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ABSTRACT 
 

Assessing Web service systems performance and their dependability are crucial for the development of 

today’s applications. Testing the performance and Fault Tolerance Mechanisms (FTMs) of composed 

service components is hard to be measured at design time due to service instability is often caused by the 

nature of the network conditions. Using a real internet environment for testing systems is difficult to set up 

and control. We have introduced a fault injection toolkit that emulates a WAN within a LAN environment 

between composed service components and offers full control over the emulated environment in addition to 

the capability to inject network-related faults and application specific faults. The toolkit also generates 

background workloads on the system under test so as to produce more realistic results. We describe an 

experiment that has been performed to examine the impact of fault tolerance protocols deployed at a 

service client by using our toolkit system. 
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1. INTRODUCTION 
 

Web services are becoming progressively more essential in the information systems. Web 

services are software applications that operate independently and that offer services over the 

Internet to other software applications, including web applications and other Web services. Web 

services have changed the way we look at the Internet from being a repository of data into a 

repository of Services [1], because of its capability to solve integration problems in Internet 

applications.  By using Web services, Internet applications can communicate with other Internet 

applications regardless of using different programming language or platforms. 

 

Web  services  can  be  adopted  to  develop  information systems by integration  of services  to 

obtain  complex composed services. Web service technology is being used to allow the creation 

of complex systems, composed of simple Web services, which exchange messages to form 

complex conversation schemas [2]. These services are usually developed and administrated by 

different service providers, running on different platforms and also distributed over the Internet in 

different locations. 

 

The quality of such complex systems depends on the quality of the network environment and, of 

course, on the quality of the Web service applications participating in forming such systems.  One 

of the obstacles of the adoption of the Web service paradigm in such composed systems is the 

problem of measuring their overall quality. Services are inherently distributed and heterogeneous, 

and are often invoked with little knowledge of their reliability and their performance. 

 



International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.3, May 2016  

 

150 

In such applications, service composition is typically dynamic so that services are discovered, 

selected, and composed, probably at runtime. In such services it is hard to assess behaviour and 

performance in the presence of faults. As Web services are usually distributed and operated over 

the Internet, there is no guarantee that all the components of the service are highly reliable.  In 

[15] it is reported that network faults such as message duplication, reordering, loss or corruption 

have an effect on traditional distributed systems such as CORBA applications.  In addition, it has 

been concluded that unstable Internet environments and server connections can lead to 

unreliability of Web service systems [3]. 

 

As Web service systems are subject to many network faults such as delaying, dropping, 

damaging, and reordering messages and also to software faults within the service, testing  the  

performance and  fault  tolerance  of  Web services  have  become  an  active  research  area.  

Software Fault injection is a well-proven method of testing and assessing the reliability of a 

system [1]. In this paper, we describe a toolkit for assessing the performance and FTMs of either 

a single Web service or composed services, without modifying the system being tested. No 

recompiling or patching is necessary. Furthermore, the toolkit will generate a background 

workload for more accurately emulate real networks. Our toolkit is also running independent of 

the hosting environment for portability.   

 

In Section 2, other tools for injecting faults into web services are described. In Section 3 and 4, 

we explain the design   and   implementation of our Network Fault Injector service (NetFIS).  In 

Section 5, an example experiment are described which uses NetFIS to test and assess the 

dependability of a Bioinformatics Web service system.  This examined Web service system uses a 

technique termed Mediation [4] to provide fault tolerance mechanisms.  We evaluate the 

performance and the fault tolerance mechanisms of the service. Section 6 describes our 

conclusions and our future work. 
 

2. RELATED WORK 
 

There are many Software Fault Injection tools for testing and assessing distributed systems in 

general and other tools for testing Web service systems in particular. Some well-known fault 

injection  testing tools,  such  as  DOCTOR  [5]  and  Orchestra  [6] that both of them support 

network level fault injection and could be potentially used to inject faults into Web service 

systems, both tools have been designed to test network protocols and therefore don’t decode  

complete  middleware  message sequences.  There are many other fault injection tools for testing 

Web service applications. In [7] a testing tool is developed for generating and validating test 

cases. Tools start from the WSDL schema types and introduce some operators to generate a 

request with random data and a test script which manipulates and modifies the request 

parameters.  In [8] other technique for testing Web service systems using mutation analysis is 

proposed. A mutant WSDL document is generated by applying mutant operators to the elements 

of the original WSDL document. A test tool called WSDLTest [9] testing tool generates Web 

service requests from the WSDL schemas and tunes them in accordance with, what’s called, the 

pre-conditions written by the user and verifies the response against the post-conditions offline.  

