamically assigned and scaled
across any networking infrastructure. Even though these findings give promise, still in the early stages of
creating network management systems that are truly dependable, can handle massive scale, and keep sensitive
information protected across different networking boundaries. While this sounds great in theory, there is a
problem with how we currently use artificial intelligence to manage these systems. Traditional Al approaches,
specifically reinforcement learning models, hit several problems. However, these methods often provide high
computational overhead, slow convergence, and suffer from limited interpretability. In this paper, we propose a
novel framework that replaces DRL with lightweight and interpretable Machine Learning (ML) algorithms. This
article suggests a Federated Forcart-based NFV Resource Allocation Framework that combines a hybrid
Random Forest—Cart prediction model with federated learning to address these issues. The framework supports
balanced multi-metric resource optimization, precise workload prediction, and distributed knowledge exchange
while maintaining local data secrecy. It maintains the parallelization strategy to minimize end-to-end latency,
while significantly reducing training complexity and communication overhead. Improved prediction accuracy,
decreased latency, and increased CPU and energy efficiency are demonstrated by comparison with state-of-the-
art methods. For next-generation NFV orchestration, the suggested method offers a scalable and private
solution.
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1. INTRODUCTION

In the past, network operators have provided services in the telecom sector by deploying physical,
proprietary devices and equipment for each function that makes up a particular service [1][2].
Furthermore, the network topology and the placement of service pieces must take into account the
stringent chaining and/or ordering of service components. These have resulted in lengthy product
cycles, very little service agility, and a significant reliance on specialized hardware, especially when
combined with demands for high quality, stability, and strict protocol adherence. By utilizing
virtualization technology, NFV [3], [4] has been suggested as a solution to these issues, providing a
fresh approach to networking service design, deployment, and management. Decoupling physical
network equipment from the operations that use it is the fundamental concept of NFV. This implies
that a TSP can receive a network function, such as a firewall. This enables different network functions
to be virtualized on the same high —performance technology consisting of servers, switches, and
storage. These can be deployed at various locations in customer sites, centralized data centers, even at
the edge network also.

Network function virtualization (NFV) is still a relatively new state of affairs with many obstacles
remaining to be overcome to attain the already understood benefits of the technology.[5],[6] A major
challenges of NFV is to facilitate the automated management of resources allocated to VNF with
service availability. Such a means of resource management is especially significant for modern day 5G
networks, it will require a substantial amount of resources and provide applications such as
autonomous vehicles it need-reliable network response time [7][8]. There is a demand for certain
algorithms determine how much resource should be given from Network Function Virtualization
Infrastructure (NFVI)to the VNFs developed such algorithms for scalable in a vertical and /or
horizontal manner, alongside balancing two competing objectives.[9]. However,NFV, got beneficial in
many ways, It is still challenged to the extent that complicated Service Function Chains(SFC), where
it’s a sequence of virtualized network functions(VNF) that are employed in the network. One of the
critical challenges is to position each VNF of an SFC to satisfy the end-to-end latency constraints. The
literature research different ways of decreasing SFC latencies that looked at traffic engineering, VNF
enhancement, and resource partitioning and deployment. Yet these have a sequential implementation

approach whereby VNFs placement are assumed to be implemented one by one.

This simplifies the orchestration process by allowing linear optimization based on predefined
Quality of Service (QoS) constraints, making the problem easier to solve deterministically. Yet, this
assumption can be unrealistic in real-world NFV scenarios. Certain VNFs called as Caching and
Network Address Translation (NAT),which not depend on a strict order and can be executed in

parallel, significantly reducing latency. In fact, studies have shown that nearly 50% of VNF pairs can
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operate in parallel. These methods also depend heavily on predefined rules and lack the capability to
dynamically adapt to changing network states. As a result, they fail to intelligently capture VNF
interrelations and real-time resource availability, limiting their ability to make optimal decisions that
maximize performance in parallel SFC orchestration.

