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ABSTRACT 
Network Function Virtualization (NFV) is a traditional network method, it’s replacing rigid, dedicated hardware 

devices with flexible, software-based virtual network functions that can be dynamically assigned and scaled 

across any networking infrastructure. Even though these findings give promise, still in the early stages of 

creating network management systems that are truly dependable, can handle massive scale, and keep sensitive 

information protected across different networking boundaries. While this sounds great in theory, there is a 
problem with how we currently use artificial intelligence to manage these systems. Traditional AI approaches, 

specifically reinforcement learning models, hit several problems. However, these methods often provide high 

computational overhead, slow convergence, and suffer from limited interpretability. In this paper, we propose a 

novel framework that replaces DRL with lightweight and interpretable Machine Learning (ML) algorithms. This 

article suggests a Federated Forcart-based NFV Resource Allocation Framework that combines a hybrid 

Random Forest–Cart prediction model with federated learning to address these issues. The framework supports 

balanced multi-metric resource optimization, precise workload prediction, and distributed knowledge exchange 

while maintaining local data secrecy. It maintains the parallelization strategy to minimize end-to-end latency, 

while significantly reducing training complexity and communication overhead. Improved prediction accuracy, 

decreased latency, and increased CPU and energy efficiency are demonstrated by comparison with state-of-the-

art methods. For next-generation NFV orchestration, the suggested method offers a scalable and private 

solution. 
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1. INTRODUCTION 

 
 In the past, network operators have provided services in the telecom sector by deploying physical, 

proprietary devices and equipment for each function that makes up a particular service [1][2]. 

Furthermore, the network topology and the placement of service pieces must take into account the 

stringent chaining and/or ordering of service components. These have resulted in lengthy product 

cycles, very little service agility, and a significant reliance on specialized hardware, especially when 

combined with demands for high quality, stability, and strict protocol adherence. By utilizing 

virtualization technology, NFV [3], [4] has been suggested as a solution to these issues, providing a 

fresh approach to networking service design, deployment, and management. Decoupling physical 

network equipment from the operations that use it is the fundamental concept of NFV. This implies 

that a TSP can receive a network function, such as a firewall. This enables different network functions 

to be virtualized on the same high –performance technology consisting of servers, switches, and 

storage. These can be deployed at various locations in customer sites, centralized data centers, even at 

the edge network also. 

 Network function virtualization (NFV) is still a relatively new state of affairs with many obstacles 

remaining to be overcome to attain the already understood benefits of the technology.[5],[6] A  major 

challenges of NFV is to facilitate the automated management of resources allocated to VNF with 

service availability. Such a means of resource management is especially significant for modern day 5G 

networks, it will require a substantial amount of resources and provide applications such as 

autonomous vehicles it  need-reliable network response time [7][8]. There is a demand for certain 

algorithms determine how much resource should be given from Network Function Virtualization 

Infrastructure (NFVI)to the VNFS developed such algorithms for scalable in a vertical and /or 

horizontal manner, alongside balancing two competing objectives.[9].However,NFV, got beneficial in 

many ways, It  is still challenged to the extent that complicated Service Function Chains(SFC), where 

it’s a sequence of  virtualized network functions(VNF)  that are employed in the network. One of the 

critical challenges is to position each VNF of an SFC to satisfy the end-to-end latency constraints. The 

literature research different ways of decreasing SFC latencies that looked at traffic engineering, VNF 

enhancement, and resource partitioning and deployment. Yet these have a sequential implementation 

approach whereby VNFs placement  are assumed to be implemented one by one. 

 

.    This simplifies the orchestration process by allowing linear optimization based on predefined 

Quality of Service (QoS) constraints, making the problem easier to solve deterministically. Yet, this 

assumption can be unrealistic in real-world NFV scenarios. Certain VNFs called as Caching and 

Network Address Translation (NAT),which not depend on a strict order and can be executed in 

parallel, significantly reducing latency. In fact, studies have shown that nearly 50% of VNF pairs can 
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operate in parallel. These methods also depend heavily on predefined rules and lack the capability to 

dynamically adapt to changing network states. As a result, they fail to intelligently capture VNF 

interrelations and real-time resource availability, limiting their ability to make optimal decisions that 

maximize performance in parallel SFC orchestration. 