In [10] an assessing tool is proposed based on some rules which defined in XML schema or DTD.   

 

The testing tool modifies the parameter values in requests by using boundary value testing, and 

on interaction perturbation, using mutation analysis. Another testing tool [11] introduces a toolkit 

framework intercepting and perturbing exchanged SOAP messages by injecting faults by 

corrupting the encoding schema address, dropping messages, and inserting random text in the 

body of SOAP messages. The work described in [12] helps Web service requesters to create test 

cases scenarios in order to select suitable and correct Web service application from public 

repositories. It proposes a testing method tool which injects faults into SOAP messages to test the 

parameter boundaries, as specified in the WSDL document. WS-FIT testing tools [13] inject 
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faults by modifying exchanged SOAP messages using scripts. The function parameters are 

manipulated by using the value boundaries specified by the tester. WSInject [14] testing tool 

injects both communication and interface faults, and the ability to inject faults for testing a single 

Web service or composed service system. 
 

A common characteristic of previous testing method tools is that their focus is mostly on testing 

single Web services in isolation (except for a few such as WSInject); furthermore, most of their 

focus is on injecting faults by only modifying the exchanged SOAP messages, since they do not 

emulate additional workload in the system which most likely could give rise to different   results.   

Different workloads could lead to different assessment and testing results, due to the cause of 

different system activation patterns [15].  Moreover, most of the previous testing methods focus is 

on testing only the Web service provider not on the Web service requester. In a composed service 

where the Web service provider needs to be a Web service requester to other  Web service  

provider  in  order  to  serve  a request,  which means  it  is  so  essential  to  test  the  Web service  

requester  to prevent the  whole  system   from   failing   to  provide  the required service. 
 

In [16] testing method, faults are injected at the IP level in order to investigate the effect of 

retransmission mechanisms of TCP on Web services. This allows them to assess the relationship 

between TCP and WSRM time-out and retransmission mechanisms. By contrast, our testing 

toolkit method will drop the whole exchanged message which may consist of more than one 

packet. In this way, the consequences of injecting such faults can be propagated to the application 

level so as to assess and examine whether FTMs at the application level can handle such faults. In 

[17] a methodology, for assessing and testing the performance of FTMs applied to Web services 

applications, have been introduced and the overhead of the tool has been tested. 

 

In this paper, we propose a fault injection testing method that, adopting the architecture of a Wide 

Area Network emulator used for testing and assessing other distributed systems, extends it to test 

and assess composed Web service systems. In addition, two classes of faults are injected, 

communication faults and software-specific faults without modification to the system under test. 

The method also generates additional workload on the tested system in order to produce more 

realistic testing results. 
 

3. NETWORK FAULT INJECTION METHOD 
 
The Network Fault Injector Service (NetFIS) is a Web service system which implements our fault 

injection method for assessing Web services performance and fault tolerance mechanisms. 
 

It  is deployed between the Web service client and the Web service provider and requires the  

system under test to be  distributed  in  a  modular fashion  of services  interacting  via messages,  

therefore, messages can be manipulated and modified to emulate incorrect behaviour of faulty 

services. It basically intercepts the request from the Web service client,  provides  a network  

emulator  service  and injects appropriate fault (if any) and thereafter, forwards  the request  to the  

Web service  provider.  Similarly, it intercepts the response from the Web service provider, 

provides a network emulator and injects a fault (if any) and then forwards it to the Web service 

client. NetFIS gives Web service applications the sense of running over a WAN without any 

modification to the applications.  Our testing method requires no modifications to the underlying 

operating system, networking libraries or the Web service to be tested. NetFIS is able to emulate 

WAN behaviour and injecting network faults such as dropping, delaying, randomly corrupting 

bytes in the body of the SOAP messages, network faults have been used to carry out experiments 

reported hereafter. In addition, software faults can also be injected into individual RPC 

parameters based on obtaining the relevant Web service parameters definitions (including data   

types)   from   WSDL   files, however this class of faults will not be injected or detailed in this 

paper. 
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The network emulator is configurable and has the ability to control every property of the target 

emulated network environment. The graphical user interface (GUI) of the network emulator also 

gives the ability to control the emulator at runtime so as to achieve the dynamic nature of 

networks. By using the network topology configuration file, network traffic trace files and the 

GUI, composed service systems performance and FTMs can be measured and assessed in a 

controlled emulation of a target WAN. As composed  service systems can be subjected and  

affected to network delays, drops, errors, reorders and  partitions,  and  also  software  faults, in 

this experiment we restrict the use of NetFIS to emulate only drops, errors and delays to the 

messages exchanged between the system components in order to measure the performance  and 

the FTMs applied to Web service client side. 

