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ABSTRACT 
 
In this paper we describe novel non-statistical Euclidean distance soft-input, soft-output (SISO) decoding 

algorithms for the three currently most important error-correcting codes: the low-density parity-check 

(LDPC), turbo and polar codes. The metric is squared Euclidean distance, and the decoders operate using 

an antilog-log (AL) process. We have investigated the simulated bit-error rate (BER) performance of these 

non-statistical algorithms on three channel models: the additive White Gaussian noise (AWGN), the 

Rayleigh fading and Middleton’s Class-A impulsive noise channels, and compare them with the BER 

performances of the corresponding statistical decoding algorithms for the three codes and channels. In all 
cases the performance over the AWGN channel of the non-statistical algorithms is almost the same or 

slightly better than that of the statistical algorithms. In some cases the performance over the two non-

Gaussian channels of the non-statistical algorithms is worse than that of the statistical algorithms, but the 

use of a simple signal amplitude limiter placed before the decoder input significantly improves the actual 

and relative performances of the algorithms. Thus there is no performance loss, and sometimes a 

significant performance gain, for the proposed decoding algorithms. A major advantage of our algorithms 

is that estimation of the channel signal-to-noise ratio is not required, which in practice simplifies system 

implementation. In addition, we have found that the processing complexity of the non-statistical algorithms 

is similar or slightly less than that of the corresponding statistical algorithms, and is significantly less for 

the LDPC codes over all of the channels. 
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1. INTRODUCTION 

 

Efficient error control codes like low-density parity-check (LDPC) codes [1], turbo 
(convolutional or block) codes [2] and polar codes [3]have been specified for use in most modern 

communications systems standards. This is because these codes have powerful decoding 

algorithms which achieve excellent bit error rate (BER) performances, making them the best 

option for communication over highly noisy channels. 
 

LDPC codes are extensively used in many digital television standards [4], [5], all specifying use 

of a combination of LDPC and Bose–Chaudhuri–Hocquenghem (BCH) codes as the error-
correcting technique. They are also extensively used in several standards for Local Area 

Networks (LAN) and Metropolitan Area Networks (MAN) [6]-[10]. Similar standards established 

in China also make use of LDPC codes. The Consultative Committee for Space Data systems, 
(CCSDS) specifies several standards for governmental agencies [11]. 
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Turbo codes are used in 3G and 4G mobile telephony standards [12], and in the standard for 

WIMAX, incorporating block and convolutional turbo coding. 
 

The relatively new family of polar codes are increasingly being specified in modern 

communication systems standards. They are being analysed as an alternative coding technique for 

5G wireless communications[13],[14]. Several researchers have evaluated the possible 
advantages of using polar instead of LDPC codes for wireless transmission at 60 GHz. 

 

The decoders of all these error-correcting codes input soft (real-number) values from the channel, 
which are then processed by means of a soft decoding algorithm to produce soft values that 

estimate the confidence of each individual bit (or symbol, in general) output from the decoder. So 

these are soft-input, soft-output (SISO) decoders. The soft outputs can then be further refined, as 
in an iterative decoder, or used as inputs to another decoder, as in a concatenated scheme [15].  

Gallager’s sum-product (SP) decoding algorithm [1] for LDPC codes, also applied by Tanner to 

codes defined on bipartite graphs [16], and by Wiberg, et al, to general graphs [17]; the Bahl, 

Cocke, Jelinek and Rajiv (BCJR) decoding algorithm [18] for convolutional and turbo codes [2]; 
and Arikan’s non-iterative successive cancellation (SC) decoding algorithm for polar codes [3]; 

are all examples of SISO decoders. 

 
In most cases the processing complexity of the algorithms can be significantly reduced by using 

calculations in the logarithmic domain. All of these algorithms are essentially forms of statistical 

belief-propagation decoding [19] and, importantly, they rely on knowledge of the variance of the 

channel noise distribution. In practice this means that the 𝐸𝑏/𝑁𝑜 ratio or the signal-to-noise ratio 
(SNR) must be known or estimated, since the performance of the algorithm deteriorates if the 

estimate is inaccurate [20]. Some degradation of BER performance is accepted in a trade-off with 

complexity, as in the case of the min-sum approximation of the sum-product algorithm, and the 
max-LogMAP approximation of the BCJR turbo algorithm [21], [22]. 

 

In this paper we describe novel non-statistical SISO decoding algorithms which do not require 
knowledge or estimation of the variance of the channel noise. These algorithms make use of the 

existing decoding structures as mentioned above, such as the SP, BCJR, and SC algorithm 

structures, but the two novel aspects of our non-statistical algorithms are that the decoding metric 

is squared Euclidean distance, instead of a statistical metric; and that antilog-log (AL) sums are 
used to process the metrics, as explained in Section 2 below. Our algorithms also benefit from 

processing in the log domain. They can be used with any other decoding structure, such as the 

min-sum and max-LogMAP structures previously mentioned, delivering the same performance 
and complexity advantages, without the need to approximate the channel variance and perform 

scaling operations. Codes having any combination of parameters (length, distance, rate, etc.) can 

be used, and operation over a broad range of channel characteristics is possible, including fading 

and impulse-noise channels. All of these properties combine to make our non-statistical 
algorithms universally applicable. As we show in Sections 3, 4 and 5 below, the BER 

performances of our algorithms are as good as or slightly better than those of the corresponding 

statistical algorithms, confirming initial results [23], [24], and showing near-maximum-likelihood 
performances. In some cases, the algorithms offer a reduction in decoding complexity, which is 

an advantage for the practical implementation of decoders for powerful and effective codes, such 

as those in the standards mentioned above. Our comparisons assume the use of BPSK modulation 
over the channel, but the algorithms can also be used with higher order modulation schemes, such 

as MQAM and MPSK. 

 

The rest of this paper is organised as follows. Section 2 describes the basic non-statistical SISO 
algorithm, illustrated by means of simple examples. Section 3 is devoted to the application and 

comparative simulation performance of our algorithms when decoding LDPC, turbo and polar 

codes over the additive white Gaussian noise (AWGN) channel. Section 4 and 5 do the same for 
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the fading and impulse noise channels, respectively. Section 6 discusses the results and concludes 

the paper. 
 

2. THE BASIC IDEA AND SIMPLE EXAMPLES 
 

In this section the basic concept of the non-statistical soft-decision decoding algorithm is 

described, and its application is explained by means of some simple examples. 
 