 The existing work developed framework by using Federated Deep Reinforcement Learning which 

tightly combined Federated Learning (FL) with Deep Reinforcement Learning (DRL), and 

performance increased in variety of applications such as online games, Network Slicing, find routing 

and autonomous driving etc.,[10],[11],[12],[13],[14]. The framework PVFP introduces a novel 

approach for parallel VNF placement in multi-domain NFV environments by combining Federated 

Deep Reinforcement Learning (FDRL) with parallelism-aware SFC decomposition. By identifying 

independent VNFs using dependency, position, and priority rules, PVFP decomposes SFCs into 

parallel and sequential segments to optimize placement. Federated learning is employed to protect data 

privacy while collaboratively learning placement strategies across domains.[15][16]. Although the 

PVFP framework effectively reduces end-to-end latency by enabling parallel VNF Placement with 

Federated Deep Reinforcement Learning (FDRL), it exhibits several limitations that hinder its 

practical deployment. The implementation of DRL brings about significant computational overhead, 

rendering it inappropriate for environments with limited resources, such as edge NFV deployments. 

Furthermore, the sluggish convergence characteristics of DRL-based approaches restrict their ability to 

respond effectively in rapidly changing network scenarios. The framework also suffers from limited 

interpretability, as DRL operates as a black box, making placement decisions difficult to audit or 

explain. In this work, we retain the parallelism identification and decomposition principles from prior 

frameworks, while introducing a novel placement mechanism based on Federated Machine Learning 

with interpretable models.    

Problem Statement 
Network Function Virtualization (NFV) is extremely dynamic and unpredictable, and ensuring 

service continuity and Quality of Service (QoS) depends on the effective allocation of compute, 

memory, bandwidth, and energy resources. However, there are a number of significant issues with 

current resource allocation techniques, such as heuristic approaches, deep reinforcement learning, 

and centralized machine learning models. On the other hand, Lack of scalability and Inconsistent 

prediction accuracy of resource allocation when handling large, distributed NFV domains. 

Contributions of this study 
ML-FL-VNF framework, replace the DRL component used in previous approaches with lightweight, 

interpretable machine learning models, with  Random Forest and CART. These models are trained 

locally at each NFV domain to predict optimal VNF placement, particularly focusing on parallelizable 

VNFs identified during SFC decomposition. The integration of tree-based algorithms enables the 

framework to achieve lower computational costs, faster convergence rates, and enhanced 
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interpretability, which collectively make it more appropriate for real-time deployment across 

distributed NFV infrastructures. 

·         The Proposed ML models relate to VNFs that can run independently (with no need to run 

together) for which optimal placement prediction is sought. They are based on available resources, 

dependency states, and network congestion levels here which it determine the best placement 

recommendations. 

·         Individual NFV domains perform local training of their placement prediction models, 

transmitting a model updates to the global federated server independently maintaining data privacy by 

not sharing raw datasets. This ensures data privacy across domains while enabling collaborative 

learning of global placement policies. 

 Compared to DRL models, Federated Random Forest and CART algorithms converge faster, 

require lower computational resources, and are well-suited for real-time or near-real-time 

VNF placement scenarios in NFV environments. 

 Thus, the proposed framework, Federated machine learning closely integrates Federated 

Learning (FL) with Machine Learning (ML), has achieved using interpretable models for 

efficient and scalable parallel VNF placement prediction and resource allocations in NFV 

environments. 

 The remaining sections are prepared as follows: Section 2 covers the literature survey, Section 

3 explains the proposed methodology, Section 4 illustrates its simulation results ,Section 5 

concludes the study and suggests future enhancements. 

