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ABSTRACT 

 
In this article, we propose a method for reconstructing approximate piecewise 3D Euler spirals from 

planar polygonal curves. The method computes the 3D coordinates of approximate Euler spiral such that 

its orthogonal projection onto the 2D plane is the closest possible to the input curve. To achieve this, a 

dataset is created, comprising Euler spiral segments and their orthogonal projections. Given an input 

curve, it is sampled and split into segments. Each segment is matched with the closest Euler spiral segments 

from the dataset, forming a pool of candidates. The optimal set of connected Euler spiral segments is then 

selected to reconstruct the approximate piecewise 3D Euler spiral. The selection prioritizes smoothness 

continuity at connecting points while minimizing the distance between the orthogonal projection and the 

input curve. We evaluate our method against synthetic 3D Euler spirals by applying our reconstruction to 

the orthogonal projection of the synthetic Euler spirals.  
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1. INTRODUCTION 

 

3D Euler spirals are aesthetically pleasing curves whose curvature and torsion evolve linearly 
with arc length [1]–[3]. They possess desirable properties, such as invariance to similarity 

transformations (translation, rotation, and scaling), symmetry, extensibility, and smoothness [4].  

In this work, we focus on the 3D reconstruction of Euler spirals from planar polygonal curves 
which can be used in different applications since there are many domains in which the 3D Euler 

spirals are useful like aerospace vehicles (by creating smooth transitions between different flight 

regimes), turbomachinery (by creating smooth, continuously curved flow paths), medical devices 

(to design medical devices that need smooth and curved paths through the body like catheters and 
endoscopes).  

 

Despite the presence of all the mentioned properties, to the best of our knowledge, there is no 
previous work in the literature that aims to reconstruct the 3D Euler spirals from planar polygonal 

curves. The goal of this paper is to fill this gap by proposing an algorithm that reconstructs 

piecewise approximate 3D Euler spirals from planar polygonal curves. The algorithm takes a 
polygonal curve in the plane z = 0 as input and produces an approximate piecewise 3D Euler 

spiral whose orthogonal projection on the plane z = 0 is close to the input polygonal curve, as 

illustrated in Figure 1. 

 
 This paper is organized as follows. Section 2 presents the related work to our approach. The 

overview of our approach is introduced in 3. In Section 4, we describe how we create our dataset. 

Section 5 presents the algorithm we use to split the input polygonal curve and search the dataset 
for the closest matched 3D Euler spiral segments. In Section 6, we explain the algorithm to select 
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and assemble the segments from the dataset to form the piecewise reconstructed 3D Euler spiral. 
The results of our method are presented in Section 7. Finally, in Section 8, we conclude this work 

and suggest some future research directions.  

 
 

Figure 1: Starting from a planar polygonal curve (red curve) as an input we generate an approximation 

piecewise 3D Euler spiral, whose orthogonal projection on the plane z = 0 is close to the input polygonal 

curve. 

 

2. RELATED WORK 

 
As mentioned before, there is no previous work in the literature that focuses on reconstructing 3D 

Euler spirals from planar polygonal curves. However, there are three categories of works that are 

relevant to ours. First, we review the previous work on sketch-based modeling. Next, we discuss 
the reconstruction of 3D circular helices from their planar orthogonal projection; circular helices 

are special case of 3D Euler spiral. Finally, we also review the work done on the 2D and 3D Euler 

spiral and its applications.  

 

2.1. Sketch-based modeling  
 
The idea behind the sketch-based modeling is to start from a drawn shape in the (x,y) plane which 

is composed of lines, and then try to reconstruct the 3D shape whose projection onto the (x,y) 

plane matches the input sketch. Some of the first reconstruction methods were done by solving an 

optimization whose unknown variables are the third coordinates of the input sketch references [5], 
[6] but the main drawback was that these methods only deal with rectilinear shapes.   

  

With the rise of machine learning algorithms, several researchers have worked on solving the 
sketch-based modeling problem using deep learning [7]–[11] but these algorithms are tailored to 

specific shapes, such as faces, cars, and chairs, making them limited in their applicability. We 

refer the reader to the state-of-the-art paper [12] for more details about sketch-based modeling 
using deep learning. 
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2.2. The reconstruction of 3D circular helices from their planar orthogonal 

projection  
 
Circular helices are a special case of the 3D Euler spiral, sharing the property that their curvature 

and torsion evolve linearly. However, the Euler spiral's curvature and torsion can vary along its 

arc length, while the curvature and torsion of the circular helix are constant.  There are multiple 

previous works done on the reconstruction of 3D helices from their orthogonal projection [13]– 
[15] and they achieved good results by applying optimization algorithms but the limitation of 

these works is that they are also problem specific and only work for the helix shape.  