It is assumed that binary data is transmitted over an additive white Gaussian noise (AWGN) 

channel, using signals of amplitude ±1 when sampled after noiseless demodulation. The data is 

encoded using an (𝑛, 𝑘, 𝑑) binary linear block code 𝐶, where 𝑛 is the block length, 𝑘 the 
dimension (number of information bits) and d the Hamming distance. 

 

Let the noisy, real number received values at the input to the decoder be 𝑦𝑖, 𝑖 = 1,2, … 𝑛. The 

hard-decision estimate of a received bit is 0 if 𝑦𝑖 ≥ 0, or 1 if 𝑦𝑖 < 0. These estimates can then be 

used in a hard-decision (HD) decoder for the code 𝐶. 

 

To avoid the loss of information inherent in hard-decision estimates, compute the Euclidean 

distances between the received value and ±1, the ideal received values in the absence of noise 

and interference on the channel. These distances are: 

 

𝑑𝑖0 = |𝑦𝑖 − 1|𝑑𝑖1 = |𝑦𝑖 + 1|    (1) 

 

Note that if 𝑑𝑖0 < 𝑑𝑖1, then the hard-decision estimate of 𝑦𝑖 is a 0, and vice-versa. 

Normally the Euclidean distances are squared to reflect their energy, which then avoids 
computing the modulus (absolute value). Thus: 

 

𝑑𝑖0
2 = (𝑦𝑖 − 1)2𝑑𝑖1

2 = (𝑦𝑖 + 1)2    (2) 

 
As is well known, these distances obey the triangle inequality, and can now be used in a soft-

decision (SD) decoder to determine the most likely transmitted codeword. A very simple example 

makes this clear. 
 

Let the code 𝐶 be the binary (𝑛, 𝑘, 𝑑) = (3,2,2) single parity check (SPC) code. The codewords 

in this code are 000, 101, 011and 110. Let us assume that the received values are 𝑦𝑖 =
−0.8, 0.3, 1.1for 𝑖 = 1,2,3. The hard-decision estimates are therefore 100. These do not form a 
codeword, so at least one error is present, which cannot be corrected by using only the HD 

estimates. 

 
The squared Euclidean distances are: 

𝑑𝑖0
2 = {3.24,  0.49,  0.01}    (3) 

 

𝑑𝑖1
2 = {0.04,  1.69,  4.41}    (4) 

 

These sums indicate that the most likely transmitted codewordis 110, as it has the smallest sum. 

In other words, 110 is the maximum likelihood (ML) codeword for this set of input values to the 

SD decoder for this SPC code. Thus a hard-decision error in the second position has been 

corrected to a 1, confirming the enhanced performance of a SD decoder over that of a HD 

decoder. 
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Table 1. Expanded table of the elements of the squared distance sums 

 

 
 

If the code is part of an error-control coding scheme that makes use of SISO decoding, soft 

estimates or confidence values for the decoded bits are needed. The decoder would then become a 
SISO decoder, equivalent to an a posteriori probability (APP) decoder. 

 

Table 1 is an expanded table of the elements of the squared distance sums. The rows of the table 

contain the two sums which correspond to a 0 or a 1 in the first, second or third positions in the 

four codewords, as indicated by the subscripts and codeword arguments of 𝑑𝑖0
2  and 𝑑𝑖1

2 . Within 

each minimum distance sum, the first element is the intrinsic squared distance, and the two 

elements in brackets are the two extrinsic squared distances corresponding to that particular 

codeword, thus highlighting their contribution to the parity check involving the intrinsic element. 
 

To obtain a good soft estimate for a 0 or a 1 in each of the three positions it is necessary to take 

into account both of the corresponding distance sums. As is well known, in the case of an AWGN 
channel an estimate can be obtained by calculating the likelihoods of each sum, adding them, and 

converting the resulting probability sum back to a combined soft distance estimate. For example, 

in the case of a soft estimate for a 0 in the second position, the calculations would be: 
 

𝑝20(000) + 𝑝20(101) =
1

√2𝜋𝜎
𝑒−𝑑20

2 (000)/(2𝜎2) +
1

√2𝜋𝜎
𝑒−𝑑20

2 (101)/(2𝜎2)   (5) 

 

𝐶20(000,101) = −ln[𝑝20(000) + 𝑝20(101)]    (6) 

 

where𝐶20 is the combined soft squared distance estimate for a 0 in the second position, and 𝜎 is 

the noise variance. 

 

However, the aim here is to devise useful non-statistical combined estimates, so as to avoid the 
need to know the noise variance. This can be done by modifying equations (5) and (6) as follows: 

 

𝑝20(000) + 𝑝20(101) = 𝑏−𝑑20
2 (000) + 𝑏−𝑑20

2 (101)   (7) 

 

𝐷20(000,101) = −log
𝑏

[𝑝20(000) + 𝑝20(101)]    (8) 

 

Where b is a suitable base value. The left-hand terms in (7) are now pseudo-likelihoods, and 𝐷20 

in (8) is the combined estimate for a 0 in the second position. The estimate for a 1 in the second 

position can be similarly obtained. Thus, setting 𝑏 = 2, the estimate calculations for the second 

position in the codeword are as follows: 

 

−log
2

(2−3.74 + 2−4.94) = −log
2

(0.075 + 0.033) = 3.21          (for a 0)           (9) 

 

−log
2

(2−9.34 + 2−1.74) = −log
2

(0.002 + 0.299) = 1.73          (for a 1)         (10) 
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which confirms that the estimates for the second decoded bit indicate that it is a 1, as found 

previously. By comparing these modified combined estimates with the individual estimates in the 
third and fourth rows of Table 1, it can be seen that the combined estimates are each less than the 

smaller of the two individual estimates. This is correct, because the smaller of the two sums is 

already a first soft estimate of the decoded bit, and its combination with the other estimate can 

only improve the combined soft estimate, by reducing its value. 
 