2. LITERATURE SURVEY 
During the past years, many efforts have been developed to placement of SFC efficiently in 

networks. Three comprehensive surveys of it are given in and involving traffic scheduling, individual 

instantiation, parallel placement etc, considering the logic of VNF Execution, these previous efforts 

can be categorized as sequential, parallel &PVFP placements of SFC. 

 Sequential placement 

 It is primarily focused VNF service provisioning from a horizontal perspective, focusing on the 

sequential composition of VNFs and optimizing the execution of each individual component within 

the SFC. Given that VNF placement is an NP-hard problem,[17] numerous studies have proposed 

various heuristic and intelligent algorithms to tackle this challenge, with objectives such as minimizing 

the number of servers used, reducing resource overhead, and optimizing network traffic utilization. 

For instance, logarithmic factor approximation algorithms have been proposed to address VNF 

placement with strict ordering constraints, aiming to minimize overall service costs. Furthermore, a 

dual-phase heuristic method was introduced to harness traffic periodicity characteristics, aimed at 

reducing physical machine consumption and optimizing network resource efficiency [18]. Yet, 
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regardless of these progress achievements, sequential placement approaches encounter difficulties in 

fulfilling the latency specifications of modern time-sensitive applications, particularly with extended 

SFC chains, due to the intrinsic limitations inherent in sequential orchestration processes [19].  

Parallel placement 

   The aforementioned methods revolve around the practical deployment of VNF on vertical 

deployment lines, indicating that certain VNFs (virtual FW, virtual IDS) can also operate as one in 

parallel, with advanced intentions of NFV. One such advancement is the Network Function Parallel 

(NFP) approach which creates SFCs from new SFCs as functions are parallelized according to their 

dependency of function execution, and in addition, to minimize SFC delay, a combined packet 

processing framework known as Para Box operates amongst VNFs in such a way that packets are 

dynamically dispersed and parallelized within the box, merging the results according to packet order. 

Despite the above, many of the solutions still come as specific deployment methods and fail for 

parallel VNF deployment. As such, only a handful of studies support an overarching approach to 

parallel VNF deployment. For example, multi-instance parallel placement is a viable method as a 

reliability method for Data Centre Networks (DCNs) where DCNs also analyzed global methods for 

parallel VNF placement multiple instances, similarly, within SFCs. Other studies report limited 

parallelism to provide delay minimization, such as heuristics. Yet these heuristics fail to consider 

both the VNF interdependencies and the time-sensitive network environment that gives a context so 

optimization of performance for parallel SFC orchestration is restricted. For example, PVFP 

introduces a Federated Deep Reinforcement Learning (FDRL) solution to orchestrate parallel VNFs 

through the integrated solutions for recognizing parallelism, latency-aware aggregation in federated 

and decentralized reinforcement learning for actionable, intelligent orchestration that provides 

contextually relevant SFC QoS through intelligent orchestration.[20] 

PVFP Placement 

This solution is a complex solution to the classical heuristic, parallel VNF deployment constraints 

enabled by Federated Deep Reinforcement Learning.  This framework provides a sufficient solution 

that solves the constraints of conventional heuristic driven parallel VNF deployment through the 

utilization of Federated Deep Reinforcement Learning (FDRL). The system in question is a 

parallelism-aware orchestration of VNFs. First, all VNFs that can be executed simultaneously are 

categorized into groups based on certain factors - more specifically, inter-dependencies, placement 

conditions and placement priorities. Once independent VNFs are categorized into groups, PVFP 

leverages federated DRL to acquire placement policies in different NFV domains by only 

transmitting model weights instead of sensitive information.[21][22] The framework incorporates 

techniques such as latency/reward-based federated aggregation and flexible replay buffers to 

improve learning efficiency and optimize resource utilization. Simulation results from PVFP 

demonstrate noticeable latency reduction in SFC execution compared to sequential or heuristic- 
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based approaches. [16]However, despite its effectiveness, PVFP still faces challenges due to the 

high computational overhead of DRL, slow convergence, and lack of interpretability, particularly in 

distributed edge NFV Domains[23][24]. 