 

Before going through more details about the proposed system architecture of the NetFIS, it is 

worthwhile to elaborate on some of the major design issues. 

 

3.1 APPLICATION LEVEL AND NETWORK LEVEL 

 
Network related faults like corruptions, reordering and dropping packets occur at the network 

level.  This includes the physical media and all the layers in the network stack. It follows logically 

that intentional network related faults are injected at the network level. This is done traditionally 

to assess   the   reliability   and   performance   of   networking protocol stacks.  However there is 

a very high probability that the fault injected (e.g. corruption) will be detected by the actual 

underlying network protocol stack at the other end [15].  Consequently,  the  application  or  

middleware  being tested  will  not  notice  the  occurrence  of an  error  and  the reliability 

measures  built there will go untested.  Moreover injected faults at network level are based on 

tampering with packets not on application messages. 

 

Our  fault  injection  method  is  for  injecting communication  faults  and tests  their impact  on 

composed service  system  performance  and  their  impact  on the  fault tolerance mechanisms 

applied to such systems. Therefore it is more efficient and desirable to inject faults at the 

application/middleware level instead of at the network level. Communications  between  the  

system  services  are intercepted  at application  level  and  faults  are  injected  by using  proxies.  

We elaborate on the architecture of this choice in later sections. 

 

3.2 NETWORK EMULATION 

 
Since, in composed service, the services participating in the system are usually running over the 

Internet, the performance and fault tolerance of a composed service are very difficult to be 

measured at design time. Testing such systems a distributed testing environment is required such 

as a wide area network (WAN) or the Internet. Therefore performance and fault tolerance of the 

system can be tested by deploying  the  system  and  run  it  over  a  WAN  or  the Internet. 

However using the Internet or WAN for the sake of testing is usually impractical. It involves a 

high cost in terms of  time  consuming  and  setting  up  a  WAN  or  using  the Internet  for the 

sake of testing.  It is impossible to control such dynamic environment as networks such as putting 

more stress, load, or errors. Moreover, errors and faults may take a long time to occur.  Some 

errors may not occur without applying a certain chain of events. 

 

A realistic approach is to run the system in one machine or over a LAN using a WAN emulation 

system which can provide the sense that the system is running over a WAN and provides all the 

properties of a dynamic WAN like the Internet. That is, will help the testers to test the 

performance and fault tolerance by running the system under different circumstances such as 

different network traffic load, delays, loss rate, and so on. By using network emulation, not only 

the performance of the whole system can be measured under different circumstances, but also the 
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contribution of each service to the overall composed service system can also be measured and a 

bottleneck service can be discovered. Such runtime environment should also be able to inject 

faults to the system under test which this research proposes so. 
 

Based on the discussion above, the proposed solution we propose in this paper is emulating 

customizable and controllable WANs over LANs. Therefore, the Web service systems are 

assessed on virtual WANs which are very similar and comparable to the actual target WAN 

environments. Testing over these virtual WANs will not be suffering the problems of the real 

WANs discussed above. The assumption made in this thesis is that the actual LANs used in 

hosting the virtual LANs   are   very   reliable   and   very   fast   thus   making uncontrolled faults 

and delays negligible. 
 

Our network emulation is based on the architecture of a fault injection testing method with 

successful results for testing CORBA   Applications   [18].  The original   testing method is for 

emulating the behaviour of WAN and injecting network faults at the application level. The 

messages exchanged between CORBA components are intercepted (using CORBA Interceptors), 

and then network faults are injected. 
 

However, there are some shortcomings of the CORBA fault injection approach [18]. In CORBA 

interceptor level the messages are already coded in binary code, therefore this method does not 

target any particular   elements   in the message to inject faults such as function parameters in the 

case of RPC. Also the corruption and dropping messages are only injected by throwing   

exceptions.   That  means,  the CORBA fault injection method assumption  is for injecting the 

mentioned  faults to test only the system ability to deal with  such exceptions,  whereas  it is more  

logical  to inject explicitly  the  fault  and  observe  its effects  on the system. Injecting faults such 

as dropping and delaying messages can help developers to assign a reasonable time period before 

the system times out. The problem of the CORBA approach cannot  help  in  how  to  distinguish   

between  in  which  a message  (or its acknowledgement)  is simply experience  a delay in the 

network  from  those  in which  a message  has actually been lost. If the time-out interval is made 

too short, then there is a risk of duplicating   messages   and also reordering in some cases. If the 

interval is made too long, then the system becomes unresponsive. 
 

