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Abstract. Innovations that combine the interpretability of symbolic AI with the learning capabilities of
sub-symbolic AI can flourish in the nexus of symbolic and sub-symbolic AI. This research presents Fuzzy
Cognitive Maps (FCMs). This hybrid model combines the best features of both paradigms as a workable
answer to the problems of interpretability and explainability in artificial intelligence (AI) systems. FCMs
have become a robust framework for logically and intuitively supporting decision-making processes and
expressing causal information. A more organic and adaptable problem-solving approach is made possible by
FCMs’ ability to manage the inherent ambiguity and uncertainty present in real-world situations. Because
of their innate flexibility and ability to learn and adapt from sub-symbolic AI, FCMs are an excellent fit
for applications requiring high interpretability and explainability.
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1 Introduction

In the ever-evolving landscape of AI, two distinct paradigms have emerged, each with its
unique approach to modeling intelligence and solving problems. On one side of the spec-
trum lies symbolic AI, an approach grounded in representing knowledge through explicit
symbols and rules, mirroring the logical structures of human thought. Conversely, sub-
symbolic AI eschews these clear-cut representations for a more opaque yet powerful method
of learning directly from data, embodying the patterns and statistical correlations that
underpin intelligence in a way that’s often incomprehensible to human observers. These
paradigms, seemingly at odds, represent the dual paths through which AI has sought to
replicate or surpass human cognitive capabilities. Yet, as we delve deeper into the strengths
and limitations inherent in each approach, a compelling narrative emerges—one that sug-
gests the future of AI may not rest on the supremacy of one paradigm over the other
but on the synergy of both. Symbolic AI relies on the manipulation of symbols and the
execution of logical operations to perform tasks, solve problems, and make decisions. This
approach, foundational to AI research’s early successes, excels in domains where rules are
well-defined and outcomes are predictable. Its transparency and interpretability, where
every decision can be traced through a logical chain of reasoning, offer clear advantages
in applications demanding explainability and compliance with regulatory standards. How-
ever, the rigidity of symbolic AI, its reliance on exhaustive rule sets, and the difficulty
of encoding commonsense knowledge have limited its applicability in the face of complex,
real-world problems where ambiguity and uncertainty are the norms. Symbolic AI is a
reasoning-oriented field that relies on classical logic (usually monotonic) and assumes that
logic makes machines intelligent. For instance, if you ask yourself, with this paradigm in
mind, ”What is an apple?” the answer will be that an apple is ”a fruit,” ”has red, yellow,
or green color,” or ”has a roundish shape.” These descriptions are symbolic because we
utilize symbols (color, shape, and kind) to describe an apple. Between the 50s and the 80s,
it was the dominant AI paradigm. Regarding the implementation of symbolic AI, one of
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the oldest yet still the most popular logic programming languages is Prolog (its roots are
in first-order logic) [1].

Conversely, sub-symbolic AI, which includes neural networks and deep learning, offers
a starkly different approach. By learning directly from vast amounts of data, sub-symbolic
AI models develop an internal representation of the world that is effective for tasks like
pattern recognition, language processing, and predictive modeling, often surpassing human
performance. Yet, this prowess comes at the cost of transparency, giving rise to the ”black
box” dilemma where the reasons behind a model’s decision cannot be easily discerned
or explained. The central assumption of the sub-symbolic paradigm is that the ability to
extract a good model with limited experience makes a model successful. Instead of clearly
defined human-readable relations, we design less explainable mathematical equations to
solve problems. Neural networks, ensemble models, regression models, decision trees, and
support vector machines are some of the most popular sub-symbolic AI models you can
quickly come across, especially if you are developing ML models. During the 80s, the
sub-symbolic AI paradigm took over symbolic AI’s position as the leading subfield [2].