Research Gap 

Despite significant advancements in NFV resource allocation using machine learning, deep 

reinforcement learning and heuristic optimization methods face issues in poor multi metric 

optimization, limited generalization across distributed networks, unstable learning, high variance and 

centralization dependency. In addition, no prior work integrates with decision-tree with forest and 

federated learning for privacy-preserving, interpretable, and stable NFV resource prediction and 

allocation.[25] To solve these limitations, this study presents the federated forcart aimed at enhances 

NFV resource prediction and allocation by dynamically with scalability in multi domain 

environment.[26]. 

3. PROPOSED METHODOLOGY 

 This section describes the Federated Forcart in NFV for prediction and resource allocation. Figure 1 

portrays the architecture of this proposed study. This proposed study applies the proposed ML-FL-

VNF framework, which integrates Federated Learning (FL) with hybrid machine learning models 

(Forcart) for parallel VNF placement across distributed NFV domains. The work is designed to 

enhance orchestration efficiency while preserving privacy and improving scalability. Forcart combines 

the robust predictive capability of Random Forest with the transparency of cart Predictions from both 

models are combined, typically using probability averaging or weighted voting, to arrive at a   final 

placement decision.[27].  

 

 

                                         Figure 1. Architecture of the Proposed Study 

         
 

System Model and Problem Formulation 
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   In this section, we present the system model, parallel SFC decomposition, and formal problem formulation 

for the proposed ML-FL-VNF framework, which enhances parallel VNF placement using Federated Machine 

Learning instead of FDRL. The key notations are listed in Table I. 

 System Model 

   We consider the physical network infrastructure as an undirected graph G = (V, E), where V represents the 

set of NFV nodes (e.g., servers or edge nodes), and E denotes the set of communication links between them. 

The network is logically divided into K federated NFV domains, such that:  

                       G = G₁ ∪ G₂ ∪ ⋯ ∪ Gₖ-------------------------------------------------------------------(1) 

Each domain Gᵢ = (Vᵢ, Eᵢ) has its own set of nodes and links and is managed by a local NFV   Orchestrator, 

responsible for VNF placement and resource management. There is no raw data exchange between domains, 

only model updates during federated learning[25][26]. 

          Cᶜᵖᵘᵥ|ᵥᵢ = CPU capacity of node v ∈ Vᵢ Cᵇʷₑ|ₑᵢ → Bandwidth of link e ∈ Eᵢ-------- --------- (2) 

           Rᶜᵖᵘᵥ|ᵥᵢ, Rᵇʷₑ|ₑᵢ = Resource utilization ratios for CPU and bandwidth, respectively. ------------ (3) 

Similar to PVFP, each SFC request from users is composed of a series of ordered VNFs. However, 
parallelism rules (dependency, position, priority) are applied to determine whether portions of the SFC 
can be executed concurrently. VNFs that are independent of each other—such as Caching and NAT—
can be parallelized to minimize latency. 
The routing of a Service Function Chain is as follows 

  The rotting of an Service Function Chain is as follows 

 c = s → f₁ → f₂ → ⋯ → fn results in parallel and sequential segments 

   Sequential Segment: f₁ → f₂ → f₅ ------------------------------------------------------------- -(4) 

   Parallel Segment: {f₃, f₄} --------------------------------------------------------------------- ----- (5) 

The system places each set of parallelizable VNFs across various NFV domains, taking advantage of 

distributed computing resources to minimize latency while maximizing resource utilization. 

 

Problem Formulation 
 

The objective of the proposed prediction and resource allocation algorithm is to minimize the average 
end-to-end latency across all service chains in the system. By summing these components, the model 

captures the complete latency experienced by an SFC during activation, processing, and inter-VNF 
communication.[27][28] 
The total latency  is formulated as follows 

                                         Ttotal=Tac+Tpe+Tco--------------------------------------------------------(6) 

 

             Ttotal=Total end-to-end Latency across SFC 

         Tₐ𝑐  =Activation latency (time to start VNF instances) 

         Tₚₑ = Parallel execution latency (time for parallel processing) 

         T𝚌ₒ= Communication latency (traffic processing) 