It can be seen that effectively the calculation for the combined estimate consists of taking the 

antilogs of the two negative individual estimates and then taking the negative log of the addition 
of the antilogs, all to a suitable base, 2 in this example. This simple AL process will be called the 

basic-AL algorithm. The combined estimates, after suitable scaling, can be carried forward for 

use in the second decoding operation of a concatenated or iterative scheme. In this simple 
example, a suitable scaling would be to add the two estimates, divide each by the total, and then 

multiply each by 2 (as 2 is the distance between the ideal received values, ±1). For the 0 estimate 

in the second position, 3.21becomes1.30; and for the 1 estimate, 1.73 becomes 0.70. Clearly the 

scaled estimates indicate that the HD decoded bit should be a 1, but also that it is a low 
confidence 1, as the SD values are only 0.3 away from the HD zero threshold. Scaling has the 

additional advantage of providing a single value from which the 0 and 1 estimates can be 

calculated. Table 2 lists the basic-AL combined and scaled estimates for all the decoded bits in 
the simple example. 

 
Table 2. Expanded table of the elements of the squared distance sums 

 

position for Antilog-sum scaled SD result HD result confidence 

1 0 3.70 1.40 -0.4 1 fairly low 

1 1 1.59 0.60    

2 0 3.21 1.30 -0.3 1 low 

2 1 1.73 0.70    

3 0 1.42 0.45 0.55 0 medium 

3 1 4.84 1.55    

 

It is not surprising that the decoded bits are not very confident in this very simple SPC code 

example. The important thing is that the AL combining process produces numerically reliable 
decoded estimates for further use. 

 

In general, if the values (distance sums) to be combined are 𝐴, 𝐵, 𝐶, …, then the result is given by: 

 

𝐷(𝐴, 𝐵, 𝐶, … ) = −log
𝑏

(𝑏−𝐴 + 𝑏−𝐵 + 𝑏−𝐶 + ⋯ )   (11) 

 

where𝑏 is any convenient base for the logarithm. It follows that: 

 
𝐷(𝐵, 𝐴) = 𝐷(𝐴, 𝐵)
𝐷(𝐴, 𝐴) = 𝐴 − log

𝑏
2

𝐷(𝐴, 𝐵) ≤ min(𝐴, 𝐵)
𝐷(𝐴, 𝐵) ≈ 𝐴 if 𝐵 ≫ 𝐴

𝐷(𝐴, 𝐵) = min(𝐴, 𝐵) − log
2

(1 + 2∣𝐴−𝐵∣)

   (12) 

 
The basic-AL algorithm as used in the above simple example would be impractical once the 

number of codewords in the code becomes large. However, the AL concept can be applied to any 

practical decoding structure, such as the Tanner (factor) graph or the trellis of a code [24], [25]. 

Fig.1 shows the graph of the (3,2,2) SPC example code, where the variable nodes 1, 2 and 3 are 
linked by edges to a constraint node (the parity check). Using this graph and the AL process, 
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reliable estimates of the three decoded bits can be obtained. For example, if the received values 

on the edges from nodes 1 and 3 towards the constraint node are {𝑑10
2 , 𝑑11

2 } and {𝑑30
2 , 𝑑31

2 } 

respectively, then the values passed from the constraint node towards node 2 are given by: 
 

 
 

Figure 1.  Graph of the (3,2,2) SPC example code. 
 

𝐷0 = 𝐷[(𝑑10
2 + 𝑑30

2 ), (𝑑11
2 + 𝑑31

2 )]

𝐷1 = 𝐷[(𝑑10
2 + 𝑑31

2 ), (𝑑11
2 + 𝑑30

2 )]
 

 

The 0 and 1 estimates at node 2 are then given by 𝐷0 + 𝑑20
2   and  𝐷1 + 𝑑21

2 . 
 

Inserting the example values (shown in Fig. 1) then gives the estimated values are {3.22, 1.73}. 

Allowing for small rounding errors, these are the same as those previously calculated. The 

decoded estimates at nodes 1 and 3 can be similarly calculated, and are again the same as 
previously found. Clearly, the form of this process using the AL calculations on the graph of the 

code has the same structure as that of the well-known SP decoding algorithm [21], [25] with the 

crucial distinction that the metric used is the AL metric instead of the Likelihood Ratio (LR) or 
Log Likelihood Ratio (LLR) metrics of the SP algorithm. This will be denoted the AL-SP 

algorithm. 

 
Figure 2 shows the trellis of the SPC code example. Decoding from left to right, the values on 

each edge are the squared distances, initial in the first stage and cumulative in the second and 

third stages. 

 

 
 

Figure 2.Trellis of the SPC code example. 

 

In the second stage, two values arrive at each of the nodes d and e, and so need to be combined. 

At node 𝑑, 𝐷(3.73,1.73) = 1.41, and at node e, 𝐷(4.93,0.53) = 0.46. The 0 and 1 estimates at 

the final stage (position 3) are therefore 1.42 and 4.87 respectively, which are the same as those 

found previously (allowing for rounding errors). Decoding from right to left, and combining 

values as required, then 0 and 1 soft estimates for positions 1 and 2 can be obtained, which will 

be the same as before. This forward-backward decoding process using the trellis of the code and 

1 3

2

{3.24,0.04} {0.01,4.41}

{2.73,0.04}{0.49,1.69}

{3.22,1.73}



International Journal of Computer Science, Engineering and Applications (IJCSEA) Vol. 9, No.4/5, October 2019 

17 

the AL metric, has the same structure as that of the BCJR algorithm [18], and will be denoted the 

AL-BCJR algorithm. In a similar way, the AL metric can be used in a modified form of Arikan’s 
SC decoding algorithm [3], and will be denoted the AL-SC algorithm. As before, the processing 

structure of the AL-SC algorithm is the same as that of the SC algorithm, but uses the AL metric, 

as will be described in Section 3.3 below. 

 

So far we have used 𝑏 = 2 as the base of the logarithms in the AL algorithms, but now we will 

discuss further the choice of a value for 𝑏. In a previous work [23], we found that the value 𝑏 = 2 

was suitable for codes of rate 1/2. However, for higher-rate codes it was necessary to increase 

the value of 𝑏 to 3 or more in order to maintain near-optimum BER performance. This was 

because the increasing number of edges in the Tanner graph of the higher-rate codes led to a form 

of computational instability when 𝑏 = 2, which disappeared when the value of 𝑏 was raised. In a 

deeper study, we were able to determine the optimum value of 𝑏 for a range of code parameters 

(rate, length, parity-check matrix density, etc.) and channel 𝐸𝑏/𝑁𝑜 values. As this study was 

published in Spanish, we will briefly translate the main results and conclusions of paper [26]. 

In a simulation done for the BER performance of a (273,171) LDPC code with rate 0.626 as 

𝐸𝑏/𝑁𝑜 and 𝑏 are varied, using the AL-SP decoding algorithm, we have found that values 

from2.5to8 give almost the same performance. 