The dichotomy between symbolic and sub-symbolic AI has led to a vibrant discourse
on the future direction of AI research and application. Within this discourse, Fuzzy Cog-
nitive Maps (FCMs) emerge as a fascinating hybrid technique, combining the explicit
knowledge representation of symbolic AI with the adaptability and learning capabilities
of sub-symbolic AI [3]. FCMs utilize fuzzy logic to handle ambiguity and model complex
systems through networks of concepts and causal relationships. This bridges the determin-
istic world of symbols and the probabilistic nature of sub-symbolic learning. As we stand
on the precipice of a new era in AI, integrating symbolic and sub-symbolic approaches
promises to unlock unprecedented capabilities. By marrying symbolic AI’s interpretability
and structured knowledge representation with the learning efficiency and adaptability of
sub-symbolic AI, we can pave the way for more sophisticated, versatile, and trustworthy
AI systems. This article explores the contrasting strengths and weaknesses of symbolic
versus sub-symbolic AI, highlights FCMs as a prime example of hybrid AI techniques,
and speculates on a future where AI’s full potential is realized through the harmonious
integration of both paradigms [4]. In doing so, we may find that the future of AI is not a
question of either/or but a confluence of both, harnessing the best of what each approach
has to offer.

The rest of this paper is organized as follows. Sec. 2 presents the origins and notable
cases of this classical approach to AI. Sec. 3 refers to theoretical conceptions in Machine
Learning. Sec. 4 presents the idea of the need for suitable explanations offered by these sys-
tems. Sec. 5 digs deep into why AI’s future should contain more traceable and interpretable
models. Sec. 6 holds the idea of merging both symbolic and subsymbolic approaches. Sec.
7 highlights the well-known Artificial Neural Networks’ relevance in connectionist com-
puting. Sec. 8 introduces a paradigm aiming to benefit from symbolic and subsymbolic
AI. Last, Sec. 9 serves as a reflection and to understand the need for new and more AI
models that are solid computationally and transparent to human understanding.

2 Symbolic AI

Symbolic AI, or ”Good Old-Fashioned Artificial Intelligence,” refers to a branch of AI
research and development emphasizing symbolic representations of problems, logic, and
search. This approach to AI relies on manipulating symbols and expressions to perform
tasks, solve problems, and model the world. The following report delves into symbolic AI’s
origins, notable case studies, advantages, and disadvantages.
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2.1 Origins of Symbolic AI

Symbolic AI traces its roots back to the mid-20th century, with foundational work by
figures such as Alan Turing, John McCarthy, and Marvin Minsky. Turing’s conceptualiza-
tion of the Turing machine and the Turing test laid the groundwork for thinking about
machines that could simulate human intelligence. In the 1950s and 1960s, John McCarthy,
often considered one of the fathers of AI, coined the term ”artificial intelligence” and
introduced the concept of using symbolic logic to represent and solve problems. Marvin
Minsky’s work on frames and knowledge representation further advanced the development
of symbolic AI. The period from the 1950s to the late 1980s is often considered the golden
age of symbolic AI, during which researchers focused on developing systems that could
reason about the world using symbolic logic. This era saw the creation of expert systems,
among the first commercial applications of AI. These systems used rules and databases of
knowledge to make inferences and provide advice in specialized domains such as medicine
and engineering.

2.2 Notable Case Studies

– MYCIN: Developed in the early 1970s at Stanford University, MYCIN was an expert
system designed to diagnose bacterial infections and recommend antibiotics. It was one
of the first successful demonstrations of symbolic AI in medicine, using a rule-based
system to make decisions.

– SHRDLU: Created by Terry Winograd in the 1970s, SHRDLU was a natural language
understanding system that could interact with a user in English to move blocks around
a virtual world. It demonstrated the potential of symbolic AI for understanding and
manipulating language and objects in a constrained environment.

– Deep Blue: Although primarily known for its chess-playing ability, IBM’s Deep Blue
represents a blend of symbolic AI (in terms of chess strategy and positions represented
symbolically) and brute-force computation. In 1997, Deep Blue famously defeated
world chess champion Garry Kasparov, showcasing the potential of AI in complex
decision-making.

2.3 Advantages of Symbolic AI

– Explainability: One of the primary advantages of symbolic AI is its inherent explain-
ability. Because decisions are made through explicit logical rules, it is easier to under-
stand and trace symbolic AI systems’ reasoning processes than more opaque models
like deep neural networks.