All the discussed issues above have been taken into account in order to produce a WAN 

Emulation for our fault injection method. As discussed in the previous section, the messages   are  

intercepted   at  application   level  by  using proxies,  so at this level  the complete  message  

entities  are captured and any particular part of the messages can be manipulated. In addition the 

network faults may be injected explicitly (dropped or corrupted messages).  The proposed 

solution for choosing a reasonable time out period is tackled by testing the system under different 

real delay rate and drop rate scenarios, then monitoring the system in order to assign the  best  

timeout  period  that  can  minimize  the  risk  of confusing   between   the  normal  network  

delays   and  the message losses. 

 

3.3 SCALABILITY AND OVERHEAD 
 

There are some key issues have been considered in order to design our fault injection method. In 

order to emulate a large multi-hop network, scalability and overhead issues need to be addressed. 

The emulator must has to scale well for networks with hundreds or more of network nodes, in the 

meantime maintaining a limit on the overhead of the emulation. It is intended that the network 

emulator is hosted  over  a  LAN where  every  physical  node  is  responsible  for  a  clique  of 

virtual  nodes.  This  reduces  the  chances  of uncontrollable faults  caused  by  the  underlying  

hardware  or  networking devices   and  allows accurate   emulation   of  other   traffic sources. 

The design assumes that the WAN, needed to be emulated, are large enough that the overhead 

introduced by the network emulator is negligible when compared to the actual network delays. 
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3.4 SYSTEM MONITORING (FAILURE DETECTION) 

 
Here we will discuss many ways in which distributed systems and in particular Web service 

systems can fail and the effects of each failure on the system. 

 

There are many system failure modes, affecting distributed systems, have been identified and 

classified.  For example,  in [15] system failure modes which can be occurred in CORBA 

applications have been  identified,  and  in  [11]  system failure  modes  affecting  Web service  

systems  are  also  classified.  Based on the above system failure modes classifications,  we have  

summarized system failure modes of composed service systems as follows: 1) crash of a service 

instance/hosting environments, 2) hang of a service, 3) corruption of data coming into the system, 

4) corruption of  data   coming   out  of  the   system,   5)  duplication   of messages,   6)   

omission   of  messages   and   7)   delay   of messages. 

 

This list is very general. Every Web service system has its own specific failure modes. However, 

the majority, if not all, of these system failure modes can be classified into one of the above major 

classes of system failure modes. 

 

The effect of the above failure modes will depend on the capability of the fault tolerance of the 

system to detect them and prevent the system from deviating from its specified behaviour.  

 

Corrupted data coming into the system should be detected by the middleware (or the Web service 

application) and rejected then raising appropriate error exception as a response.  Corruption  of  

data  coming  out  of  the  system should be handled by the middleware  at the service client, 

however Corruption  of data coming out of the system can cause  failure  when  it  is  not  

signalled  by the  system  and propagated from the middleware to the application level. In such 

case a mechanism must be deployed at application level to deal with this. 

 

Duplication  and  omission  of messages  should  also  be handled  by the middleware  layer  of 

the service  and  raise appropriate exception. However omission of messages from client to 

service must be detected by the middleware of the client since the service would have no 

mechanism   for knowing the message had been sent so it could not generate an exception. 

 

If the application server crashed, it will not be able to accept the invocation and the client will get 

an exception from the transport layer.   If the application server hangs, it may either accepts the 

invocation but does not respond so the client will not know what’s happening or the application 

server may not be able to accept the invocation at all making it more similar to crash. 

 

Delayed messages may cause timing faults. Timing faults should be detected by the middleware 

at service side when a response message is not received in a specified time slot. However, at the 

service client there is a problem of distinguishing between a lost request message and the message 

experience a long delay caused by the network. Therefore, a reasonable time span should be 

deployed before raising timeout exception at service client to minimize this issue. 

 

Because of all the problems above, some of the failure modes are very difficult to detect. For 

example as discussed above, it is difficult to distinguish between crash and hang failure modes in 

some cases, when the testing run by service client that do not have access to the application server 

logs where the Web service  is running.  In addition  some other failure  modes  are  also  difficult  

to detect  when  the  tester have  no  access  to  the  service  client  logs.    For example omission 

of requests when client request is lost before reaching   the   service   provider.   As   a   result   of   

that   a mechanism (such as timeout mechanism) deployed to detect omission of request messages 

at service client cannot be tested. 
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To   face   these   problems   we   rely   on   the   logging mechanism of the proposed method and 

the logging of the client as well. The failure modes mentioned before can be observed   by 

analysing   the tool logging   mechanism   to detecting exceptions caused by corruption of data 

and detect omission of messages from service to client. In addition for this experiment we use 

service client logs to detect omission of message failure from the client to service and also the 

effect of delays of messages.   Moreover, as crashes of services/hosting  environments  and hang 

of services  can be detected  via  receiving  exceptions  or  via  time-out mechanisms  applied  in 

service  client,  client  logs  are  also used to detect such failure in this experiment. For this 

experiment our fault injection method has no means of detecting duplication of message failure. It 

will be addressed in later research. 
 