    Average Latency Minimization   

                                        ------------------------------------------------------------- (7) 

                T=Average end to end latency 

                S=Set of all  SFC 

                C=Single service chain 

      Ttotal(c)= Total latency of chain c 

         ∑c∈C = Summation over all SFCs 

Minimizing this average latency ensures that the system provides efficient resource utilization, optimal 
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placement decisions, and low delay across the entire network, rather than optimizing for only one specific 

service chain. This objective aligns with end-to-end QoS goals in NFV orchestration and resource 

allocation.[29]           

          The problem is defined as to maximize the following terms 

VNF placement constraint: Each VNF must be placed on one and only one 

node. 

 Resource constraints: The CPU and bandwidth used by each VNF 

and link cannot exceed available resources. 

 Flow conservation: Packet flow through intermediate nodes 

must adhere to flow consistency rules. PVFP, which uses FDRL-

based optimization to learn placement policies. 

 Lightweight machine learning models (Random Forest, CART) trained locally 

in each NFV domain. 

 

Federated Learning (FL) for global model aggregation, ensuring privacy preservation. 

Consolidated decisions taken based on tree based structures and provide transparency 

than DRL-based methods. 

                          

Table I. Notations Used in the Proposed ML-FL-VNF Framework 

Symbol Description 

𝒱 Set of VNFs in the Service Function Chain (SFC). 

𝒫𝑣 Parallelism indicator for VNF v (1 if parallelizable, 0 otherwise). 

𝑁 Number of participating NFV domains in the federated learning framework. 

𝑀𝑖 Machine learning model trained locally at NFV domain i. 

𝑊𝑖 Local model parameters at NFV domain i. 

𝑊𝑔 Global model parameters obtained after federated aggregation. 

𝐶𝑖 Computational capacity (e.g., available CPU) at NFV domain i. 

𝐵𝑖 Available bandwidth at NFV domain i. 

𝐷(𝑣,𝑛) Placement decision mapping VNF v to NFV node n. 

𝑅𝑖(𝑣) Resource availability score for VNF v on NFV domain i. 

𝑇𝑠𝑓𝑐 Total end-to-end latency of the SFC after VNF placement. 

𝑅𝑎 Aggregated reward used for evaluating placement performance (e.g., latency 

reduction). 

𝒟𝑖 Local dataset of VNF placement history at NFV domain i. 

𝑃𝑎𝑟(𝒱) Subset of VNFs in 𝒱 that are identified as parallelizable. 

𝑆𝑒𝑞(𝒱) Subset of VNFs in 𝒱 that must be executed sequentially. 

 

3.1. Federated Learning with Tree-Based Models 

 
The PVFP leverages heavy DRL agents for the ML-FL-VNF, where as this proposed approach relies 
on more lightweight tree-based machine learning models. More specifically, Random Forest and 
CART are the models of choice because they can be trained over a small amount of data yet meet the 

intricacies of such an intricate problem. Thus, over time, each machine learning model is 
incrementally updated on a localized NFV domain, based on historical SFC request patterns for 
resources, observed patterns of resource utilization over time, and previously established placement 
decisions.[30] The federated learning-based structure of ML-FL-VNF, where Random Forest/CART 
are localized as internal trained models in different NFV domains, updated in a privacy-preserving 
manner in the federated learning server, and partially parallelized to facilitate decentralized VNF 
placement decisions. 
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Figure 2. Local model Resource prediction using Forcart algorithm 

Each NFV domain orchestrator operates according to the federated learning (FL) framework to capture 

its local dataset (di). This local dataset contains all features that make up the capacity of each NFV 

component of interest: node CPU usage, link bandwidth availability, VNF graph structures and 

dependency trees, parallelization Booleans, node-link latency measurements. As these features are 

relatively standardized, tree-based ML-based solutions - Random Forest and CART - are trained 

locally, as shown in Figure (2). Random Forest is known for its reliable ensemble-based predictions 

after dynamic assessments of trees - and better prediction accuracy; CART is known for its speedy 

results explainable choices - expedited placement choices are often necessary based on SFC requests. 