 

2.3. 2D and 3D Euler spirals  
 

The 2D Euler spiral, also known as the Clothoid or Cornu spiral, is a curve whose curvature 
evolves linearly with arc length. It was independently discovered by several researchers including 

Bernoulli, Euler, and Talbot [16]. Many researchers have used 2D Euler spirals in computer-aided 

design. For example, in [17] they used two spirals to connect successive control polygon points in 
the form of parabola-like. The work most closely related to ours is that of [18]–[20]. In their 

work, they also reconstructed Clothoid splines in a piecewise manner from polygonal curves and 

achieved good results. However, their method is limited to 2D Clothoids and cannot be used for 
3D reconstruction, as opposed to our method which produces a piecewise 3D Euler spiral that fits 

a planar polygonal curve.  

 

The 3D Euler spiral is the curve whose curvature and torsion evolve linearly with arc length [4]. 
Several works have been done on the generation of 3D Euler spirals. In [21], the authors aimed to 

generate a 3D Euler spiral, starting by refining a polygon, such that the polygon satisfies the 

linearity evolution of the curvature along the arc but they ignored the torsion. In [22], the authors 
defined the closed form parametrization of 3D Euler spirals by modeling the problem as a linear 

time-variant system and studied its stability with Lyapunov techniques [23]. Their most 

significant achievement was defining the closed form of the 3D Euler spiral in terms of the 
standard Fresnel integrals that satisfy the property of both curvature and torsion evolving linearly 

with arc length. In [4], the authors extend the Euler spirals from 2D to 3D by solving an 

optimization problem and proving many of their properties, including their invariance to 
similarity transformation (translation, rotation, and scaling), symmetry, extensibility, smoothness, 

and roundness. Furthermore, in this article, they used the 3D Euler spiral for the archaeological 

reconstruction such as the completion of the shape of some broken ancient sculptures and objects. 

However, the proposed algorithm in this paper only works in 3D space, thus it cannot be used to 
create 3D Euler spirals from planar polygonal curves.  

 

3. OVERVIEW 

 
The purpose of our method is to reconstruct approximate piecewise 3D Euler spirals from planar 

polygonal curves. The input of our method is a 2D polygonal curve in the (x, y) plane and the 

output is a piecewise 3D Euler spiral such that its orthogonal projection onto the (x, y) plane is 

close to the input polygonal curve.  
 

The common approach for curve matching is by using the equation that computes the coordinates 

of the points along the curve through the arc length parameterization. However, this form does 
not exist for the 3D Euler spiral. Alternatively, point coordinates can be computed through 

optimization, but this would require a large computation time.Instead of applying the typical 

curve matching algorithms, we create a dataset that contains short segments of 3D Euler spirals 
with their planar polygonal projection. To enable comprehensive coverage of the diverse shapes 



International Journal of Computer Science, Engineering and Information Technology (IJCSEIT),  

Vol.13, No.5, October 2023 

4 

that may be encountered in the input polygonal curve, we make the dataset have segments of 
various lengths and we apply different rotations them in addition to performing a uniform 

sampling and scaling to enhance the representation of the segment and to remove the scaling 

factor from our dataset.   

 

In that direction, the reconstruction starts by splitting the input 2D polygonal curve 𝑆into 

segments {𝑠1, 𝑠2, … }; the splitting is based on the dichotomy approach [24] to find a number of 

matched 3D Euler spiral segments from the dataset for each segment of the input curve. 𝐶𝑠𝑖= 
{𝑐𝑖,1, 𝑐𝑖,2, … } represents the set of candidate matched segments for segment 𝑠𝑖. At this point for 

each segment of the input curve, we have a pool of possible matched Euler spiral segments 
(candidates) from the dataset. We implement a new algorithm that selects the optimal connection 

of candidates (one candidate from each candidate pool) using the Dijkstra algorithm [25]. The 

selection of any two candidates that will link with each other is based on multiple criteria such as 
their curvature continuity, torsion continuity, tangent continuity, normal continuity, and how far 

their polygonal projection is from the input curve. The result of this step is a piecewise Euler 

spiral represented in the form of a 3D polygonal curve. A smoothing is then applied on this 

polygonal curve to improve the 𝐶0 and 𝐶1-continuity in order to obtain a reconstructed curve that 

is more eye-pleasing.  

 

4. DATASET 

 
We create a dataset composed of 1,400,832 short 3D Euler spiral segments, with each segment 

represented by a polygonal curve composed of 30 points in the (x, y, z) plane. The coordinates of 

the 30 points together with the properties of the Euler spiral segment such as its curvature, 
torsion, tangent, and normal values are stored in a text file. The overall size of the dataset is 

around 1.2 GB. We decide to represent each segment with 30 points. A larger number of points 

would provide a better representation of the segments, but would also result in an excessively 
large dataset. On the other hand, a smaller number of points would cause the loss of important 

details and features. We determine that representing our segments with 30 points provides the 

best balance between a good curve representation and a manageable dataset size.   

 
The orthogonal projection of each segment onto the (x, y) plane is obtained by removing the z 

coordinate from all points that form the segment. This orthogonal projection will be used to find 

the matched segments to the input 2D polygonal curve. The size of the dataset is quite large since 
it contains 3D Euler spiral segments of varying starting points, lengths, and orientations. This is 

to ensure that the dataset covers all possible cases for the reconstruction of any arbitrary curve.  