4. NETFIS IMPLEMENTATION 
 
The fault injection method is designed to overcome the shortcomings of earlier fault-injection 

tools.  It minimizes the dependence on the underlying OS and distributed computing platform.  
 

Although the implemented version of our testing method is for SOAP based composed service 

systems, the architecture is generally applicable to be deployed to any SOA distributed computing 

platform (e.g. Open Grid Services Architecture) that allows the installation of proxies into the 

communication subsystem.  The emulator is transparent to the applications and requires no 

modifications, recompiling or   patching. NetFIS is also independent of any hosting environment 

for portability. Finally, NetFIS gives the applications under test the sense that   there are other -

synthetic- applications running during the test and sharing the networking resources without a 

perceivable emulation overhead. Our NetFIS Architecture tool consists   of three   main 

components as follows: 
 

4.1 FAULT INJECTION SERVICE 
 

Our Fault Injection Service (FIS) is a Web service application that has the ability to generate a 

proxy Web service to one or more Web service applications of the tested system. More 

importantly, it injects the proper fault into the system under test by its sub-components. 

 

The FIS role depends upon where it is deployed. At the client side, FIS role is to generate a proxy 

WSDL from the actual Web service WSDL needed to be called by client. As result,   all client 

requests   are processed   by the FIS. Thereafter, the FIS sends the intercepted request to its 

internal subcomponent, the Fault Injection Controller (FIC) to inject the required faults.  Then  

the  request  is  sent  to  another  FIS  that  is deployed  on  the  site  where  the  actual  requested 

Web  service  is running. When the client side FIS receives a response from the requested Web 

service it forwards it to the client. At the actual requested Web   service   side,   the   FIS   role   is   

different.   Request messages received from the FIS, deployed at client side, are forwarded to the 

actual Web service by the FIS. When the response is received, it is redirected to the internal FIC 

for fault injection, and then the response, if any, is sent back to the FIS deployed at the client site. 

In the case of composed service systems, where the service has to be acting as both a service and 

client in the same system, a single FIS can perform both of the roles mentioned above. Because of 

using this way of intercepting messages, no modification need to be made to the system under 

test. 
 

4.2 FAULT INJECTION CONTROLLER 
 

The   Fault   Injection    Controller    (FIC)    is   a   java component resided in the FIS that is   

responsible for controlling the testing tool and injecting the required faults into the intercepted 

massages. Faults are injected into the message based upon decisions coming from two other 

components of the testing tool – the Network Emulation Service (NES) and the Script Fault 

Model (SFM).   
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These two components can either be turned on or off at the choice of the user. The SFM is a java 

script which written by the user. The function parameters can be modified by using the value 

boundaries specified by the tester. When both SFM and NES are activated, the SFM decision can 

only be applied if the decision from NES is not to drop or corrupt the exchanged messages. In 

other words, The FIC gives network faults higher priority. The FIC also logs all the exchanged 

SOAP messages so as to be analysed offline. Thereafter, the message, if it has not been dropped, 

is sent back to the interceptor to complete its journey to the corresponding FIS. 

 

4.3 NETWORK EMULATOR SERVICE 

 
The   Network   Emulator   Service   (NES)   is   a   WAN Emulator  Web  service,  which  gives  

the  applications  the sense  of  running   over  a  LAN  or  WAN.  It gives the applications under 

test the sense that there are other -synthetic- applications running during the test and sharing the 

networking resources. In addition, it provides the capability of injecting network faults (loss, 

corruption, delay, reordering, etc.). This work has been modified and extended by using only Web 

service technology. All the generated workload traffic and the injected faults use only SOAP 

messages. 

 

The network emulator service system is deployed and exposed as composed Web services. It 

consists of a centralized Network Controller Service (NCS), controlling the target emulated 

network and  a set  of NES’s  deployed  at  every node in the  system which emulates the nodes of 

the target emulated network. The NCS and every NES communicate with each other by 

exchanging SOAP messages and also communicate with the FIC using also SOAP messages as 

required.  

 

4.4 SETTING UP THE TOOL 

 
The first stage of setting up the tool consists of building a description of the target emulated 

network using a topology file and to describe the traffic workload generated on all network nodes.  