– Efficiency in Domain-Specific Knowledge: Symbolic AI systems excel in domains where
knowledge can be clearly defined and encoded in rules. This makes them particularly
useful for expert medicine, law, and engineering systems.

– Handling Logical Reasoning and Complex Problems: Symbolic AI is well-suited for
tasks that involve complex problem-solving and logical reasoning, where clear rules
and relationships can be established.

2.4 Disadvantages of Symbolic AI

– Knowledge Acquisition Bottleneck: One of the major challenges of symbolic AI is the
knowledge acquisition bottleneck. Encoding expert knowledge into rules and symbols
is time-consuming and requires significant expertise. This makes scaling symbolic AI
systems difficult.
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– Lack of Flexibility: Symbolic AI systems are often criticized for lacking flexibility and
adaptability. They struggle with handling uncertainty, learning from new data, and
performing in unstructured environments.

– Limited Perception and Learning: Unlike their machine learning counterparts, symbolic
AI systems have limited abilities to learn from data or perceive complex patterns
without explicitly programmed knowledge. This limits their applicability in tasks that
require significant generalization or data-driven learning.

2.5 Summing-up

Symbolic AI has played a fundamental role in developing AI as a field. Its emphasis on
logic, explicit knowledge representation, and symbolic reasoning has enabled significant
advancements in understanding and mimicking aspects of human intelligence. However,
the limitations of symbolic AI, particularly in terms of scalability, flexibility, and learn-
ing, have led to the rise of alternative approaches, notably machine learning and neural
networks. Despite these challenges, symbolic AI’s advantages remain an essential area of
study and application, especially its explainability and effectiveness in specific domains.
Hybrid approaches, combining the strengths of symbolic AI with machine learning, are
emerging as a promising direction for overcoming the limitations of both paradigms. As AI
advances, the principles of symbolic AI will likely continue to influence the development
of intelligent systems, contributing to our understanding and implementation of AI.

3 Sub-symbolic AI

Sub-symbolic AI represents a paradigm in AI research that diverges from the traditional
symbolic approach. Unlike symbolic AI, which relies on clearly defined symbols and rules
to process and convey knowledge, sub-symbolic AI focuses on the underlying intelligence
mechanisms. This approach aims to model the processes and patterns of thought that
occur below the level of conscious, symbolic thought, often drawing inspiration from the
functioning of the human brain and biological systems. This report explores the origins,
notable case studies, advantages, and disadvantages of sub-symbolic AI.

3.1 Origins of Sub-symbolic AI

The origins of sub-symbolic AI can be traced back to the early days of AI research. How-
ever, it gained significant momentum in the 1980s with the resurgence of neural networks
and the development of algorithms that could learn from data. The limitations of sym-
bolic AI (particularly its inability to handle ambiguous or incomplete information and
to learn from raw data) motivated researchers to explore alternative models that could
mimic the brain’s ability to learn and generalize from experiences. The advent of connec-
tionism, which emphasizes the role of neural networks and parallel distributed processing
in cognitive functions, marked a pivotal shift towards sub-symbolic AI.

3.2 Notable Case Studies

– Deep Learning for Image Recognition: Convolutional Neural Networks (CNNs), a class
of deep neural networks, have revolutionized image recognition. A landmark moment
was when AlexNet, a CNN designed by Alex Krizhevsky, Ilya Sutskever, and Geof-
frey Hinton, won the ImageNet Large Scale Visual Recognition Challenge in 2012,
significantly outperforming traditional image recognition methods.
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– Natural Language Processing (NLP): Sub-symbolic AI has dramatically improved the
ability of machines to understand and generate human language. Google’s BERT (Bidi-
rectional Encoder Representations from Transformers) and OpenAI’s GPT (Generative
Pre-trained Transformer) series are prime examples of how deep learning models can
grasp complex language patterns, enabling breakthroughs in translation, summariza-
tion, and question-answering systems.

– AlphaGo: Developed by DeepMind, AlphaGo is a program that defeated the world
champion Go player in 2016. It used deep neural networks and reinforcement learning
to master a game known for its complexity and strategic depth, a feat previously
thought to be decades away [5].