The existing work developed framework by using Federated Deep Reinforcement Learning which
tightly combined Federated Learning (FL) with Deep Reinforcement Learning (DRL), and
performance increased in variety of applications such as online games, Network Slicing, find routing
and autonomous driving etc.,[10],[11],[12],[13],[14]. The framework PVFP introduces a novel
approach for parallel VNF placement in multi-domain NFV environments by combining Federated
Deep Reinforcement Learning (FDRL) with parallelism-aware SFC decomposition. By identifying
independent VNFs using dependency, position, and priority rules, PVFP decomposes SFCs into
parallel and sequential segments to optimize placement. Federated learning is employed to protect data
privacy while collaboratively learning placement strategies across domains.[15][16]. Although the
PVFP framework effectively reduces end-to-end latency by enabling parallel VNF Placement with
Federated Deep Reinforcement Learning (FDRL), it exhibits several limitations that hinder its
practical deployment. The implementation of DRL brings about significant computational overhead,
rendering it inappropriate for environments with limited resources, such as edge NFV deployments.
Furthermore, the sluggish convergence characteristics of DRL-based approaches restrict their ability to
respond effectively in rapidly changing network scenarios. The framework also suffers from limited
interpretability, as DRL operates as a black box, making placement decisions difficult to audit or
explain. In this work, we retain the parallelism identification and decomposition principles from prior
frameworks, while introducing a novel placement mechanism based on Federated Machine Learning
with interpretable models.

Problem Statement
Network Function Virtualization (NFV) is extremely dynamic and unpredictable, and ensuring

service continuity and Quality of Service (QoS) depends on the effective allocation of compute,
memory, bandwidth, and energy resources. However, there are a number of significant issues with
current resource allocation techniques, such as heuristic approaches, deep reinforcement learning,
and centralized machine learning models. On the other hand, Lack of scalability and Inconsistent
prediction accuracy of resource allocation when handling large, distributed NFV domains.

Contributions of this study
ML-FL-VNF framework, replace the DRL component used in previous approaches with lightweight,

interpretable machine learning models, with Random Forest and CART. These models are trained
locally at each NFV domain to predict optimal VNF placement, particularly focusing on parallelizable
VNFs identified during SFC decomposition. The integration of tree-based algorithms enables the
framework to achieve lower computational costs, faster convergence rates, and enhanced
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interpretability, which collectively make it more appropriate for real-time deployment across
distributed NFV infrastructures.

The Proposed ML models relate to VNFs that can run independently (with no need to run
together) for which optimal placement prediction is sought. They are based on available resources,
dependency states, and network congestion levels here which it determine the best placement
recommendations.

Individual NFV domains perform local training of their placement prediction models,
transmitting a model updates to the global federated server independently maintaining data privacy by
not sharing raw datasets. This ensures data privacy across domains while enabling collaborative

learning of global placement policies.

e Compared to DRL models, Federated Random Forest and CART algorithms converge faster,
require lower computational resources, and are well-suited for real-time or near-real-time
VNF placement scenarios in NFV environments.

e Thus, the proposed framework, Federated machine learning closely integrates Federated
Learning (FL) with Machine Learning (ML), has achieved using interpretable models for
efficient and scalable parallel VNF placement prediction and resource allocations in NFV

environments.

e The remaining sections are prepared as follows: Section 2 covers the literature survey, Section
3 explains the proposed methodology, Section 4 illustrates its simulation results ,Section 5
concludes the study and suggests future enhancements.

2. LITERATURE SURVEY
During the past years, many efforts have been developed to placement of SFC efficiently in

networks. Three comprehensive surveys of it are given in and involving traffic scheduling, individual
instantiation, parallel placement etc, considering the logic of VNF Execution, these previous efforts
can be categorized as sequential, parallel &PVFP placements of SFC.