 

The next stage is to start the NCS and load the topology. The third stage is to start the NES’s 

for all the network nodes. Thereafter, starting the FIS for every node which will cause generating 

a proxy Web service for each Web service required to be called in the system under test, and 

finally, order the NEC to start the emulation and then start the system need to be tested and 

assessed. 

 

The Topology file is a simple configuration xml file that describes the target network topology.  It 

lists the nodes in the network together with their configuration. In addition, a trace file also must 

be provided for each node describes its traffic workload. The trace file contains the packet counts 

per unit time and can be either created manually, captured from real traffic traces or produced by 

using network traffic modelling algorithms. Then, the NCS, which is a Web service itself, is 

started. NCS is used by NES’s in order to provide node configuration parameters and locations of 

neighbouring NES’s. Each node of the target emulated network is represented by one FIS and one 

NES. 

Each FIS at the client side needs to be provided with an xml file containing the URL(s) of the 

Web service(s) under test. The client needs to call this, in order to generate a Web service proxy 

which will be called by the client instead of the actual Web service under test. In addition, the 

xml file also contains the URL of the NES emulating the same node. 

 

As  the  tool  does  not  require  any modifications  to  the system under test, unless the only job 

for the client is to start calling  the proxy service  generated  by the FIS  instead  of calling the 

actual Web service. 
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5. TEST CASE  

 
In this section we describe an experiment that injects a number of network-related faults 

(delaying, dropping and randomly corrupting SOAP messages) into a Bioinformatics Web service 

[19]. We deployed the WS-Mediator [4] at the client side to invoke three identical Bioinformatics 

Web services [19] simultaneously via the NetFIS.  The performance and the fault tolerance 

protocols of the system under test have been examined. Moreover the overheads introduced   to   

the   system   by using   our   tool   are   also measured.   The results   obtained   from logging   

files are analysed and discussed. The setup of the experiment is explained in the next section. 

 

5.1 EXPERIMENT SETUP 

 
The topology of the target network that we emulated is a four-node network setup as shown in 

Figure. 1. In the experiments various types of faults were injected into the emulated   network.   

The   Network   Emulation   Service   is enabled to generate synthetic traffic through the network. 

 

 
 

Figure 1.  Network topology 

 

For a real application deployed on a WAN, there is a significant variation in performance due to 

other traffic occupying the network resources.  NetFIS supports various simulated traffic models 

including, but not limited to, self- similar, random, constant and even replaying previously 

captured traffic traces.  Since  studies  of  network  traffic suggest  that  it is self-similar  in nature  

[20],  we chose  to emulate continuous  self-similar  traffic in our network.  The mean packet rate 

is 30 packets /second on each link, and the self-similarity value is 0.8.  The packet size 

distribution follows measurements taken from Internet backbones [21]. The link utilization varies 

based on the generated packet size and the link configuration. 

 

5.2 NETWORK CONFIGURATION 

 
We measure the performance of the protocols in four network configuration scenarios: 

 

5.2.1. LAN   CONFIGURATION  

 
The LAN was used to test the base performance of the target system without deploying NetFIS.  

The Web service client issuing the requests was loaded on machine A in Figure. 2. The 3 services 

participating in the test are run on machines B, C and D respectively. 

 

5.2.2 FAST WAN CONFIGURATION 

 
The propagation delays are fixed at 2ms which is typical of inter-city links within the UK. The 

bandwidth of each link is 4mb/s. The average utilization of each network link given this 

bandwidth, and the simulated traffic detailed in previous section, ranges between 10% and 20%. 
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5.2.3 SLOW WAN CONFIGURATION 

 
This configuration represents the other extreme network environment. All services are located in 

far apart geographical locations and connected by slow links. The propagation network delays are 

fixed at 50ms which can be typical of far apart geographical locations and international links (e.g. 

between Newcastle, England and Tripoli, Libya). The bandwidth of each link is 512Kb/s.  The 

average utilization of each network link, given this bandwidth and the traffic, ranges between 

20% and 40%. 

 

5.2.4 HETEROGENEOUS WAN  CONFIGURATION 

 
This configuration represents a case somewhere between the two extremes. One of the services 

was placed in a faraway location (connected by slow WAN links) while the other servers and the 

client were closer to each other (connected by fast WAN links).  The links and loads used here are 

similar to those used for the slow and fast WAN configurations. 