 

Figure 3 is the BER as a function of parameter 𝑏 for a (273,171) LDPC code at𝐸𝑏/𝑁𝑜 = 4.4𝑑𝐵 

that shows that the optimum value of 𝑏is 3.5, and explains why 𝑏 values of 2.5 and 8 provide 

near-optimum results. As shown in [26], simulation of the BER performance of(120,56) LDPC 

code with rate 0.467,for different values of 𝐸𝑏/𝑁𝑜,shows that the optimum value of 𝑏 is very 

close to 2, virtually independent of 𝐸𝑏/𝑁𝑜. We found that this feature persists for a wide range of 

code parameters, as shown in Table 3, where the optimum value of 𝑏 varies between 1.7 and 

3.45, and is almost independent of the SNR on the channel. Overall, we found that very good 

performance can be obtained by selecting 𝑏 = 2 for codes with 𝑅𝑐 ≤ 1/2, and 𝑏 = 3 or 𝑏 = 4 for 

𝑅𝑐 ≥ 1/2. This dependency to the code ratealso occurs when iterative MAP decoding is 

implemented at a fixed value of 𝐸𝑏/𝑁𝑜 to avoid estimating noise dispersion[27]. 

 

 
 

Figure 3.BER Performance of a (273, 171) LDPC code as a function of 𝑏, 𝐸𝑏/𝑁𝑜 = 4.4𝑑𝐵. 

 

The AL algorithms are of course non-statistical, as they do not require knowledge of the channel 

𝐸𝑏/𝑁𝑜 or error probability. However, important questions remain: what is the performance of the 

AL decoding algorithms, and how do they compare with the performance of the widely used 

corresponding statistical decoding algorithms? In the following sections it is shown that the 

performances of the non-statistical AL algorithms are almost the same as those of the 
corresponding statistical algorithms, but sometimes significantly better. It is also shown that in 

some cases the AL algorithms are less complex to implement. 
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Table 3. Optimum value of parameter 𝑏 for different LDPC codes 

 

Code length Code Rate Num ‘1s’ Optimum 𝒃 

60-30 0.5 3 2.80 

96-32 0.3 2, 3 (2.67) 1.70 

96-32 0.3 3 (2.67) 1.70 

120-56 0.46 3 2 

204-102 0.5 3 2.2 

204-102 0.5 5 2.6 

271-144 0.53 3 2.5 

273-191 0.69 3 3.45 

408-204 0.5 3 1.95 

1008-504 0.5 3 2 

 

3. THE AL DECODING ALGORITHMS FOR LDPC, TURBO AND POLAR 

CODES OVER THE AWGN CHANNEL 
 

In this Section we describe the details of the non-statistical AL decoding algorithms for the three 

classes of codes. We present simulation results of the BER performance of these codes when used 
over the AWGN channel, and compare them with the BER performance of the corresponding 

statistical decoding algorithms.In the case of the AL decoding algorithms, initialization consists 

of the calculation of the squared distance values in terms of the received real number values from 
the channel, as previously set out in (1) and (2) in Section 2: 

 

𝑑𝑖
2(0) = (𝑦𝑖 − 1)2  𝑑𝑖

2(1) = (𝑦𝑖 + 1)2    (13) 

 
For the corresponding statistical algorithms, initialization consists of calculating the following 

error probabilities: 

 

𝑃𝑖(0) =
1

√2𝜋𝜎
 𝑒

−
𝐸𝑏

2𝜎2(𝑦𝑖−1)2

  𝑃𝑖(1) =
1

√2𝜋𝜎
 𝑒

−
𝐸𝑏

2𝜎2(𝑦𝑖+1)2

  (14) 

 

where 𝜎 is the AWGN channel noise variance, from which LRs or LLRs can be determined. 

 

3.1. The LogAL-SP Decoding Algorithm for LDPC Codes in AWGN 
 
LDPC codes are decoded by using an iterative SP algorithm, or its logarithmic version, the 

LogSP decoding algorithm [21], [25]. The LogSP decoding algorithm uses logarithmic operations 

which reduce the decoding complexity of the SP algorithm, and this advantage also extends to the 

LogAL-SP algorithm, where the statistical information calculations of the LogSP algorithm are 
replaced by AL calculations using squared soft distance values. As above in Section 2, 

initialization of the logAL-SP algorithm consists on setting coefficients 𝑞𝑗𝑖(0)and 𝑞𝑗𝑖(1), 𝑖 =

1,2, … , 𝑛, 𝑗 = 1,2, … , 𝑚, to the corresponding squared distance values at each symbol node: 

 

𝑞𝑗𝑖(0) = 𝑑𝑖
2(0)  and  𝑞𝑗𝑖(1) = 𝑑𝑖

2(1)    (15) 

 

A detailed derivation of expressions for the simplified LogAL-SP is presented in [23]. A 
simplification of calculations in the horizontal step is as follows: 

𝑎𝑖𝑗 = 𝑓+(𝑞𝑗𝑖)and𝑏𝑖𝑗 = −𝑓−(𝑞𝑗𝑖)                                                (16) 
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where:  𝑓−(𝑞𝑗𝑖) = |𝑙𝑜𝑔𝑏 (1 − 𝑏−|𝑞𝑗𝑖(0)−,𝑞𝑗𝑖(1)|)|and  𝑓+(𝑞𝑗𝑖 )  = |𝑙𝑜𝑔𝑏 (1 + 𝑏−|𝑞𝑗𝑖(0)−,𝑞𝑗𝑖(1)|)| 

 

For the logAL-SP algorithm, simulations were done by setting the base of the logarithmic 

calculations to 𝑏 = 2, which gives excellent results for low or medium code rates. However, for 

high rate codes better results can be obtained with 𝑏 = 4 or more [23]. 
 

A simulation of the BER performance of a (4096, 2048) LDPC code [29] in AWGN is shown in 

Fig. 4, where it can be seen that the curves of the LogAL-SP and the LogSP decoding algorithms 
are almost identical. These new results were obtained by transmitting 2500 encoded messages, 

decoded with 𝑏 = 2 and 16 iterations. In this and all the following performance graphs in the 

paper, each point on the curves represents the occurrence of at least 100 errors in the whole 
transmission. 