Sequential placement

It is primarily focused VNF service provisioning from a horizontal perspective, focusing on the
sequential composition of VNFs and optimizing the execution of each individual component within
the SFC. Given that VNF placement is an NP-hard problem,[17] numerous studies have proposed
various heuristic and intelligent algorithms to tackle this challenge, with objectives such as minimizing
the number of servers used, reducing resource overhead, and optimizing network traffic utilization.
For instance, logarithmic factor approximation algorithms have been proposed to address VNF
placement with strict ordering constraints, aiming to minimize overall service costs. Furthermore, a
dual-phase heuristic method was introduced to harness traffic periodicity characteristics, aimed at

reducing physical machine consumption and optimizing network resource efficiency [18]. Yet,
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regardless of these progress achievements, sequential placement approaches encounter difficulties in
fulfilling the latency specifications of modern time-sensitive applications, particularly with extended
SFC chains, due to the intrinsic limitations inherent in sequential orchestration processes [19].
Parallel placement

The aforementioned methods revolve around the practical deployment of VNF on vertical
deployment lines, indicating that certain VNFs (virtual FW, virtual IDS) can also operate as one in
parallel, with advanced intentions of NFV. One such advancement is the Network Function Parallel
(NFP) approach which creates SFCs from new SFCs as functions are parallelized according to their
dependency of function execution, and in addition, to minimize SFC delay, a combined packet
processing framework known as Para Box operates amongst VNFs in such a way that packets are
dynamically dispersed and parallelized within the box, merging the results according to packet order.
Despite the above, many of the solutions still come as specific deployment methods and fail for
parallel VNF deployment. As such, only a handful of studies support an overarching approach to
parallel VNF deployment. For example, multi-instance parallel placement is a viable method as a
reliability method for Data Centre Networks (DCNs) where DCNs also analyzed global methods for
parallel VNF placement multiple instances, similarly, within SFCs. Other studies report limited
parallelism to provide delay minimization, such as heuristics. Yet these heuristics fail to consider
both the VNF interdependencies and the time-sensitive network environment that gives a context so
optimization of performance for parallel SFC orchestration is restricted. For example, PVFP
introduces a Federated Deep Reinforcement Learning (FDRL) solution to orchestrate parallel VNFs
through the integrated solutions for recognizing parallelism, latency-aware aggregation in federated
and decentralized reinforcement learning for actionable, intelligent orchestration that provides
contextually relevant SFC QoS through intelligent orchestration.[20]

PVFP Placement
This solution is a complex solution to the classical heuristic, parallel VNF deployment constraints
enabled by Federated Deep Reinforcement Learning. This framework provides a sufficient solution
that solves the constraints of conventional heuristic driven parallel VNF deployment through the
utilization of Federated Deep Reinforcement Learning (FDRL). The system in question is a
parallelism-aware orchestration of VNFs. First, all VNFs that can be executed simultaneously are
categorized into groups based on certain factors - more specifically, inter-dependencies, placement
conditions and placement priorities. Once independent VNFs are categorized into groups, PVFP
leverages federated DRL to acquire placement policies in different NFV domains by only
transmitting model weights instead of sensitive information.[21][22] The framework incorporates
techniques such as latency/reward-based federated aggregation and flexible replay buffers to
improve learning efficiency and optimize resource utilization. Simulation results from PVFP

demonstrate noticeable latency reduction in SFC execution compared to sequential or heuristic-
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based approaches. [16]However, despite its effectiveness, PVFP still faces challenges due to the
high computational overhead of DRL, slow convergence, and lack of interpretability, particularly in
distributed edge NFV Domains[23][24].

Research Gap

Despite significant advancements in NFV resource allocation using machine learning, deep
reinforcement learning and heuristic optimization methods face issues in poor multi metric
optimization, limited generalization across distributed networks, unstable learning, high variance and
centralization dependency. In addition, no prior work integrates with decision-tree with forest and
federated learning for privacy-preserving, interpretable, and stable NFV resource prediction and
allocation.[25] To solve these limitations, this study presents the federated forcart aimed at enhances
NFV resource prediction and allocation by dynamically with scalability in multi domain

environment.[26].