 
Additionally, we apply uniform sampling to all dataset segments to ensure consistent 

representation and standardize the comparison between them and the input curve. Finally, we 

apply uniform scaling to all segments to remove the scale factor from our dataset and facilitate 

dealing with input curves of any scale. Figure 2 shows some segments of the dataset. 
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Figure 2: Visualization of our dataset. Segments of 3D Euler spirals with their planar polygonal projection.  

 

4.1. Dataset creation  
 
In order to generate our dataset which is composed of short segments of 3D Euler spirals, we 

follow the approach introduced in [4] where they define the 3D Euler spiral as the curve that 

should minimize the sum of the square variation of its curvature 𝜅 and torsion 𝜏, therefore 

minimizing the following integral: 
𝐿 

𝑆𝑑𝑠, ( 1 )  

𝑠 , 𝜕𝜅 𝜕𝑠,and  𝜅𝜏= 𝜕𝜏𝜕𝑠 .  where 𝐿is the arc length, 

Minimizing Equation 1 using the Euler-Lagrange equation leads to a curve whose curvature and 

torsion evolve linearly. Thus, for some constants 𝜅0, 𝜏0, 𝛾, 𝛿 𝑅, and for :  

 

𝜅 𝛾𝑠, 
𝜏 𝛿𝑠,( 2 ) 

 

In order to ensure that our dataset adequately covers the diverse range of input polygonal curves, 

we make the starting point parameter of the dataset segment to have different values along the 

Euler spiral. To achieve this, we uniformly sample the starting point parameters along the curve 

in the interval 𝑠𝑠,  [𝑠𝑠,𝑎, 𝑠𝑠,𝑏] as illustrated in Figure 3 where 𝑠𝑠,𝑖 is the starting point parameter of 

the segment 𝑖 of the dataset. By doing so, we ensure that our dataset includes segments whose 

curvature changes from negative to a positive value, under the assumption that the curvature is 

negative at 𝑠𝑠,𝑎  and positive at 𝑠𝑠,𝑏. We select 𝑠𝑠, as the upper limit starting point parameter since 

as depicted in Figure 3, the curve exhibits a repeating pattern and is getting similar to a circular 

shape beyond that point.  
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Concerning the length of the segments, we choose to make the segments short because long 
segments would require a larger dataset to cover all possible input curves. We achieve this by 

limiting the tangent angle difference between the starting point parameter 𝑇⃗⃗⃗   𝑠  , and the ending 

point parameter  𝑇⃗⃗⃗  𝑒  ,𝑖 to a value within the range of [𝜋
4 , 𝜋]. This ensures that the ending 

point parameter 𝑠𝑒,𝑖 of the segment 𝑖 that have a starting point parameter 𝑠𝑠,𝑖 will be 𝑠𝑒,𝑖  [𝑠𝑒,𝑎, 
𝑠𝑒,𝑏] as illustrated in Figure 4.  

 

 
 

Figure 3: The starting point of all dataset segments is between𝑠𝑠,  [𝑠𝑠,𝑎,𝑠𝑠,𝑏]. 
 

 
Figure 4: The ending point parameter of segment 𝑖 that have a starting point 𝑠𝑠,is between 

[𝑠𝑒,𝑎,𝑠𝑒,𝑏]. 
 
To represent all possible projections of the 3D Euler spiral segments, we apply a rotation along x, 

y, and z axis for each segment of the dataset. Let 𝑀𝑖, 𝑅𝑥,, 𝑅𝑦,𝑖, and 𝑅𝑧,𝑖 be respectively the matrix 

that represents the point's coordinates of the segment 𝑖 of the dataset, the rotation matrices along 
the x, y, and z-axis:  
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where 𝛼, 𝛽, and 𝜆are respectively the rotation angle along x, y, and z axis. These rotation angles 

are uniformly sampled in the range [0,2𝜋[  in order to cover all possible rotation angles. The 

rotated 3D Euler spiral segment 𝑐𝑖 is defined as:   

 

𝑐𝑖= 𝑀𝑖𝑅𝑥,𝑖(𝛼)𝑅𝑦,𝑖(𝛽)𝑅𝑧,𝑖(𝜆). 
 

4.2. Uniform scaling and sampling  
 
Our dataset is composed of 3D Euler spiral segments. After splitting the input polygonal curve 

into segments, for each input segment, we look for its closest matched Euler spiral segments in 

the dataset. Since the input curve is in 2D, the matched segments should be in 2D as well. To 
achieve this, we orthogonally project our dataset segments onto the (x,y) plane.  

 

To establish a systematic search approach, we take advantage of the 3D Euler spiral's property of 

invariance to similarity transformations (translation, rotation, and scaling) proved in [4]. We 

apply a uniform scaling for all segments in our dataset, making them all have the same length 

while preserving their original aspect ratio. This removes the scaling factor from our dataset and 
allows us to deal with any segment of the input polygonal curve, regardless of its length. 