 

 
Figure 4.BER of the (4096, 2048) LDPC code, AWGN channel, LogAL-SP and LogSP decoding 

algorithms. 
 

A complexity analysis and the corresponding Field Programmable Gate Array (FPGA) 

implementation has been done in [24] for the LogAL-SP and for the classic LogSP algorithm. 

This comparison shows that the LogAL-SP decoding algorithm is approximately 8% less 
complex than the LogSP. This complexity reduction was also verified via FPGA 

implementations; the LogAL-SP decoder was faster and used smaller numbers of logic 

components and registers. 
 

3.2. The LogAL-BCJR Decoding Algorithm for Turbo Codes in AWGN 
 
Turbo codes [2] are decoded by using the statistical LogBCJR decoding algorithm, and the results 

from each constituent decoder are then iteratively exchanged a sufficient number of times to 

achieve an enhanced final result. This is the turbo decoding algorithm [21], [25]. In this section 
the constituent codes are decoded using the Euclidean distance metric in the non-statistical AL-

BCJR algorithm, as the simple example in Section 2 shows, and then the results from the 

constituent decoders can be iteratively exchanged as in the turbo decoding process. As above in 

Section 2, for polar format binary signals we can obtain conditional LLRs of the form [30]: 
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Thus, the conditional LLR for an AWGN channel is proportional to the value of the sample of the 

optimally received signal 𝑦𝑖, and the constant of proportion is 𝐿𝑐 =
2𝐸𝑏

𝜎2 , a measure of the signal-

to-noise ratio in the channel. The LLRs in the BCJR decoding algorithm for decoding turbo codes 

are [21], [25], [30]: 
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where𝑌 = 𝑌1
𝑛 = {𝑌1,  𝑌2 ,  … ,  𝑌𝑛} is a sequence of 𝑛 received symbols, 𝑢 and 𝑢′ are possible values 

that trellis states can adopt. The term 𝛼𝑖−1(𝑢′) represents the forward information calculated over 

the corresponding trellis in the branch defined by {𝑢′, 𝑢}; 𝛾𝑖(𝑢′, 𝑢) represents the present 

information at branch {𝑢′, 𝑢}, and 𝛽𝑖(𝑢) is the future information calculated at that branch. 

Details of the BCJR decoding algorithm and its logarithmic version can be seen in [21], [25], 

[30]. 
 

In (18) 𝑏𝑖 is the message bit 𝑏𝑖 = ±1, and 𝐿(𝑏𝑖) is the log Likelihood ratio: 

 

𝐿(𝑏𝑖) = 𝑙𝑛
(𝑃(𝑏𝑖=+1))

(𝑃(𝑏𝑖=−1))
      (19) 

 

The corresponding logarithmic expression of 𝐺(𝑢′, 𝑢) = 𝑙𝑛(𝛾𝑖(𝑢′ , 𝑢)) is [30], [21],[25]: 
 

𝐺(𝑢′, 𝑢) = ln(𝛾𝑖(𝑢′, 𝑢)) = 𝑏𝑖𝐿(𝑏𝑖)/2 +
𝐿𝑐

2
∑ 𝑦𝑖𝑘

𝑚
𝑘=1 𝑥𝑖𝑘   (20) 

 

The AL operation can be applied to these coefficients to lead to equivalent expressions, where 

base 𝑏 = 2 is used instead of 𝑏 = 𝑒, and the parameter 𝐿𝑐 =
2𝐸𝑏

𝜎2  does not have to be estimated, 

but instead adopts the fixed value 𝐿𝑐 = 2, which we found experimentally to be effective. 

Defining 𝐺(𝑢′ , 𝑢) = 𝑙𝑛(𝛾𝑖 (𝑢′, 𝑢)), 𝐴𝑖−1(𝑢′) = 𝑙𝑛(𝛼𝑖−1(𝑢′)) and 𝐵𝑖(𝑢) = 𝑙𝑛(𝛽𝑖(𝑢)) in the case 

of logarithmic operation, we convert products of the form 𝛼𝑖−1(𝑢′)𝛾𝑖(𝑢′ , 𝑢)𝛽𝑖(𝑢) into the sum 

𝐴𝑖−1(𝑢′) + 𝐺(𝑢′, 𝑢) + 𝐵𝑖(𝑢). The same happens in AL operation with the only difference being 

that the base 𝑏 = 2 and 𝐿𝑐   is a constant. Therefore AL operations are equivalent to logarithmic 

operations in the statistical BCJR decoding algorithm. This means that the LogAL-BCJR and the 

LogBCJR decoding algorithms have the same processing complexity, but the initialisation 
complexity of the LogAL-BCJR algorithm is lower. 

 

A simulation of the BER performances of the LogAL-BCJR and the LogBCJR algorithms, for a 

binary turbo code using as constituent encoders two 1/2-rate binary systematic recursive 
convolutional (111,101) encoders operating over the AWGN channel, is shown in Fig. 5. The 

interleaver is a random interleaver of size 𝑁 = 2000, and puncturing is applied so that the final 

rate of the whole turbo code is 1/2. The simulation has been done by transmitting 25000 
messages of size 2000 bits each. 
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3.3. The LogAL-SC Decoding Algorithm for Polar Codes in AWGN 
 
Polar codes [3] are typically decoded by using the SC decoding algorithm. We will apply the AL 

decoding algorithm to the processing structure of the logarithmic SC (LogSC) decoding algorithm 

to obtain the non-statistical LogAL-SC decoding algorithm. In its usual form, and following the 

notation as in [3], [32], the SC algorithm starts by receiving the samples vector 𝑦 =
(𝑦1 𝑦2  … 𝑦𝑛), 𝑖 = 1,2, … , 𝑛, to obtain statistical LLR values 𝐿𝑛,𝑖 that are used to determine the 

input bit estimations by recursively applying the following expressions: 

 

𝐿𝑗,𝑖 = {
𝑓(𝐿𝑗+1,𝑖; 𝐿𝑗+1,𝑖+2𝑗) = 𝑓(𝑎, 𝑏) if 𝐵(𝑗, 𝑖) = 0

𝑔(𝑠̂𝑗,𝑖−2𝑗 ; 𝐿𝑗+1,𝑖−2𝑗 ; 𝐿𝑗+1,𝑖) = 𝑔(𝑠̂, 𝑎, 𝑏) if 𝐵(𝑗, 𝑖) = 1
  (21) 