3. PROPOSED METHODOLOGY

This section describes the Federated Forcart in NFV for prediction and resource allocation. Figure 1
portrays the architecture of this proposed study. This proposed study applies the proposed ML-FL-
VNF framework, which integrates Federated Learning (FL) with hybrid machine learning models
(Forcart) for parallel VNF placement across distributed NFV domains. The work is designed to
enhance orchestration efficiency while preserving privacy and improving scalability. Forcart combines
the robust predictive capability of Random Forest with the transparency of cart Predictions from both
models are combined, typically using probability averaging or weighted voting, to arrive at a final
placement decision.[27].

UPDATED GLOBAL FEDERATED MODEL

le 1: P(f) = P =
le 2: P (f;, first/mid/final)
le 3: PCfi > f;)

: @"GD’ lFAlI 2
I @"@"@"’| ¥y |I

PARALLEL VNF PLACEMENT
| Domain1 | DOMAIN 2 | omans |
ML-BASED MODELS

Figure 1. Architecture of the Proposed Study

System Model and Problem Formulation
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In this section, we present the system model, parallel SFC decomposition, and formal problem formulation
for the proposed ML-FL-VNF framework, which enhances parallel VNF placement using Federated Machine
Learning instead of FDRL. The key notations are listed in Table I.

System Model

We consider the physical network infrastructure as an undirected graph G = (V, E), where V represents the
set of NFV nodes (e.g., servers or edge nodes), and E denotes the set of communication links between them.
The network is logically divided into K federated NFV domains, such that:

G=GiUG2U -+ U Gy (1)

Each domain G; = (V;, E;) has its own set of nodes and links and is managed by a local NFV  Orchestrator,
responsible for VNF placement and resource management. There is no raw data exchange between domains,
only model updates during federated learning[25][26].

Rervylyi, RPv|; = Resource utilization ratios for CPU and bandwidth, respectively. ------------ ?3)

Similar to PVFP, each SFC request from users is composed of a series of ordered VNFs. However,
parallelism rules (dependency, position, priority) are applied to determine whether portions of the SFC
can be executed concurrently. VNFs that are independent of each other—such as Caching and NAT—
can be parallelized to minimize latency.
The routing of a Service Function Chain is as follows

The rotting of an Service Function Chain is as follows

c=s— fi —» 2 — - — f, results in parallel and sequential segments

Sequential Segment: fi — > — f5 e e -(4)

Parallel Segment: {fs, fa} ----(5)
The system places each set of parallelizable VVNFs across various NFV domains, taking advantage of
distributed computing resources to minimize latency while maximizing resource utilization.

Problem Formulation

The objective of the proposed prediction and resource allocation algorithm is to minimize the average
end-to-end latency across all service chains in the system. By summing these components, the model
captures the complete latency experienced by an SFC during activation, processing, and inter-VNF
communication.[27][28]

The total latency is formulated as follows

TtotaI:Tac‘l'Tpe‘l'Tco — —- -(6)

Tww=Total end-to-end Latency across SFC
T.c =Activation latency (time to start VNF instances)
T, = Parallel execution latency (time for parallel processing)
Te,= Communication latency (traffic processing)
Average Latency Minimization

T — ¥ cec Ttotal(C)
ICI
T=Average end to end latency

S=Set of all SFC

e %

C=Single service chain
Ttotal(c)= Total latency of chain ¢
>'ceC = Summation over all SFCs

Minimizing this average latency ensures that the system provides efficient resource utilization, optimal
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placement decisions, and low delay across the entire network, rather than optimizing for only one specific
service chain. This objective aligns with end-to-end QoS goals in NFV orchestration and resource
allocation.[29]

The problem is defined as to maximize the following terms
VNF placement constraint: Each VNF must be placed on one and only one
node.
e Resource constraints: The CPU and bandwidth used by each VNF
and link cannot exceed available resources.
e Flow conservation: Packet flow through intermediate nodes
must adhere to flow consistency rules. PVFP, which uses FDRL-
based optimization to learn placement policies.

o Lightweight machine learning models (Random Forest, CART) trained locally
in each NFV domain.