Therefore, when we split the input polygonal curve into segments, we first scale each segment to 

the same length as dataset segments, then we search for its closest matched Euler spiral segments 
in the dataset. 

 

The search for the closest matched segments for each input curve segment is based on the 2D 

Fréchet distance [26] between the input segment and the orthogonal projection of all our dataset 
segments. To do this, we require both input segments and the dataset segments to have the same 

number of points, uniformly sampled at regular intervals along the arc length. This ensures that 

the distance between any two consecutive points is equal in both, enabling a fair comparison. We 
use the Fréchet distance as a metric to compare curves because it takes into account both the 

spatial location and ordering of points along the curves, which makes it more suitable than other 

distance metrics.    

 
To efficiently store and search for the closest matching 3D Euler spiral segments in the dataset, 

we store the dataset in  a K-d tree [27] (k-dimensional tree). K-d tree is a data structure that is 

used for efficient multidimensional search operations, particularly for finding the nearest 
neighbors of a given point in a space of any number of dimensions. It works by recursively 

dividing the search space into smaller regions called hyperrectangles, which are represented by 

nodes in the tree. In our case, each node in the tree represents a 3D Euler spiral segment from the 
dataset. By using a K-d tree to store our dataset, we can perform fast and accurate nearest 

neighbor searches to find the closest matching segments to a given input curve segment. 

 

5. CURVE SEGMENTATION 

 

The input of our method is a planar polygonal curve as: 𝑆 = {𝑝1, 𝑝2, … , 𝑝𝑖, … , 𝑝𝑛}, where  𝑝𝑖 is 

the coordinates of the point of index 𝑖 in the curve and 𝑛 the number of points of that curve. To 

perform the approximate piecewise 3D Euler spiral reconstruction from the input curve, we first 
split it into segments, with each segment starting from the point that follows the last point of the 

previous segment. We sample and scale each segment uniformly, similarly to how we processed 

the dataset segments. Next, we search for the closest matching Euler spiral segments from the 
dataset for each input curve segment.   
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During the segmentation, our purpose is to decompose the curve into the smallest possible 
number of segments; this is to avoid unnecessary computation time due to handling more 

segments than needed. At the end of the segmentation, each segment of the input curve should 

have at least 𝑁 matched segments from the dataset such that the Fréchet distance between them 

and the input segment is less than a threshold 𝑇⃗⃗⃗, where 𝑁 and 𝑇⃗⃗⃗ are user-defined parameters. 

Additionally, we search for the set of the closest 𝑁 matched segments (candidates) for each input 

segment and not only the closest segment since in many cases the planar orthogonal projection of 
two curves could be similar while their shape and orientation are quite different in 3D space.    

 

 
 

Figure 5: The process to find the first split segment of the input curve. In (1), the segmentation algorithm 

starts with the entire curve. In (2), the segmentation is done recursively until the number of matching 

candidates is larger or equal to 𝑁. In (5), the s the segmentation is finished for the first segment 𝑆1.  

 

The segmentation begins by taking the entire input curve as the first input segment. This segment 
is uniformly scaled and sampled in the same way as for the dataset segments, then we search for 

its closest matched Euler spiral segments in the dataset stored in the K-d tree. If the number of 

matched segments whose Fréchet distance to the input segment is less than a threshold 𝑇⃗⃗⃗ exceeds 

a certain number 𝑁 then the segmentation process is done. Otherwise, we recursively split the 

segment into half (inspired by the dichotomy approach ) and take its first half to repeat the 

matching process until satisfying the previous condition. Figure 5 illustrates the recursive 
segmentation to find the first segment of the input curve. We repeat the same process for the 

remaining part of the input curve until it is fully covered.   

 
Noting that we opted not to use a dynamic programming approach for segmentation, as it is more 

computationally expensive. Instead, our approach recursively splits the input curve in half, 

motivated by the fact that our dataset segments have various ending point positions, as shown in 

Figure 4. Furthermore, for each segment of the input curve, we consider multiple matched 
segments from the dataset, rather than just the closest match, to ensure that our segmentation 

approach is both fast and effective. 
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if  𝑣 

 

end  

 

else  

 

end  

In the pseudocode below the function 𝑠𝑝𝑙𝑖( ) defines the boundaries of the split segment by 

splitting the input polygonal curve 𝑆 from 𝑝𝑣1 to 𝑝𝑣2. 𝑝𝑣1 and 𝑝𝑣2 are respectively the points of 

vertex indices 𝑣1 and 𝑣2 of the input polygonal curve 𝑆 with 𝑣1 <𝑣2. The function  

𝑆𝑐𝑎𝑙𝑖𝑛𝑔𝐴𝑛𝑑𝑆𝑎𝑚𝑝𝑙𝑖𝑛( ) applies uniform scaling and sampling in the same way we did for our 

dataset. This means that the sampled input segments will have the same number of points as the 

dataset segments. The function 𝐺𝑒𝑡𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠( ) takes a given segment with a t as 
input, then returns the closest matched Euler spiral segments from the dataset whose Fréchet 

distance to the segment is smaller than 𝑇⃗⃗⃗. Finally, the function 𝐴𝑑𝑑𝐼𝑡𝑒𝑚𝑠𝑇⃗⃗⃗𝑜𝐿𝑖𝑠( ), adds the 

closest matched segments to a list which will be the result of this algorithm. This algorithm stops 

when the starting point index 𝑣1 exceeds 𝑛 indicating that the entire input polygonal curve has 

been processed.  