 

where𝑠̂ is a modulo-2 partial sum of decoded bits, and the parameter 𝐵(𝑗, 𝑖) is defined as 

𝐵(𝑗, 𝑖) ≜
𝑖

2𝑗 𝑚𝑜𝑑 2. Indexes are 0 ≤ 𝑗 < 𝑛, and 0 ≤ 𝑖 < 𝑁.Functions 𝑓 and 𝑔 in (21) are 

calculated using the following expressions: 
 

𝐿𝑗,𝑖 = {
𝑓(𝑎, 𝑏) =

1+𝑎𝑏

𝑎+𝑏

𝑔(𝑠̂, 𝑎, 𝑏) = 𝑎1−2𝑠̂𝑏
    (22) 

 

Applying logarithmic simplification of expressions (21) and (22), by setting 𝑎 = 𝑒𝜆𝑎 ,   𝑏 = 𝑒𝜆𝑏 , 

the following expressions are obtained: 

 

𝐿𝑗,𝑖 = {
𝑓(𝜆𝑎 , 𝜆𝑏) ≃ 𝑠𝑖𝑔𝑛(𝜆𝑎)𝑠𝑖𝑔𝑛(𝜆𝑏)𝑚𝑖́𝑛(|𝜆𝑎|, |𝜆𝑏|)

𝑔(𝑠̂, 𝜆𝑎 , 𝜆𝑏) = (−1)𝑠̂𝜆𝑎 + 𝜆𝑏
   (23) 

 

The LogAL-SC decoding algorithm is initialized by taking the difference between the squared 

distances at the decoder input with respect to the two possible ideal values +1 and −1. From (2) 

the result is equal to −4𝑦𝑖 that is, the initialization values are directly scaled values of the channel 

samples. Applying the AL procedure leads to [33]: 

 

𝐿𝑗,𝑖 = {
𝑓(𝜆𝑎 , 𝜆𝑏) ≃ 𝑚𝑎́𝑥(0, 𝜆𝑎 + 𝜆𝑏) − 𝑚𝑎́𝑥(𝜆𝑎 , 𝜆𝑏)

𝑔(𝑠̂, 𝜆𝑎 , 𝜆𝑏) = (1 − 2𝑠̂)𝜆𝑎 + 𝜆𝑏
  (24) 

 

Expressions (24) are equivalent to expressions (23), therefore in the case of the LogAL-SC 

decoding algorithm there is no reduction in decoding complexity when compared to that of the 
LogSC. The advantage of the use of the LogAL-SC algorithm with respect to the LogSC 

decoding algorithm is that the initialization step is simpler and does not require knowledge of the 

variance of the noise present on the channel. Simulations of the LogAL-SC and LogSC algorithm 
BER performances in AWGN of the (4096, 2048) and the (4096, 3072) polar codes are shown in 

Fig. 6, obtained by transmitting 50,000 messages of size 2048 and 10,000 messages of 3072 bits 

respectively. Once again, the performance of the non-statistical LogAL-SC decoding algorithm is 

very close to that of the LogSC decoding algorithm, confirming previous results for the (256,128) 
polar code [33]. 
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4. THE AL DECODING ALGORITHMS FOR LDPC, TURBO AND POLAR 

CODES OVER THE RAYLEIGH FADING CHANNEL 
 

In this Section we present the results of BER simulations of the non-statistical AL decoding 

algorithms for the three code classes when used over the Rayleigh fading channel, and compare 
them with the results for the corresponding statistical algorithms. In order to make the 

comparisons as fair as possible, we do not make use of any additional channel state information 

(CSI) when decoding with the statistical algorithms, but use only the channel noise variance. 
 

 
Figure 5.BER in AWGN of a 1/2-rate turbo code, LogAL-BCJR and LogBCJR algorithms. 

 

The Rayleigh fading channel model characterises wireless transmissions where the signal arrives 

at the receiver over multiple propagation paths, and an attenuation factor 𝛼𝑛(𝑡)and also a time 

delay 𝜏𝑛(𝑡)can be associated with each one of them. Both parameters are time dependent because 

in general terms the channel is time varying.  

 
The Rayleigh fading channel is moldelled as with a time varying baseband impulse response 

𝛼(𝑡) = ∑ 𝛼𝑛(𝑡)𝑒−𝜃𝑛(𝑡)
𝑛 , where 𝜃𝑛(𝑡) = 2𝜋𝑓𝑐𝜏𝑛(𝑡) is the phase of the 𝑛 − 𝑡ℎ path, which is 

interpreted as a circularly symmetric complex Gaussian random variable that is of the form =
𝛼𝑅𝑒 + 𝑗𝛼𝐼𝑚[35], where the real and imaginary parts are zero mean independent and identically 
distributed Gaussian random variables. The corresponding probability density function (pdf) is: 

 

𝑝𝑅(𝛼) =
𝛼

𝜎2 𝑒−𝛼2 (2𝜎2)⁄      (25) 

 

A more detailed description of this model can be found in [35]. 
 

For AL decoding algorithms initialization is implemented by using the following expressions: 

 

𝑑𝑖
2(1) = (𝑦𝑖 − 𝑎)2;        𝑑𝑖

2(0) = (𝑦𝑖 + 𝑎)2;   𝑑𝑖
2(1) − 𝑑𝑖

2(0) = −4𝑎𝑦𝑖  (26) 
 

where the value of 𝑎 is set to unity, after we found that decoding performance is not sensitive to 

values of 𝑎 over quite a wide range. 
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Figure 6.BER of the (4096, 2048) and the (4096, 3072) polar codes, AWGN channel, LogAL-SC and 

LogSC decoding algorithms. 

 
The statistical decoding algorithms that make use of LLR values and operate over the Rayleigh 

fading channel determines their initialization values from the following expressions [30]: 

 

𝑃𝑖(1) =
1

√2𝜋𝜎
𝑒

− 
𝐸𝑏

2𝜎2(𝑦𝑖−𝑎)2

; 𝑃𝑖(0) =
1

√2𝜋𝜎
𝑒

− 
𝐸𝑏

2𝜎2(𝑦𝑖+𝑎)2

  (27) 

 

where again 𝑎 can be set to unity. Then, the initialization value for the statistical algorithms is 

given by: 

 

𝐿𝐿𝑅𝑅,𝑖 =
2𝑦𝑖

𝜎2       (28) 

 

Noting the very significant performance improvements obtained when using a simple signal 

amplitude limiter in the case of the impulsive noise channel [33], [36], we applied the same idea 

to the fading channel. The received signal samples were passed through a limiter with 

symmetrical limit values 𝐴𝑙𝑖𝑚 = ±1 before the input to the decoder, which resulted in 

significantly improved LDPC code performance when decoded using both the non-statistical and 

statistical algorithms, as shown next. 