Federated Learning (FL) for global model aggregation, ensuring privacy preservation.
Consolidated decisions taken based on tree based structures and provide transparency
than DRL-based methods.

Table I. Notations Used in the Proposed ML -FL-VNF Framework

Symbol Description

14 Set of VNFs in the Service Function Chain (SFC).

Pv Parallelism indicator for VNF v (1 if parallelizable, O otherwise).

N Number of participating NFV domains in the federated learning framework.
Mi Machine learning model trained locally at NFV domain i.

Wi Local model parameters at NFV domain i.

Wg Global model parameters obtained after federated aggregation.

Ci Computational capacity (e.g., available CPU) at NFV domain i.

Bi Available bandwidth at NFV domain i.

D(v,n) | Placement decision mapping VNF v to NFV node n.
Ri(v) Resource availability score for VNF v on NFV domain i.
Tsfc Total end-to-end latency of the SFC after VNF placement.

Ra Aggregated reward used for evaluating placement performance (e.g., latency
reduction).
Di Local dataset of VNF placement history at NFV domain i.

Par(V) | Subset of VNFs in V that are identified as parallelizable.
Seq(V) | Subset of VNFs in V that must be executed sequentially.

3.1. Federated Learning with Tree-Based Models

The PVFP leverages heavy DRL agents for the ML-FL-VNF, where as this proposed approach relies
on more lightweight tree-based machine learning models. More specifically, Random Forest and
CART are the models of choice because they can be trained over a small amount of data yet meet the
intricacies of such an intricate problem. Thus, over time, each machine learning model is
incrementally updated on a localized NFV domain, based on historical SFC request patterns for
resources, observed patterns of resource utilization over time, and previously established placement
decisions.[30] The federated learning-based structure of ML-FL-VNF, where Random Forest/CART
are localized as internal trained models in different NFV domains, updated in a privacy-preserving
manner in the federated learning server, and partially parallelized to facilitate decentralized VNF
placement decisions.
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Figure 2. Local model Resource prediction using Forcart algorithm
Each NFV domain orchestrator operates according to the federated learning (FL) framework to capture

its local dataset (di). This local dataset contains all features that make up the capacity of each NFV
component of interest: node CPU usage, link bandwidth availability, VNF graph structures and
dependency trees, parallelization Booleans, node-link latency measurements. As these features are
relatively standardized, tree-based ML-based solutions - Random Forest and CART - are trained
locally, as shown in Figure (2). Random Forest is known for its reliable ensemble-based predictions
after dynamic assessments of trees - and better prediction accuracy; CART is known for its speedy
results explainable choices - expedited placement choices are often necessary based on SFC requests.
The orchestrators learn their respective local models and only share their model weights (wi) with the
centralized FL server. It's unnecessary for the FL server to have access to sensitive raw data; instead, it
can apply Federated Averaging (FedAvg) or ensemble-based averaging to the global (accumulated)
findings (wg) and send this model back to the individual contributors for further learning or trusted
placement operations. This assures privacy of sensitive information, reduces communication overhead,
and improves convergence speed - all exponentially better than DRL-based approaches.
[31][32]Therefore, when a new SFC request comes through, the expected placement of all VNFs -
especially those that are parallelizable - can be anticipated through the local model or new global
model in which each VNF is placed within the most suitable NFV node according to resource offering
and anticipated placement history in and outside the predictive FL model; this intention reduces

aggregate end-to-end latencies.