The orchestrators learn their respective local models and only share their model weights (wi) with the 

centralized FL server. It's unnecessary for the FL server to have access to sensitive raw data; instead, it 

can apply Federated Averaging (FedAvg) or ensemble-based averaging to the global (accumulated) 

findings (wg) and send this model back to the individual contributors for further learning or trusted 

placement operations. This assures privacy of sensitive information, reduces communication overhead, 

and improves convergence speed - all exponentially better than DRL-based approaches. 

[31][32]Therefore, when a new SFC request comes through, the expected placement of all VNFs - 

especially those that are parallelizable - can be anticipated through the local model or new global 

model in which each VNF is placed within the most suitable NFV node according to resource offering 

and anticipated placement history in and outside the predictive FL model; this intention reduces 

aggregate end-to-end latencies. 

3.2. Federated Forcart based Resource prediction and allocation 

            The aim of the proposed Federated Forcart framework is to reduce prediction and scaling during NFV 

resource allocation while ensuring privacy preservation across distributed domains. Forcart combined the 

strengths of CART and Random Forest (RF) algorithm for a federated learning loop, it enabling stable and 

accurate prediction across clients without sharing raw data[33][34][35]. 

        At each federated communication round r, client i trains a hybrid predictor using a local dataset:        
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                         Di={(Xi,yi)} ------------------------------------------------------------------------------(8)  

           Where 

                 Di= Complete dataset stored locally at device or client i. 

                 Xi – The input features, 

                 yi – The target label or output value to be predicted 

                 {⋅}- Denotes that the dataset contains multiple such input–output pairs 

 

Each client generates two model hypotheses,      

              

 θiC =  denotes the CART parameters (splits, thresholds), 

 θiR= denotes the RF parameters (ensemble trees), 

 X   represents the multi-metric NFV feature vector (CPU, memory, bandwidth, 

latency, energy) 

                 

                hi
CART(X)=fθi

C(X).-------------------------------------------------------------- (9) 

  

         hi
CART(X) = prediction produced by the CART model of client i for  the input  X. 

 fθiC(X)= the CART model function parameterized by the model parameters  

 

                hi
RF(X)=fθi

R(X)-------------------------------------------------------------------(10) 

 

hiRF(X) = prediction produced by the Random Forest model of client i for input X. 

fθiR(X)= the Random Forest model function, parameterized by the set of parameters  

 The predicted output for a client is:   

 

                    = ( )------------------------------------------------(11) 

 
                  y^i =The final predicted output for client i after combining both models. 

The value  denotes the predicted resource allocation level, and its magnitude reflects the confidence in client-

side prediction. After local predictions are computed, the server aggregates the models using sample-weighted 

averaging  

                G=  ----------------------------------------(12) 

                  wi=The weight of client i in the aggregation. 

The above Eq., takes the weighted average predictions from all clients for both CART and Random Forest, 

then averages the two to form a robust and accurate global prediction. This ensures the strengths of each client 

and model type contribute fairly to the final output.[36] 

          Where           wi =       --------------------------------------------------------------- (13)                    

∣Di∣= number of data samples at client i. 

              ∑j=1 
N∣Dj|= total number of data samples across all n clients. 

        Thus, clients with larger data volumes contribute proportionally more to the global model. It is calculated 

as the proportion of the client’s local dataset size ∣Di∣ to the total data across all clients.Clients with more data 

has higher weights, ensuring the global prediction fairly reflects all 

contributions[37].