 

Algorithm 1: 𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑎 lg 𝑜𝑟𝑖𝑡ℎ𝑚 

 Input:  𝑆▷  The input polygonal curve 

𝑇⃗⃗⃗▷  Frechet distance threshold 

𝑁▷  The minimum number of matched segments 

𝑛▷  The number of points of S 

𝑣1 1                   ▷  The starting point of the split segment 

𝑣2= 𝑛▷  The ending point of the split segment𝑅𝑒𝑠𝑢𝑙𝑡𝑠= []  ▷  
The result of the algorithm 
 

 

 Output:  𝑅𝑒𝑠𝑢𝑙𝑡𝑠 

 Function:  𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛(𝑆, 𝑇⃗⃗⃗, 𝑁, 𝑛, 𝑣1, 𝑣2, 𝑅𝑒𝑠𝑢𝑙𝑡𝑠): 
 

  1 ≥ 𝑛then 
 return Results 

  

  𝑠𝑒𝑔𝑚𝑒𝑛𝑡 = 𝑠𝑝𝑙𝑖(𝑆, 𝑣1, 𝑣2) 

𝑠𝑒𝑔𝑚𝑒𝑛𝑡 = 𝑆𝑐𝑎𝑙𝑖𝑛𝑔𝐴𝑛𝑑𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝑠𝑒𝑔𝑚𝑒𝑛𝑡) 

𝑚𝑎𝑡𝑐ℎ𝐶𝑎𝑛𝑑 = 𝐺𝑒𝑡𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒(𝑠𝑒𝑔𝑚𝑒𝑛𝑡, 𝑇⃗⃗⃗)if 

𝑠𝑖𝑧𝑒𝑂𝑓(𝑚𝑎𝑡𝑐ℎ𝐶𝑎𝑛𝑑) ≥ 𝑁then 
  

𝐴𝑑𝑑𝐼𝑡𝑒𝑚𝑠𝑇⃗⃗⃗𝑜𝐿𝑖𝑠𝑡(𝑅𝑒𝑠𝑢𝑙𝑡𝑠, 𝑚𝑎𝑡𝑐ℎ𝐶𝑎𝑛𝑑) 

𝑣1 = 𝑣2 + 1 

𝑣2 = 𝑛 

  

 𝑣2 = 𝑣2/2 

  

 

  return 𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛(𝑆, 𝑇⃗⃗⃗, 𝑁, 𝑛, 𝑣1, 𝑣2, 𝑅𝑒𝑠𝑢𝑙𝑡𝑠) 

 

6. CONNECTING THE SEGMENTS 

 

To build the piecewise reconstructed 3D Euler spiral, we need to first find the optimal assembling 
of the candidates for each split segment. Once the optimal connecting is found, a post-processing 

step is required to reduce the discontinuity of the reconstructed curve at the connection points.  
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6.1. Finding the optimal connecting of the candidates   
 

The splitting and matching algorithm applied to the input polygonal curve 𝑆 results in its partition 

into 𝑚 segments {𝑠1, 𝑠2, … , 𝑠𝑚}, each has 𝑁matched candidate segments obtained from the 

dataset. Specifically, 𝐶𝑠𝑖= {𝑐𝑖,1, 𝑐𝑖,2, … , 𝑐𝑖,𝑁} represents the set of 𝑁 candidate for the segment  

𝑠𝑖, where  1 ≤ 𝑖 ≤ 𝑚. Each one of these candidates is a 3D Euler spiral curve segment that has its 
own properties, such as its curvature, torsion, tangent, and normal values.    

 

For each segment 𝑠𝑖 we have 𝑁 candidates. The final approximate Euler spiral reconstructed 

curve 𝑅𝑆 is obtained by selecting one candidate per input segment 𝑠𝑖 and connecting these 

selected candidates. Specifically, 𝑅𝑆 is represented as the set of selected candidates: 

 

𝑅𝑆= {𝑐𝑖,1, 𝑐𝑖,2, … , 𝑐𝑖,𝑁}, 
 

 where 1 ≤ 𝑡 ≤ 𝑚, 𝑐1,𝑗∈ 𝐶𝑠1, 𝑐2,𝑘∈ 𝐶𝑠2, 𝑐𝑡,𝑙∈ 𝐶𝑠𝑡, and  𝑐𝑚,𝑓∈ 𝐶𝑠𝑚.  
 

 
 

Figure 6: Visualization of the parameters that we consider while assembling two 3D Euler spiral curve 

segments.  