3.2. Federated Forcart based Resource prediction and allocation
The aim of the proposed Federated Forcart framework is to reduce prediction and scaling during NFV
resource allocation while ensuring privacy preservation across distributed domains. Forcart combined the
strengths of CART and Random Forest (RF) algorithm for a federated learning loop, it enabling stable and

accurate prediction across clients without sharing raw data[33][34][35].

At each federated communication round r, client i trains a hybrid predictor using a local dataset:
137



International Journal of Computer Networks & Communications (IJCNC) Vol.18, No.1, January 2026

Di={(Xi.yi)} - e eee(8)

Where
Di= Complete dataset stored locally at device or client i.
Xi — The input features,
yi — The target label or output value to be predicted

{-}- Denotes that the dataset contains multiple such input—output pairs

Each client generates two model hypotheses,

o 0i° = denotes the CART parameters (splits, thresholds),

« 0i® denotes the RF parameters (ensemble trees),

e X represents the multi-metric NFV feature vector (CPU, memory, bandwidth,
latency, energy)

hiCART (X)=£0;C(X). ===mmmm e oo o 9)

hi®ART(X) = prediction produced by the CART model of client i for the input X.
f9iC(X)= the CART model function parameterized by the model parameters

NiRF(X)=FOR(X)weremrmmemsmmemsemememmememm e e e 11)

hiRF(X) = prediction produced by the Random Forest model of client i for input X.
f9iR(X)= the Random Forest model function, parameterized by the set of parameters
The predicted output for a client is:

= (REART () 4 REF (X)))romromromeomrcencancees -(11)

y™i =The final predicted output for client i after combining both models.
The value ¥, denotes the predicted resource allocation level, and its magnitude reflects the confidence in client-
side prediction. After local predictions are computed, the server aggregates the models using sample-weighted

averaging

}’}G:% (ZN, w kb ST () + N w b () (12)

wi=The weight of client i in the aggregation.
The above Eq., takes the weighted average predictions from all clients for both CART and Random Forest,
then averages the two to form a robust and accurate global prediction. This ensures the strengths of each client

and model type contribute fairly to the final output.[36]

Where wi = Evl_ﬂ‘l—lﬂl --------------------------------------------------------------- (13)

|Dil= number of data samples at client i.
Y'j=1 NIDj|= total number of data samples across all n clients.
Thus, clients with larger data volumes contribute proportionally more to the global model. It is calculated
as the proportion of the client’s local dataset size |Dil to the total data across all clients.Clients with more data

has higher weights, ensuring the global prediction fairly reflects all

contributions[37].
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Algorithm 1 Federated Ensemble Learning—Based NFV Re-
source Allocation (ForCART)

Require: Service Function Chain length F'; number of do-

mains /; CPU capacities Cl.p,, j: CPU utilization r.p. j:
local NFV datasets D;, j =1,2, ..., K

¥

Ensure: VNF placement decision map D¢ : n™(f)

l:

I

A U

14:
15:

Initialize system parameters F', I, Copy i Tepu.j. and
datasets D,

Perform load-aware SFC partitioning:

> 1 (L = repu i) Cepu.j

K
2 =1 (1 = 7epu i) Copu,j
i =1,2,..., K (1)

|Fi| = x |F|,

Assign remaining VINFs such that Zfil | Fi| = | F|

for j =1 to K do
Train local Random Forest model A /™" on dataset 1)
Train local CART model M S48 on dataset D
Construct local ForCART ensemble using ﬂ-f;"‘-F and
.11.{?‘_11?'1_‘
Send local model parameters {1/ i H—’}CA" T to fed-

erated server
end for

g BRE

. Perform weighted federated aggregation to obtain global

models H—’E’fF and H—;CAHT

: Distribute global models H—”;‘i‘F and H-"f ART o all do-

mains

. for each VNF f = F; do

Predict placement node using global ForCART ensem-
ble:

n*(f) = arg max Aggregate (ﬂ-f;“'F{f): ﬂ-ffART{f))

Assign placement decision Dy : n*( f)
end for
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Figure 3. Flowchart of Federated Forcart algorithm for prediction and allocation
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4. SIMULATION RESULTS

The proposed Federated Forcart—based NFV resource allocation framework was evaluated using a
high-performance workstation equipped windows with 10-64 bit and an Intel Core i7 CPU,256 GB
RAM, 2 TB disk. Development and execution used Python 3.10 with Scikit-learn, NumPy, Pandas
&Matplotlib. It ensures adequate computational capacity for federated model training, ensemble
learning, and multi-metric resource optimization. The random seed was fixed (random state=42) for
reproducibility.