 

5.3 CLIENT CONFIGURATION 

 
We have developed a special client application implementing several test cases corresponding to 

the fault injection configurations applied during the experiment. The client application is 

implemented on the WS-Mediator framework (as shown in Figure. 2) and utilizes the built-in 

FTMs and logging mechanisms of the framework. The WS-Mediator claims to offer 

comprehensive off-the-shelf FTMs in order to cope with various kinds of typical Web service 

application scenarios. It also includes a monitoring mechanism to benchmark a collection of 

candidate Web services that would be used during service composition and generate their 

dependability metadata for dynamic composition reasoning. The framework allows the client  to 

submit  a number  of candidate  Web  services  for service  composition  and define a 

reconfiguration  policy to specify how to make use of the candidate Web services, and thus to 

reduce the development cost of a dependable  client application. 

 

 
 

Figure 2.  A system being tested by NetFIS 

 

In our Web service client application, we chose to use the deployed N-version programming 

mechanism offered by the WS-Mediator in order to invoke the NetFIS proxies simultaneously 

and choose the first valid response from the service a client’s request. During the invocations, all 

request and response messages are logged using   the   built-in   monitoring   mechanism   of the   

WS-Mediator. The complexity and processing overheads of the WS-Mediator have been 

minimized with these settings. It is worth noting that classic N-version programming approach 

normally requires voting for result validation.   
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However in Web service applications, although similar Web services may return semantically 

identical responses they are not usually exact matches. The WS-Mediator framework allows a 

policy-based response mapping, however since the NetFIS tool   injects   random   faults   into   

the   SOAP   messages especially with random timing, the response mapping and voting 

mechanisms are of little value in our test cases. Nevertheless, the late responses are also logged 

for further analysis. 

 

Besides the fault tolerance mechanisms deployed in the client application, the functionality of the 

client is fairly simple.   It   invokes   the   three   replicated   Web   services repeatedly with or 

without the NetFIS. The number of invocations and the delay interval between invocations can be 

configured dynamically. 

 

5.4 EXPERIMENTAL RESULTS 
 

The experiment comprises several test cases for validating the NetFIS approach.  All the events 

have been logged (SOAP requests and responses, injected faults, round trip response times and 

exception messages) during the experiment. Those saved logs generated by the client application 

and the NetFIS have been used for quantitative result analysis. 

 

Section 1:   the   NetFIS   emulates   different   types   of network with simulating various traffic 

load. Details about the settings are shown in Table 1. A preliminary assessment test was carried 

out to check the network condition and the Web service before the performing other test cases. 

The client invoked the three Web services directly 1000 times (interval: 1000ms) without the 

NetFIS.  The  overall   maximum,   minimum,   and  average round  trip  response  time  (RTT)  

received  by  the  client application are 102ms, 8ms and 57ms respectively. 
 

 

 
 

Figure 3.  Client invocation RTT 
 

Figure. 3 shows the RTT to the three Web services logged by the WS-Mediator.  It is very 

interesting to see the three Web services had much longer RTT at the very beginning of the test 

suggesting the RTT could have been optimized by some kind of caching mechanism employed in 

the Web services. It is also worth noting although the three replicated Web services have identical 

hardware, operating system, middleware, etc., WS3 constantly had longer delays than WS1 and 

WS2. However, the RTT variations of Web services and between different Web services are 

indeed insignificant compared with the delays to be injected by our toolkit. Therefore can be 

safely ignored.  The average RTT of WS1, WS2 and WS3 are 10ms, 11ms and 12ms. The 

average client RTT was slightly smaller than 10ms, because it always uses the quickest response 

from the three Web services. 
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The preliminary test results provided the benchmarking information of the physical LAN and 

Web services involved in the experiment. Then the NetFIS were added between the client and the 

Web services, and the client made 1000 invocations in each setting. 

 
Table 1.  Response time overhead 

 

 

Network 

 

Bandwidth 

(Mb/s) 

Response time 

Max, 

ms 

Min, 

ms 

Average, 

ms 

LAN N/A 102 8 57 

Fast WAN 4000 488 35 59 

Slow WAN 512 698 110 190 

Hetero.WAN Fast and Slow 870 99 104 

 

 

The result statistics shown in Table 1 clearly indicated the effectiveness of emulating the three 

different networks between   the system   components.   The   average   RTT   - without  injecting  

drop  and  error  faults  - when  emulating Fast WAN is 59ms, where the average RTT without 

using our tool in LAN  is 57ms. That means the overhead delay introduced by our toolkit to the 

tested system is clearly insignificant.   However   the   differences   of   the   average response 

time between the Fast WAN and the Slow WAN is indeed big. That is related to the 

configurations of the two emulated networks, specifically the propagation delays and the 

bandwidths where in Fast WAN are 2ms, 4mb/s and in Slow WAN are 50ms, 512Kb/s 

respectively.  When considering   Heterogeneous   WAN, the average response time is almost 

between the average response times of the Fast and Slow WANs. That is due to Heterogeneous 

WAN is configured of a combination of the other two WANs (Fast and Slow). 
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Figure 4.  RTT of the test cases (Web service 1) 

 

The  Figure  shows  the RTT  of WS1  (monitored  at the WS-Mediator  client)  at different  drop  

and error  rates  and network  conditions.  The ‘injection modes’ axis represents the invocation 

RTT of each injection mode shown in the Figure legend.  