 

4.1. The LogAL-SP Decoding Algorithm for LDPC Codes in Rayleigh Fading 
 

Figure 7 shows the performance of the (2560, 1280) LDPC code [29] over the Rayleigh fading 

channel using the LogAL-SP and LogSP decoding algorithms [23], [37]. Simulation of the code 
performance is done by transmitting 5000 message blocks of 1280 message bits each, with 16 

decoding iterations.In Fig. 7, the left-hand pair of curves were obtained with the use of a signal 

amplitude limiter. As seen, if the limiter is not applied, the performance of both algorithms is 

very poor and LogAL-SP is much worse than LogSP. However, with the limiter there is a 
significant performance gain over the curves where the limiter is not applied, and the LogAL-SP 

algorithm outperforms the LogSP algorithm. 

 

4.2. The LogAL-BCJR Decoding Algorithm for Turbo Codes in Rayleigh Fading 
 

Figure 8 shows the BER performance of a 1/2-rate turbo code formed from two 1/2 -rate binary 

systematic recursive convolutional (111,101) encoders, with puncturing and a random interleaver 

of size 𝑁 = 2000 decoded using the LogAL-BCJR and the LogBCJR algorithms over the 
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Rayleigh fading channel, both with and without a ±1 limiter. The simulations involve 

transmitting 1000 messages of size 2000 bits each.In the case of the LogBCJR and the LogAL-
BCJR algorithms there are no significant differences in the internal calculation procedure for both 

decoding algorithms. They only differ in the initialization step. Once again the use of the limiter 

greatly improves the performance of the BCJR code on this fading channel. Without the limiter, 

the performance of both the LogAL-BCJR and the LogBCJRalgorithms is similar but very poor; 
with the limiter, both algorithms also have similar performance but with gains of over 16 dB at a 

BER of 10−4. The processing complexities of the two algorithms are the same, but initialization 

is simpler in the AL case. 
 

 
 

Figure 7.BER of a (2560, 1280) LDPC code, Rayleigh channel, LogAL-SP and LogSP algorithms. 

 

4.3. The LogAL-SC Decoding Algorithm for Polar Codes in Rayleigh Fading 
 
Figure 9 compares the BER decoding performance of a (4096, 3072) polar code constructed as in 

[3], using the LogAL-SC algorithm, the LogAL-SC algorithm with a ±1 signal amplitude limiter, 

and the LogSC algorithm. The simulations involved transmitting 10000 messages of size 3072 

bits each. As seen in Fig. 9, the performances of the three decoding algorithms are very close, and 
the use of the signal amplitude limiter does not result in a significant difference in BER 

performance for this code operating over the Rayleigh fading channel. These new results confirm 

those obtained in a previous investigation [33]. 

 
Figure 8.BER of a 1/2-rate turbo code, LogAL-BCJR and LogBCJR algorithms, Rayleigh fading channel, 

with and without a limiter. 
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5. THE AL DECODING ALGORITHMS FOR LDPC, TURBO AND POLAR 

CODES OVER THE IMPULSIVE NOISE CHANNEL 
 

In this Section the performances in impulsive noise (IN) of the non-statistical AL-based decoding 

algorithms for LDPC, turbo and polar codes are compared with those of the corresponding 
statistical decoding algorithms. The impulsive noise channel model used in our simulations is 

Middleton’s Class- A impulsive noise channel [38]. As before, the statistical decoding algorithms 

are initialized using the channel noise variance 𝜎, with no other CSI available at the receiver. As 
in the case of the fading channel simulations, we also apply a simple signal amplitude limiter at 

the input to the decoder, originally suggested in [36]. 

 

The channel probability density function (pdf) consists of a Poisson weighted sum of Gaussian 
distributions, given by: 

 

𝑃𝑛(𝑦) = ∑
𝐴𝑚𝑒−𝐴

√2𝜋 𝑚!/𝜎𝑚

∞
𝑚=0 𝑒−𝑦2/(2𝜎𝑚

2 ), 𝜎𝑚
2 = 𝜎2

𝑚

𝐴
+𝛤

1+𝛤
, 𝛤 = 𝜎𝑔

2/𝜎𝑖
2, and 𝜎2 = 𝜎𝑔

2 + 𝜎𝑖
2 (29) 

 

In the above expressions, 𝑚 is the number of impulses over the estimation period; 𝐴 is the 

average number of impulses during the period; 𝛤 is the ratio between the background noise power 

𝜎𝑔
2 and the impulsive noise power 𝜎𝑖

2; 𝜎𝑔
2is the variance of the Poisson random variable 𝑚; and 

𝜎2 is the total noise power. Both the AL and the statistical decoding algorithms are initialised 

using expressions (26) to (28) in Section 4, with 𝑎 = 1 the same as in the case of the Rayleigh 
fading channel. A more detailed description of this model can be found in [38]. 

 
 

Figure 9.BER of a (4096, 3072) polar code, Rayleigh fading channel, LogAL-SC algorithm with and 

without a ±1 signal amplitude limiter, and LogSC algorithm. 

 

5.1. The LogAL-SP Decoding Algorithm for LDPC Codes in Impulsive Noise 
 

A simulation of the performance of the long (4096, 2048) LDPC code, operating over 

Middleton’s Class-A model of the impulsive noise channel, is presented. The parameters of the 

channel are 𝐴 = 0.1, 𝛤 = 0.1, and 𝑀 = 10. As indicated above, we apply an input signal 

amplitude limiter of value 𝐴𝑙𝑖𝑚 = ±1 to improve the performance of both the LogAL-SC and the 

LogSC decoders. The simulations seen in Fig. 10have been done by transmitting 3000 messages 

of length 2048 bits each. 
 

As seen in Fig. 10, the behaviour of the LogAL-SP decoder is worse than that of the LogSP 

decoder if no signal amplitude limiter is applied, but the performance of the LogAL-SP decoder 
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significantly outperforms that of the LogSP decoder when a ±1 signal amplitude limiter is used. 

This coding gain of about 2dB is similar to that found in previous studies [37]. The decoding 
complexity is the same for both the LogAL-SC and the LogSC algorithms, but the former is 

simpler to initialize. 