Data Sets

The experiments utilized the Cloud Resource Allocation Dataset sourced from Kaggle by the
following link https://www.kaggle.com/datasets/programmer3/energy-efficient-cloud-resource-
allocation-dataset.It provides relevant performance metrics to evaluate the resource allocations for
virtual environment, that’s are CPU utilization (%), ram (MB), network (Mbps), storage (IOPS),
energy (W), latency (ms), expected load (%) and application type and processing priority. These
features reflect real NFV behaviours are enough to test both regression and classification tasks.
Preprocessing

This was performed on the dataset. Initially, any NA values and outliers were removed to create a
baseline of data integrity. Second, continuous integer values were normalized through z-score
standardization (z-scoring) for uniform comparison across elements that may otherwise possess
distinguishable differences. Categorical, discrete integer values such as type and priority were
converted to integers through label encoding for machine learning processing. Finally, the processed
dataset was distributed across multiple simulated federated learning nodes to mimic the reality of
cloud-based environments where data is dispersed due to privacy policies, geographic barriers, and
enterprise governance barriers. Table 2 represented different simulation parameters used and shows its

value.

Table 2. Simulation Parameters

Parameters Value
No. of Estimators(n) 100
Max Depth(d) 10
Minimum Samples per Leaf (m) | 2
FL Rounds (F) 5
Aggregation Method(A) FedAvg
Random State (RS) 42
Criterion (C) MSE

The information was distributed across the federated computing nodes, and each client
executed data preprocessing, feature scaling and independently trained hybrid CART
integrated with Random Forests. Once training was completed, clients securely forwarded

their learned model weights to the central server for model aggregation and adjustment.
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4.1. Performance Metrics

The performance was assessed based on R?, MAE, RMSE and MAPE Metrics. These
measures evaluate how accurately Federated Forcart predicts the resource allocations. Table 3
represents detailed results of performance comparison with different five algorithms with
different metrics.

Table 3. Performance comparisons with different metrics

Metric DON DDPG OCRA PVFP | Federated ForCart
Accuracy 0.64 0.66 0.68 0.70 0.74
R2Score 0.642 0.651 0.667 0.695 0.704
RMSE 0.077 0.690 0.683 0.651 0.634
MAE 0.602 0.590 0.581 0.575 0.572

According to Figure 4.1, the performance was greater than other trustable state of the art
solutions. Accuracy is increased gradually from 0.64 to 0.74(Federated Forcart). R? Score
represents how well the model explains variance range from 0.642 to 0.704 with Federated
Forcart. The RMSE calculated for the average prediction error magnitude, it is decreased for
better performance from 0.077 (DQN) to 0.634 (Federated ForCART). The Mean absolute

metric measures the average size of prediction error ranges reduced from 0.602 to 0.572.

Perforgnance Comparison Across Algorithms (R?, RMSE, MAE)
] a < g
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Figure 4. Performance comparisons across algorithms

4.2. Correlation Analysis of NFV Performance Metrics

Figure 5 is the correlation matrix heatmap for the performance of NFV baseline. These details
are used to represent the values between critical network parameters and interdependence
between CPU Usage (%) and Memory Usage (MB), Network Usage (MBps), Disk 1/0
(MBps), Energy Consumption (Watts), Service Latency (ms), and Optimized Resource
Management. The correlation coefficient is between -1(positive linear correlation) and
+1(strong negative correlation).
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Figure 5. Correlation Analysis of NFV Performance Metrics

Finally, the results of the correlation study confirm that the NFV data set is a complicated,
organized one and thus, is a good candidate for federated learning and resource allocation
experiments. The CPU, bandwidth and latency features are also not reliant upon each other,
implying that federated learning is a suitable compromise between what is learned at each level

of locality and what is learned at the network's entirety.