 

 
 

Figure 7: The architecture of the Dijkstra algorithm with 𝑁 = 3, the nodes represent the segment candidates 

and the edges represent the loss function between the candidates.  
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In order to find the optimal connecting between the candidates of the input segments, the 

selection of any two candidates (𝑐𝑡,𝑗, 𝑐𝑡+1,𝑘) that are going to follow each other in the 3D 

reconstructed curve will be based on the degree of the smoothness continuity at their connecting 
points as shown in Figure 6. By degree of smoothness continuity, we mean how smoothly the two 

candidates (segments of 3D Euler spiral curve) link with each other. Based on the Equation 2, to 

measure the degree of smoothness, we define a loss function that calculates the squared difference 

between the curvature 𝜅𝑎,𝑐𝑡,𝑗, the curvature coefficient 𝛾𝑎,𝑐𝑡,𝑗, the torsion 𝜏𝑎,𝑐𝑡,𝑗, the torsion 

coefficient 𝛿𝑎,𝑐𝑡,𝑗, the tangent  𝑇⃗⃗⃗  𝑎   , 𝑐  𝑡 ,𝑗, and the normal  𝑁   𝑎   , 𝑐  𝑡 ,𝑗  at the ending 

point of 𝑐𝑡,𝑗 and the curvature  

𝜅𝑏,𝑐𝑡+1,𝑘, the curvature coefficient  𝛾𝑏,𝑐𝑡+1,𝑘, the torsion 𝜏𝑏,𝑐𝑡+1,𝑘, the torsion coefficient 𝛿𝑏,𝑐𝑡+1,𝑘, the 

tangent  𝑇⃗⃗⃗  𝑏  , 𝑐  𝑡 +   1  ,𝑘, and the normal  𝑁    𝑏  , 𝑐  𝑡 +   1  ,𝑘 at the starting point of 

𝑐𝑡+1,𝑘:   
 

( 3 ) 
 

where ||. ||^2  being the vector length. 𝑤𝜅, 𝑤𝜏, 𝑤𝑇⃗⃗⃗ , and 𝑤𝑁  are user-specified weight values to 

give more importance to one the properties (curvature, torsion, tangent) over the others. In our 

implementation, they are all equal to 1.0.  
 

Let 𝐶𝐸(𝑅𝑆) be the cost function of the 3D Euler spiral reconstruction for the connecting of the 

segment candidates in 𝑅𝑆. Specifically, 𝐶𝐸(𝑅𝑆) is calculated as the sum of the loss functions 
[Equation 3] between each pair of consecutive candidates in this selected connecting of 

candidates. To obtain the optimal 3D Euler spiral reconstruction, it is necessary to identify the 

connecting set of segment candidates that results in the minimum cost, among all possible sets. 

We utilize the Dijkstra algorithm [25] to identify the optimal connecting set of candidates that 
will form the approximate piecewise reconstructed 3D Euler spiral. In this algorithm, we consider 

𝑅𝑆 as a path from the source node which can be any candidate 𝑐1, of the first input segment 𝑠1 to 

the destination node which can be any candidate 𝑐𝑚,𝑓 of the last input segment 𝑠𝑚. The candidates 

represent the nodes and the loss function (𝑐𝑡,𝑗, 𝑐𝑡+1,𝑘)between each pair of consecutive candidates 

represent the edges as shown in Figure 7. Our target is to search for the optimal path between any 

candidates of  𝑠1 to any candidates of 𝐶𝑠𝑚 which will ultimately determine the set of candidates 𝑅𝑆 

that form the piece-wise reconstructed Euler spiral while minimizing 𝐶𝐸𝑆(𝑅𝑆).  

To achieve that, we apply Dijkstra's algorithm by assigning all candidates of  𝑠1 a cost equal to 

zero and assigning infinite values to the remaining candidates. Since all candidates of 𝐶𝑠1 have a 

cost equal to zero, we can begin applying the algorithm from any of these candidates. The 

algorithm stops when we add a candidate of 𝐶𝑠𝑚 to the visited list of Dijkstra's algorithm, 

indicating that we found the shortest path from a candidate of 𝐶𝑠1 to a candidate of 𝐶𝑠𝑚. 

Specifically, we stop after adding the first candidate of 𝐶𝑠𝑚 to the visited list of Dijkstra's 

algorithm, as all other candidates of 𝐶𝑠𝑚 are in the unvisited list of Dijkstra's algorithm which 

means that their cost is higher. 
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6.2. Post processing  
 

The connecting of the optimal set of candidates based on the position of their respective split 

segments in the input curve exhibits a gap between them as shown for the first two matched 
segments in Figure 8 (1), and Figure 8 (2). To address this issue, we apply a smoothing technique 

to the reconstructed piecewise Euler spiral. First, each segment of the piecewise Euler spiral is 

sampled into a polygonal curve. Next, we apply a uniform scaling to these polygonal curves in a 
way to make their extremity intersect at the same location followed by resampling the entire 

reconstructed curve by interpolating the x, y, and z coordinates based on the cumulative 

Euclidean distance between successive points to ensure 𝐶0-continuity as shown in Figure 8 (3). 