3.3 Advantages of Sub-symbolic AI

– Learning from Data: One of the most significant advantages of sub-symbolic AI is
its ability to learn directly from data without explicit programming. This makes it
incredibly powerful in handling complex, high-dimensional data such as images, speech,
and text.

– Generalization: Sub-symbolic AI models, particularly deep learning networks, can gen-
eralize, meaning they can perform well on unseen data after training on a sufficiently
large and representative dataset. This ability to generalize from examples is closer to
human learning and is a key strength of sub-symbolic AI.

– Handling Ambiguity and Uncertainty: Unlike symbolic AI, sub-symbolic AI is adept
at dealing with ambiguity and incomplete information. Neural networks, for instance,
can make probabilistic predictions and decisions even in uncertain or incomplete data
[6].

3.4 Disadvantages of Sub-symbolic AI

– Opacity (Black-Box Problem): A significant drawback of sub-symbolic AI, especially
deep neural networks, is its lack of transparency. These models are often described as
”black boxes” because it is difficult to understand how they arrive at specific decisions
or predictions, complicating efforts to debug or explain their behavior [7].

– Data and Computational Requirements: Training sub-symbolic AI models, particularly
deep learning networks, requires vast data and significant computational resources.
This can make cutting-edge AI research and applications inaccessible to organizations
with limited resources [8].

– Overfitting and Generalization Issues: While sub-symbolic AI models are good at gen-
eralizing from data, they can also be prone to overfitting, where they perform well on
training data but poorly on new, unseen data. To mitigate this risk, careful design,
regularization techniques, and validation strategies are required [9].

3.5 Summing-up

Sub-symbolic AI has emerged as a powerful approach to AI, offering capabilities that
surpass traditional symbolic methods in many areas, particularly those involving com-
plex pattern recognition, learning from data, and generalization [10]. The success of deep
learning and neural networks has underscored the potential of sub-symbolic AI to tackle
problems previously considered intractable. However, the challenges of interpretability,
data and resource requirements, and the risk of overfitting highlight the need for ongoing
research and development. The future of AI likely lies in a hybrid approach that combines
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the strengths of both symbolic and sub-symbolic AI, leveraging the transparency and
structured knowledge representation of symbolic systems with the learning capabilities
and adaptability of sub-symbolic models.

4 Explainable AI

Explainable AI (XAI) refers to methods and techniques that make the output of AI sys-
tems transparent and understandable to humans. XAI aims to create a suite of machine
learning techniques that produce more explainable models while maintaining high learning
performance (accuracy) and enabling human users to understand, trust, and effectively
manage the emerging generation of artificially intelligent partners. This report covers the
origins, notable case studies, advantages and disadvantages of explainable AI. As previ-
ously mentioned, the symbolic AI paradigm provides quickly interpretable models with
satisfactory reasoning capabilities. We can easily trace the reasoning for a particular out-
come. Yet, expressing the entire relation structure, even in a specific domain, is difficult
[11]. Therefore, symbolic AI models fail to capture all possibilities without requiring ex-
treme effort. On the other hand, the sub-symbolic AI paradigm provides very successful
models. These models can be designed and trained with relatively less effort than their
accuracy performance. However, one of the most significant shortcomings of subsymbolic
models is the explainability of the decision-making process. Especially in sensitive fields
where reasoning is an indispensable property of the outcome (e.g., court rulings, military
actions, loan applications), we cannot rely on high-performing but opaque models.

4.1 Origins of Explainable AI

The concept of explainable AI is not new, originating in the early days of AI research.
However, the focus on explainability has intensified in recent years due to the proliferation
of complex machine learning models, such as deep learning, often seen as ”black boxes” due
to their opaque decision-making processes. The need for explainability arises from concerns
over accountability, fairness, transparency, and compliance with regulatory requirements
(e.g., the European Union’s General Data Protection Regulation, which includes a right
to explanation). Historically, AI systems were more interpretable, as they relied heavily
on symbolic AI approaches, such as rule-based systems, where the logic behind decisions
could be easily traced and understood. As the field shifted towards more powerful but less
interpretable models, the demand for techniques to make these models explainable grew
[12].