 

5.2. The LogAL-BCJR Decoding Algorithm for Turbo Codes in Impulsive Noise 
 

Figure 11 shows the BER performance of a1/2-rate turbo code using two 1/2-rate binary 

systematic recursive convolutional (111,101) encoders operating over Middleton’s Class-A 

impulsive noise channel model, with parameters 𝐴 = 0.1, 𝛤 = 0.1 and 𝑀 = 10. The simulations 

have been done by transmitting 1000 messages of size 2000 bits each after passing through a 

random interleaver of size 𝑁 = 2000. The turbo code is decoded using the LogAL-BCJR and the 

LogBCJR algorithms, both with and without a±1 amplitude limiter. 

 

Figure 11 shows that once again the BER performance of both decoding algorithms is very 

significantly improved when the simple ±1 signal amplitude limiter is used. With the limiter, the 
LogAL-BCJR decoder is slightly better than that of the LogBCJR decoder at low to medium 

values of 𝐸𝑏/𝑁𝑜, but for higher values of this parameter, the performances become quite close to 

each other. An erratic floor effect is observed, caused by the fact that points below BER < 10−5 
are not statistically reliable since less than 100 errors are obtained. The processing complexity of 

both algorithms is same, but LogAL-BCJR is simpler to initialize. 

 
 

Figure 10.BER of the (4096, 2048) LDPC code, Middleton’s Class-A channel, LogAL-SP and LogSP 

algorithms, with and without a ±1 limiter. 

 

5.3. The LogAL-SC Decoding Algorithm for Polar Codes in Impulsive Noise 
 
A simulation of the performance of the large size (4096, 2048) polar code, operating over 

Middleton’s Class-A impulsive noise channel model, is shown in Fig. 12. The parameters of the 

channel are 𝐴 = 0.1, 𝛤 = 0.1 and 𝑀 = 10. Again we apply a ±1 signal amplitude limiter to 

improve the performance of both the LogAL-SC and the LogSC decoders. The simulations were 
done by transmitting 2000 messages of size 2048 bits each.As seen in Fig. 12, the BER 

performances of the decoding algorithms are virtually the same, and the effect of the signal 

amplitude limiter is very significant. Both algorithms have the same processing complexity, but 
initialization is simpler for the LogAL-SC decoder. 
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6. CONCLUSION 
 

In this paper we have presented a novel modification of the classic statistical SISO decoding 

algorithms for error-control codes. The proposed modification is based on two different aspects: 
the first is to replace statistical values by estimates based on squared Euclidean distance; the 

second is to implement the calculations of algorithms by means of antilog-sum (AL) operations. 

At the end of the process, soft estimates for each symbol in the received word are delivered at the 
output of the SISO decoder. Our universal SISO algorithm can be used to decode any particular 

error-correcting code, as the AL process can be applied to any convenient decoding structure for 

that code. For our purpose we have chosen three particular classes of codes: LDPC codes and the 
SP iterative decoding structure; turbo trellis codes and the BCJR two-way decoding structure; and 

polar codes with the SC decoding structure. 

 

In all cases the decoding complexity is reduced by using logarithmic processing, so the three 
classes of codes and their decoding algorithm are labelled LogAL-SP, LogAL-BCJR and LogAL-

SC. In addition, we have been able to refine the mathematical processes in the LogAL-SP case, 

which yields a further simplification of this decoding algorithm. By means of simulations, we 
have compared the BER performance of these non-statistical decoders with the BER performance 

of the corresponding statistical decoders for these codes, labelled LogSP, LogBCJR and LogSC, 

for three channel models: the AWGN channel, the Rayleigh fading channel, and Middleton’s 
Class-A impulsive noise channel. 

 
 

Figure 11.BER of a 1/2-rate turbo code (111,101), Middleton’s Class-A channel, LogBCJRand  LogAL-

BCJR algorithms, with and without the use of a limiter. 

 
Figure 12.BER of the (4096, 2048) polar code, Middleton’s Class-A channel, LogAL-SC and LogSC 

algorithms, with and without a ±1 signal limiter. 
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The results of our simulations for the AWGN channel show that the BER performances of the 

three code classes are almost identical; there is no loss of performance when using the non-
statistical decoding algorithms. In the case of the Rayleigh fading channel, the LDPC results were 

initially disappointing: non-statistical performance was worse than statistical performance, and 

both were poor. However, once a simple signal amplitude limiter is used at the input to the 

decoders, the situation is reversed: non-statistical is the same or better than statistical, and both 
are several dB better than the performance without the limiter. For the polar codes, the non-

statistical and statistical performances are very close, and use of the limiter makes no significant 

difference. We conjecture that this is because the SC decoding algorithm is sequential, whereas 
the SP and BCJR decoding algorithms are essentially iterative. In the case of the impulsive noise 

channel without the limiter, non-statistical decoding performance for the LDPC code is worse 

than statistical and both are poor. With the limiter, the LogAL-SP algorithm becomes better than 
LogSP algorithm, and both are much better overall, by about 12dB. For the turbo and polar codes, 

non-statistical and statistical performance is almost the same both with and without the limiter, 

but there is about a 7dB overall advantage when using the limiter. 

 
The processing complexity (i.e., not including initialization and channel estimation) of the 

LogAL-SP decoding algorithm is about 8 % lower than that of the LogSP algorithm, over all 

three channels. The processing complexities of the LogAL-BCJR and LogBCJR algorithms are 
about the same, as are those of the LogAL-SC and LogSC algorithms, again over all channels. 

However, for both code classes, initialization of the algorithms is simpler in the non-statistical 

case. Of course, over all channels, the non-statistical algorithms have the advantage that 

estimation of the channel noise variance is not required. On the other hand, there is also a need to 
implement a quotient, which is preferably avoided in FPGA due to its implementation 

complexity. In the non-statistical case the algorithm can be initialized directly from the values of 

the channel samples 𝑦. 
 

To conclude, this paper has shown that there is no loss of performance, nor increase in 

complexity, and sometimes a significant improvement in both, when using non-statistical AL 
decoding algorithms with the universal Euclidean metric over AWGN, fading and impulsive 

noise channels. We have also shown that the use of a simple signal amplitude limiter can 

significantly improve the performance of both statistical and non-statistical decoding algorithms 

over fading as well as impulsive channels. 
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