International Journal of Computer Networks & Communications (IJCNC) Vol.18, No.1, January 2026

138



 

 

 

 

            

International Journal of Computer Networks & Communications (IJCNC) Vol.18, No.1, January 2026

139



 

 

 

 

     

                                   
 

Figure 3. Flowchart of Federated Forcart algorithm for prediction and allocation 
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4. SIMULATION RESULTS 

 
The proposed Federated Forcart–based NFV resource allocation framework was evaluated using a 

high-performance workstation equipped windows with 10-64 bit and an Intel Core i7 CPU,256 GB 

RAM, 2 TB disk. Development and execution used Python 3.10 with Scikit-learn, NumPy, Pandas 

&Matplotlib. It ensures adequate computational capacity for federated model training, ensemble 

learning, and multi-metric resource optimization. The random seed was fixed (random state=42) for 

reproducibility.                                         

Data Sets 

 The experiments utilized the Cloud Resource Allocation Dataset sourced from Kaggle by the 

following link https://www.kaggle.com/datasets/programmer3/energy-efficient-cloud-resource-

allocation-dataset.It provides relevant performance metrics to evaluate the resource allocations for 

virtual environment, that’s are CPU utilization (%), ram (MB), network (Mbps), storage (IOPS), 

energy (W), latency (ms), expected load (%) and application type and processing priority. These 

features reflect real NFV behaviours are enough to test both regression and classification tasks. 

 Preprocessing 

This was performed on the dataset. Initially, any NA values and outliers were removed to create a 

baseline of data integrity. Second, continuous integer values were normalized through z-score 

standardization (z-scoring) for uniform comparison across elements that may otherwise possess 

distinguishable differences. Categorical, discrete integer values such as type and priority were 

converted to integers through label encoding for machine learning processing. Finally, the processed 

dataset was distributed across multiple simulated federated learning nodes to mimic the reality of 

cloud-based environments where data is dispersed due to privacy policies, geographic barriers, and 

enterprise governance barriers. Table 2 represented different simulation parameters used and shows its 

value.    

 
                                            Table 2. Simulation Parameters                                                          

Parameters Value 
No. of Estimators(n) 100 
Max Depth(d) 10 
Minimum Samples per Leaf (m) 2 
FL Rounds (F) 5 
Aggregation Method(A) FedAvg 
Random State (RS) 42 
Criterion (C) MSE 

The information was distributed across the federated computing nodes, and each client 

executed data preprocessing, feature scaling and independently trained hybrid CART 

integrated with Random Forests. Once training was completed, clients securely forwarded 

their learned model weights to the central server for model aggregation and adjustment. 
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4.1. Performance Metrics 

The performance was assessed based on R2, MAE, RMSE and MAPE Metrics. These 

measures evaluate how accurately Federated Forcart predicts the resource allocations. Table 3 

represents detailed results of performance comparison with different five algorithms with 

different metrics.         

                                   Table 3. Performance comparisons with different metrics 

Metric DQN DDPG OCRA PVFP Federated ForCart 

Accuracy 0.64 0.66 0.68 0.70 0.74 

R2Score 0.642 0.651 0.667 0.695 0.704 

RMSE 0.077 0.690 0.683 0.651 0.634 

MAE 0.602 0.590 0.581 0.575 0.572 

 

According to Figure 4.1, the performance was greater than other trustable state of the art 

solutions. Accuracy is increased gradually from 0.64 to 0.74(Federated Forcart). R² Score 

represents how well the model explains variance range from 0.642 to 0.704 with Federated 

Forcart. The RMSE calculated for the average prediction error magnitude, it is decreased for 

better performance from 0.077 (DQN) to 0.634 (Federated ForCART). The Mean absolute 

metric measures the average size of prediction error ranges reduced from 0.602 to 0.572. 

 

Figure 4. Performance comparisons across algorithms 

4.2. Correlation Analysis of NFV Performance Metrics    

   
Figure 5 is the correlation matrix heatmap for the performance of NFV baseline. These details 

are used to represent the values between critical network parameters and interdependence 

between CPU Usage (%) and Memory Usage (MB), Network Usage (MBps), Disk I/O 

(MBps), Energy Consumption (Watts), Service Latency (ms), and Optimized Resource 

Management. The correlation coefficient is between -1(positive linear correlation) and 

+1(strong negative correlation). 
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Figure 5. Correlation Analysis of NFV Performance Metrics 
 

Finally, the results of the correlation study confirm that the NFV data set is a complicated, 

organized one and thus, is a good candidate for federated learning and resource allocation 

experiments. The CPU, bandwidth and latency features are also not reliant upon each other, 

implying that federated learning is a suitable compromise between what is learned at each level 

of locality and what is learned at the network's entirety. 