4.2 Notable Case Studies

1. Healthcare Diagnosis: AI models are increasingly used to diagnose diseases from medical
imaging. Researchers have developed XAI systems that can identify specific features in
imaging data that lead to their diagnosis, providing doctors with insights into why the AI
system made a particular diagnosis. This not only aids in validating the AI’s conclusions
but also enhances the doctor’s understanding and trust in the tool. 2. Financial Services
for Loan Approval: AI models evaluate loan applications in the financial sector. XAI can
be crucial in explaining why a loan was approved or denied, ensuring compliance with reg-
ulations against discriminatory practices, and helping applicants understand what factors
influenced the decision. 3. Criminal Justice Risk Assessment Tools: Tools like COMPAS
(Correctional Offender Management Profiling for Alternative Sanctions) have been used
to assess the likelihood of reoffending. XAI methods can help uncover, explain, and correct
biases in such predictive models, ensuring fair and transparent decision-making.
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4.3 Advantages of Explainable AI

– Increased Trust and Confidence: Explainability builds trust among users and stake-
holders by transparentizing decision-making. When users understand how an AI system
arrives at its conclusions, they are more likely to trust it.

– Improved Model Debugging and Validation: XAI techniques enable developers to iden-
tify and correct errors or biases in AI models. Developers can make targeted adjust-
ments to improve performance and fairness by understanding the factors influencing
model decisions.

– Regulatory Compliance: Many industries are subject to regulations that require deci-
sions made by automated systems to be explainable. XAI facilitates compliance with
such regulations, enabling AI solutions deployed in highly regulated sectors like finance
and healthcare.

– Ethical and Fair Decision-Making: Explainable AI can help identify and mitigate bi-
ases in AI models, promoting more ethical and fair decision-making processes. This
is particularly important in applications with significant social implications, such as
criminal justice and employment.

4.4 Disadvantages of Explainable AI

– Potential Reduction in Model Performance: In some cases, making a model more ex-
plainable may require simplifying its architecture or using less complex algorithms,
which can reduce accuracy or performance [13].

– Complexity and Resource Requirements: Developing explainable AI models can be
more complex and resource-intensive than traditional models. It requires additional
efforts in design, implementation, and validation to ensure that explanations are mean-
ingful and accurate.

– Risk of Oversimplification: There is a risk that the explanations provided by XAI
systems might oversimplify the underlying processes, potentially leading to misunder-
standings or misplaced trust in the AI system’s capabilities.

– Security and Privacy Concerns: Explaining how AI systems work might inadvertently
reveal sensitive information about the data or the model itself, posing security and
privacy risks.

4.5 Summing-up

Explainable AI represents a critical advancement addressing AI systems’ need for trans-
parency, trust, and understanding. As AI continues to be integrated into essential sectors
of society, the importance of explainability will only grow. The challenge lies in balanc-
ing the demand for complex, high-performing AI models with the need for transparency
and comprehensibility. Therefore, while symbolic AI models are explainable by design,
sub-symbolic AI models are usually not explainable by design. Two fields deal with cre-
ating high-performing AI models with reasoning capabilities, usually requiring combining
components from symbolic and sub-symbolic paradigms. While XAI aims to ensure model
explainability by developing models that are inherently easier to understand for their (hu-
man) users, NSC focuses on finding ways to combine sub-symbolic learning algorithms
with symbolic reasoning techniques. Future developments in XAI will likely focus on inno-
vative approaches to maintaining or enhancing model performance while providing clear,
accurate, and helpful explanations [14]. As the field evolves, it will also be essential to
develop standardized metrics for explainability and ensure that explanations are accessi-
ble and understandable to all users, regardless of their technical background. Ultimately,
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the success of explainable AI will depend on its ability to foster trust and collaboration
between humans and machines, enable more informed decision-making, and ensure that
AI systems align with societal values and ethical principles [15].