Regarding 𝐶1-continuity it was already nearly preserved because the loss function \ref{eq:3}, 

which ensured that each of two consecutive Euler spiral segments must have a near continuous 

tangent at the end of the first segment and the beginning of the second segment. On the other 

hand, 𝐺2 and 𝐺3continuity (curvature and torsion continuity) are slightly degraded since they both 

rely on the second derivative which makes them very sensitive to small changes in the curve 

segment.  
 

 
 

Figure 8: The initial position of the orthogonal projection of the first two matched curves that will be used 

for the reconstruction of the piecewise Euler spiral is shown in (1) and (2) where there's some gap between 

them. In (3), after applying linear interpolation the two matched segments intersect at the same point.  

 

An overview of the entire approach starting from the segmentation and matching step to the 
segments connection and finally, the curve smoothing to form the approximate reconstructed 3D 

Euler spiral is illustrated in Figure 9. 
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Figure 9: An overview of our approach. (1) Starting from a planar polygonal curve as an input, we split it 

into segments Then for each segment, we get its closest matched Euler spiral 

segments (candidates) from the dataset. (2) We select the set of candidates (one per each segment) that can 

link with each other in the smoothest way. Then we apply a curve smoothing to form the reconstructed 

curve. 

 

7. RESULTS 

 

Our algorithms are implemented in Python. The dataset is comprised of 1,400,832 3D Euler spiral 

segments, each of which is composed of 30 3D points in addition to its properties such as its 

curvature, torsion, tangent, and normal values stored in a text file. The overall size of the dataset 

is 1.2 GB. During the splitting and matching algorithm, we set the variables 𝑁 and 𝑇⃗⃗⃗ to 350 and 

0.2, respectively, where 𝑁 represents the minimum number of the closest matched dataset 

segments for each input polygonal curve segment. To be considered a match, each of these closest 
dataset segments must have a Fréchet distance with the input polygonal curve segment smaller 

than the threshold 𝑇⃗⃗⃗. We chose 𝑁 = 350  to ensure a sufficiently large number of potentially 

matched candidates from the dataset for each input polygonal curve segment. This is necessary 
because two curves may appear close in 2D while their shape and orientation are quite different in 

3D. We set the threshold 𝑇⃗⃗⃗ = 0.2  to ensure that the selected segments are a close match to the 

input polygonal curve segment while minimizing the Fréchet distance between them. Note that all 
the Euler spiral segments in the dataset have their length equal to 1.0.  

 

7.1. Experimental results  
 

To evaluate the performance of our reconstruction algorithm, we did 3 experiments. In the first 

one, we generate 100 ground truth Euler spirals, all of which include an inflection point where the 
curvature and torsion change sign.  In the second experiment, we generate 100 segments of Euler 

spirals, all of which have only a positive curvature and torsion. We use the orthogonal projection 

of these 3D Euler spirals as an input to our method in these two experiments. Then we compared 
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the reconstructed Euler spirals with the ground truth Euler spirals. In the third experiment, we 
reconstruct an approximate piecewise 3D Euler spiral from a hand-drawn polygonal curve.   

 

To evaluate the similarity between the smoothed reconstructed 3D Euler spirals and the ground 

truth spirals, we use a uniform sampling and scaling method in order to standardize the 
comparison criteria between all reconstructed curves. Specifically, we first uniformly sample and 

scale the ground truth Euler spirals to make them have the same length of 10.0. We also apply 

uniform sampling and scaling to their corresponding reconstructed curve in order to make them 
have the same number of points and the same scaling ratio.  

 

Next, we calculate the distance between the 2D orthogonal projections of each pair of 
corresponding points on the smoothed reconstructed 3D Euler spirals and the ground truth Euler 

spirals. We also calculate the difference between the curvatures and torsions of each pair of their 

corresponding points. These torsion and curvature differences are calculated on the 3D curves. 

We estimate the similarity between them using three metrics:  
 

1. The average Euclidean distance between their polygonal projections 𝑑𝑝.  

2. The average difference between their curvatures 𝑑𝑐.  

3. The average difference between their torsions 𝑑𝑡.  

 

The results of the first two experiments are presented in the Figure 10, and Figure 11, which show 
four reconstructions out of 100 for the first experiment and two out of 100 for the second 

experiment. More reconstruction results are presented in the this link: 

https://drive.google.com/file/d/1HS_tgVVPSnv7YfAJrZdxiKDmlkywUTeq/view?usp=sharing.Ea
ch reconstruction includes a comparison between the ground truth Euler spiral and the 

approximate reconstructed Euler spiral before applying the post-processing smoothing in 

{(a),(b),(v),(d)}, and after applying the post-processing smoothing in {(e),(f),(g),(h)}. Wherein (a) 
and (e), we show both curves in 3D. In (b) and (f), we show their orthogonal projection. In (c) and 

(g), we show the absolute value of their curvature. Finally, in (d) and (h), we show their torsion. 