 

The overall average RTT of the fast network is much smaller than of the other two network 

conditions. The Figure clearly shows greater RTT variations of the heterogeneous network than 

the slow network. The timeout value has been regulated to 3000ms in the Figure to make the plots 

more readable. 
 

Section 2:  Our tool injects different types of faults into the exchanged messages between the 

client and the Web services in different emulated network conditions. The combinations of those 

injected faults are detailed in Table 2. The client invoked the Web services via the NetFIS 1000 

times in each testing scenario setting. 

 

Table 2.  Drop and random error injected 

 

 

Network 

Emulated 

Injected Drop rate Injected Error rate 

Target 

% 

Achieved (total 

messages). 

Target 

% 

Achieved 

(total 

messages). 

Fast WAN 
0.1 1 0.1 1 

1 9 1 10 

Slow WAN 
0.1 1 0.1 1 

1 10 1 10 

 

Hetero.WAN 

0.1 1 0.1 1 

1 9 1 10 
 

 

Table 2 indicates the statistics of the results in each test case scenario. The results show that the 

NetFIS coped well with the settings and injected the expected faults correctly. When “drop” fault 

is injected, the client threw a “timeout” exception after 10 seconds waiting indicating that the 

response was lost. 

 



International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.3, May 2016  

 

162 

When errors are injected, “Cannot find dispatch method 

for{http:%/webservices.calibayes.ncl.ac.uk/}getAvailableSimMethods”., exception messages 

were thrown by the client indicating that corrupted SOAP messages were received but the JAX-

WS framework was not capable to correctly deal with the responses. Figure. 4 and Figure. 5 

indicate the plots of the results of some test scenario cases, which obviously demonstrate the 

effectiveness of the.  The NetFIS simulates real work network conditions and faults in order to 

help on robust client application development (in this case, by applying the WS-Mediator). 

 

  

 
 

 

 

 

 
 

 
Figure 5.  RTT of the test cases (Client) 



International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.3, May 2016  

 

163 

Figure 5 indicates a comparison of the RTT of the three Web services and the responses delivered 

to the client through the WS-Mediator. The ‘clients’ axis represents the invocation RTT 

monitored at each client thread (respectively deals with WS1, WS2, WS3) and the client 

application that deploys the WS-Mediator to deal with the results received by the client threads.  

 

We chose the 1% drop rate injection scenario to illustrate the comparison since this test case 

scenario affects the RTT most. As the faults were injected arbitrarily into the three Web services, 

the N-version programming FTM in the WS-Mediator successfully dealt with the injected faults 

in most test cases and masked the reliability issues to the client. Moreover, the client application 

only threw exceptions when all the three Web services failed simultaneously. 

 

6. CONCLUSION 

 
We have introduced a testing methodology and built a toolkit that is capable to inject faults into 

any Web service application without any modification to the code of   the   application.   There   

is great flexibility in both the number and type of faults that can be injected into the system under 

test. Furthermore, we can control the emulation of the network that is used and the ability to add 

background traffic. 

 

The network emulation may not exactly mirror the real world of the network environment, 

however, it is a significant advance on testing a system using a single machine or a LAN.  In  

particular, a sample  traffic  from  a  real workload of a network  can  be  used  in  the network 

emulator as well as self-similar traffic patterns. 

 

Our experiment has clearly demonstrated the network emulation and fault injection capacities of 

the NetFIS and an experiment of how to deploy and use the functionalities of our toolkit for 

testing the FTMs of the client application. In this experiment, the WS-Mediator has demonstrated 

its FTMs capacity with service diversity and dynamic service composition reconfiguration. 

 

In future work, we are concentrating on two main issues. Firstly, the toolkit does not have the 

capability to deal with Call-back asynchronous invocations yet. In this stage dealing with Call-

back asynchronous invocations is left for future work as Dispatch has become a standard.   

 

Secondly,  as the goal of WS-ReliableMessaging  [22] is to empower applications to exchange 

messages simply,  reliably,  and efficiently  even  in  the face  of  application,  platform,  or 

network failure at middleware level, our future plan is to test and assess NetFIS with WS-RM 

powered Web service systems. 
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