4.3. Actual vs Predicted Values using Federated Forcart

For prediction reliability, Table 4 represents variation between the actual value and predicted value. These results
represents that the predictions of these values comes from trained model with time-sensitive and resource

accumulating across distributed network functionalities with little prediction error and high reliability.

Table 4. Actual vs Predicted resource values

Actual Value| Predicted Value
4 4116654

2.425123
2.524426
1.478131
1517774
1.569141
2.494888

NN N W N

The Figure 6 demonstrate how prediction made by the model, it represented in each blue points. Meanwhile the
ideal reference line (i.e.) [y=x], represented predicted values would exactly equal to actual values. This

Federated Forcart's NFV values (x-axis) against the predicted NFV values (y-axis).
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Figure 6. Actual vs predicted using proposed algorithm

4.4 NFV Performance Metrics among various Algorithms

The Table 5 calculated the average NFV Performance metrics for each algorithm and figure 6 is a box

plot. It distinguishes the normalized NFV performance metrics across the main algorithms, including
DQN, DDPG, OCRA, PVFP and Federated Forcart algorithm. These summarized metrics are CPU,
Network (MBps), Service Latency (ms), Energy Consumption (Watts) and usage. All the metric

values were normalized from 0 to 1 to ensure a consistent scale was applied for visual and practical

assessment. The IQR defines the height of the box, the line represents the median in each box and the

boxes represent how far each metric deviates from the average value.

Table 5:Comparative analysis of proposed system

Model CPU Usage| Network Usage Latency Energy

(%) (MBps) (ms) (W)
DON 48.5606 249.3795 129.23 269.31
DDPG 50.3938 266.0768 130.83 267.62
OCRA 51.8606 240.4753 122.15 283.43
PVFP 48.0894 252.6387 129.84 257.10
Forcart(Proposed) 46.7112 248.6505 124.98 277.47
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Figure 7. NFV performance Metrics comparison across algorithm
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5. CONCLUSIONS

In this study, a new framework for parallel Virtual Network Function (VNF) placement in Network
Function Virtualization (NFV) environments is introduced with ML-FL-VNF. By combining
Federated Learning (FL) with the lightweight machine learning algorithms as Random Forest and
CART. This suggested approach overcomes the drawbacks of current Deep Reinforcement Learning
(DRL)-based techniques, especially those employed in PVFP. These solutions provides intuitive and
user-friendly VNF placement decision-making with much lower DRL-computational demands and
provide training times complexities. The solution is based on three main steps. First, principles of
parallelism (dependency, location and priority) simplify Service Function Chains (SFCs) into serial
and parallel sub-chains. Second, instead of DRL black-box models, the orchestrator of each NFV
domain builds its own ML model to determine the optimal placement decision of each VNF. These
proposed models are federated without sharing private information, only aggregating to a federated
server, It builds a global optimized VNF placement policy. Third, VNFs are implemented in
distributed NFV domains where parallel ones can run concurrently to achieve great end-to-end latency
reductions. In a nutshell, ML-FL-VNF is scalable, privacy-sensitive and user-friendly for VNF
placement in geographically distributed NFV domains and works best for real-time deployments in
edge environments or constrained networks. In conclusion, Federated Forcart features high predictive
accuracy and extensibility generalization, demonstrates that it's a reliable VNF placement option for
NFV orchestration in dynamic real scenarios. Future studies will focus on HFL to provide further
cross-domain scalable low-latency service chaining for dynamic VNF placement in overloaded

situations.
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