The similarity metrics 𝑑𝑝, 𝑑𝑐, and 𝑑𝑡 of the results shown in Figure 10, and Figure 11 are 
presented in Table 1. Note that we obtained these values after applying uniform sampling and 

scaling on all reconstructed curves to standardize the comparison criteria between them. 

 

The results of the third experiment are presented in Figure 12. The Figure shows two 3D Euler 
spiral reconstructions from hand-drawn curves before applying the post-processing smoothness in 

{(a),(b),(v),(d)} and after applying it in {(e),(f),(g),(h)}. Wherein (a) and (e), we show the 

reconstructed curve in 3D. In (b) and (f), we show the orthogonal projection of the reconstructed 
Euler spiral and the hand-drawn polygonal curve. In (c) and (g), we show the absolute value of 

curvature of the reconstructed Euler spiral. Finally, in (d) and (h), we show its torsion. 

 

We have to mention that in sub-figures (c) and (d) of Figure 10, Figure 11, and Figure 12  we 
show the concatenation of the curvature and torsion of the matched Euler spiral pieces, rather than 

the entire reconstructed curve. Therefore, we do not observe any significant peaks on the graphs. 

Conversely, sub-figures (g) and (h) demonstrate the curvature and torsion of the entire smoothed 
reconstructed curve. 

 

Regarding the results, it is shown in Figure 10, Figure 11, and Figure 12 that our reconstruction 
algorithm produces visually eye-pleasing curve and a quite similar result to the ground truth Euler 

spirals. Our reconstruction provides 3D curves with 𝐶0 and 𝐶1-continuity. Even 𝐺2 and 

𝐺3continuity can be considered acceptable since they are mainly continuous except for some 
peaks in the curvature and torsion occurring mainly at the joining points of the segments. This is 

https://drive.google.com/file/d/1HS_tgVVPSnv7YfAJrZdxiKDmlkywUTeq/view?usp=sharing
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because curvature and torsion rely on the second derivative, which makes them highly sensitive to 
small changes in the curve that may be difficult to discern visually.  

 
Table 1: The similarity metrics (average 2D distance 𝑑𝑝, average curvature difference 𝑑𝑐 and average 

torsion difference 𝑑𝑡) between the smoothed reconstructed Euler spirals of [Figure 10, Figure 11] and the 

ground truth Euler spirals. 

 

Curve name 𝑑𝑝 𝑑𝑐 𝑑𝑡 

C1  0.04  0.34  0.88  

C2  0.06  0.37  1.11  

C3  0.13  0.43  1.01  

C4  0.13  0.21  0.46  

C5  0.52  0.09  0.23  

C6  0.11  0.11  0.25  

 

7.2. Theoretical and experimental time complexity  
 

We use the K-d tree to search for the matched segments from the dataset for each input segment. 

The complexity of the searching time inside the K-d tree is (log(𝑍)), where 𝑍is the number of 

nodes in the tree, in our case, it is 1,400,832.  

 

We used Dijkstra's algorithm to search for the optimal set of connected segments to form the 

reconstructed piecewise Euler spiral. The time complexity of the Dijkstra algorithm is ((𝑉 + 𝐸) 

log(𝑉)), where 𝑉  is the number of nodes and 𝐸 is the number of edges in the graph. In our case, 

the number of nodes is 𝑉 = 𝑁2 × (𝑚 − 1) and the number of edges is 𝐸 = 𝑁 × 𝑚, where 𝑚 

represents the number of segments that we split the input polygonal curve into, while 𝑁represents 
the number of matched segment candidates from the dataset for each input segment.    

 

To conduct our experiments, we utilized a computer with an Intel Core i7-10700K processor, 32 
GB of RAM, and an NVIDIA Quadro RTX 4000 graphics card. The machine was running 

Ubuntu 18.04.6 LTS as the operating system. The time required for each reconstruction varies 

depending on the number of segments used to split the input curve. On average, the 
reconstruction process takes around 50 seconds, with approximately 40 seconds spent on splitting 

the curve and searching for matched curves in the dataset, and 10 seconds spent on finding the 

best connecting of segments using Dijkstra's algorithm. The time required to apply the smoothing 

process is negligible.  
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Figure 10: Comparison of our reconstructed Euler spirals before and after applying smoothing with the 

ground truth 3D Euler spirals (Euler spirals that include an inflection point). 
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Figure 11: Comparison of our reconstructed Euler spirals before and after applying smoothing with the 

ground truth 3D Euler spirals (Euler spirals with only positive curvature and torsion). 

 

 
 

Figure 12: Reconstruction of approximate piecewise 3D Euler spirals from hand-drawn polygonal curves. 
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8. CONCLUSION 

 
In this paper, we have proposed a novel method for approximating a piecewise 3D Euler spiral 

that accurately fits a planar polygonal curve. The effectiveness of our method has been 

demonstrated with a large number of input polygonal curves. Our reconstruction curves exhibited 

to have 𝐶0 and 𝐶1 continuity which makes it possible to be used for 3D modeling and for 
generating motions and trajectories. Future work could be to test our method against real-life 

applications.  
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