 

   4.3. Actual vs Predicted Values using Federated Forcart 

 
     For prediction reliability, Table 4 represents variation between the actual value and predicted value. These results 

represents that the predictions of these values comes from trained model with time-sensitive and resource 

accumulating across distributed network functionalities with little prediction error and high reliability. 

.                                        Table 4. Actual vs Predicted resource values 

 

 

 

 

 

 

 

 

 
      

The Figure 6 demonstrate how prediction made by the model, it represented in each blue points. Meanwhile the 

ideal reference line (i.e.) [y=x], represented predicted values would exactly equal to actual values. This 

Federated Forcart's NFV values (x-axis) against the predicted NFV values (y-axis).  

 

Actual Value Predicted Value 
4 4.116654 
2 2.425123 
3 2.524426 
2 1.478131 
1 1.517774 
2 1.569141 
2 2.494888 
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                                     Figure 6. Actual vs predicted using proposed algorithm 

            
4.4.NFV Performance Metrics among various Algorithms 

             
The Table 5 calculated the average NFV Performance metrics for each algorithm and figure 6 is a box 

plot. It distinguishes the normalized NFV performance metrics across the main algorithms, including 

DQN, DDPG, OCRA, PVFP and Federated Forcart algorithm. These summarized metrics are CPU, 

Network (MBps), Service Latency (ms), Energy Consumption (Watts) and usage. All the metric 

values were normalized from 0 to 1 to ensure a consistent scale was applied for visual and practical 

assessment. The IQR defines the height of the box, the line represents the median in each box and the 

boxes represent how far each metric deviates from the average value.                                                                   

                               Table 5:Comparative analysis of proposed system 

 

                 

                            Figure 7. NFV performance Metrics comparison across algorithm 

Model CPU Usage 

(%) 

Network Usage 

(MBps) 

Latency 

(ms) 

Energy 

(w) 
DQN 48.5606 249.3795 129.23 269.31 

DDPG 50.3938 266.0768 130.83 267.62 

OCRA 51.8606 240.4753 122.15 283.43 

PVFP 48.0894 252.6387 129.84 257.10 

Forcart(Proposed) 46.7112 248.6505 124.98 277.47 
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5. CONCLUSIONS 
 
In this study, a new framework for parallel Virtual Network Function (VNF) placement in Network 

Function Virtualization (NFV) environments is introduced with ML-FL-VNF. By combining 

Federated Learning (FL) with the lightweight machine learning algorithms as Random Forest and 

CART. This suggested approach overcomes the drawbacks of current Deep Reinforcement Learning 

(DRL)-based techniques, especially those employed in PVFP. These solutions provides intuitive and 

user-friendly VNF placement decision-making with much lower DRL-computational demands and 

provide training times complexities. The solution is based on three main steps. First, principles of 

parallelism (dependency, location and priority) simplify Service Function Chains (SFCs) into serial 

and parallel sub-chains. Second, instead of DRL black-box models, the orchestrator of each NFV 

domain builds its own ML model to determine the optimal placement decision of each VNF. These 

proposed models are federated without sharing private information, only aggregating to a federated 

server, It builds a global optimized VNF placement policy. Third, VNFs are implemented in 

distributed NFV domains where parallel ones can run concurrently to achieve great end-to-end latency 

reductions. In a nutshell, ML-FL-VNF is scalable, privacy-sensitive and user-friendly for VNF 

placement in geographically distributed NFV domains and works best for real-time deployments in 

edge environments or constrained networks. In conclusion, Federated Forcart features high predictive 

accuracy and extensibility generalization, demonstrates that it's a reliable VNF placement option for 

NFV orchestration in dynamic real scenarios. Future studies will focus on HFL to provide further 

cross-domain scalable low-latency service chaining for dynamic VNF placement in overloaded 

situations. 
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