5 Interpretable AI

Interpretable AI focuses on developing models and algorithms that are understandable
to humans. This means that users can comprehend and trace back the decisions, predic-
tions, or classifications an AI system makes. Interpretable AI is crucial for applications
in sensitive and critical domains where understanding the reasoning behind AI decisions
is essential for trust, compliance, and improvement. This report delves into the origins,
notable case studies, advantages, and disadvantages of interpretable AI.

5.1 Origins of Interpretable AI

The origins of interpretable AI can be traced back to the early days of AI when more
straightforward, rule-based systems were the norm. These systems, inherently interpretable,
allow users to follow the AI’s logical steps to reach a decision. However, as AI research pro-
gressed, especially with the advent of complex models like deep neural networks, the focus
shifted towards improving performance, often at the cost of interpretability. The growing
deployment of AI systems in critical areas such as healthcare, finance, and criminal justice
has reignited the importance of interpretability. Stakeholders in these fields require AI
systems to make decisions and provide explanations that humans can understand. This
need has spurred the development of new techniques and research into making even the
most complex models interpretable.

5.2 Notable Case Studies

– Healthcare Diagnosis and Treatment: AI systems are increasingly used to diagnose
diseases and recommend treatments. For instance, models that predict cardiovascular
diseases based on patient data must be interpretable so that healthcare providers
can understand the reasoning behind the predictions. This ensures trust and allows
healthcare professionals to make informed decisions.

– Financial Services Compliance and Decision-Making: In finance, AI models are used
for credit scoring, fraud detection, and automated trading. Interpretability in these
models helps users understand the factors influencing decisions, ensuring compliance
with regulatory standards and building customer trust.

– Criminal Justice and Bail Decisions: AI is used to assess the risk of recidivism and
inform bail and sentencing decisions. Using interpretable AI models in this context is
crucial for fairness, transparency, and accountability, allowing for scrutinizing decisions
that significantly impact individuals’ lives.

5.3 Advantages of Interpretable AI

– Trust and Transparency: Interpretable AI fosters trust from users by making the
decision-making process transparent. When stakeholders understand how decisions are
made, they are more likely to trust and accept AI solutions.

– Improved Decision-Making: Interpretability allows users to verify the correctness of the
AI’s reasoning, leading to more informed and better decision-making. This is especially
important in domains where decisions have significant consequences.
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– Regulatory Compliance: Many industries are subject to regulations that require deci-
sions to be explainable. Interpretable AI facilitates compliance with such regulations,
avoiding potential legal and financial penalties.

– Error Detection and Model Improvement: By understanding how an AI system makes
decisions, developers and users can identify errors or biases in the model, leading to
continuous improvement of AI systems.

– Ethical Considerations: Interpretable AI can help identify and mitigate biases in AI
systems, promoting fairness and ethical decision-making.

5.4 Disadvantages of Interpretable AI

– Potential Trade-off Between Interpretability and Performance: Sometimes, making a
model more interpretable may require simplifying its architecture or using less complex
algorithms, potentially leading to decreased accuracy or performance.

– Complexity in Interpretation: Achieving true interpretability can be challenging for
complex models. Even when interpretations are provided, they may be difficult for
non-experts to understand, limiting their usefulness.

– Risk of Misinterpretation: There’s a risk that interpretations provided by AI systems
might be misunderstood by users, leading to incorrect conclusions or decisions based
on those interpretations.

– Time and Resource Intensive: Developing interpretable AI models can require addi-
tional time and resources. Designing models that balance interpretability and perfor-
mance involves extra effort in model selection, development, and validation [16].

5.5 Summing-up

Interpretable AI is a crucial component in the responsible deployment of AI, especially in
sensitive and high-stakes domains. It addresses the need for transparency, trust, and ethical
considerations in AI systems. As AI continues to evolve and integrate into various aspects
of society, the demand for interpretable models will likely increase, pushing the boundaries
of current research and development efforts. Future advancements in interpretable AI will
aim to overcome the existing trade-offs between performance and interpretability, develop
standardized measures for interpretability, and create more user-friendly explanations.
This will ensure that AI systems are robust, effective, and aligned with societal values
(and ethical standards), fostering greater acceptance and integration of AI technologies
across different sectors.

6 The merge of both approaches

The intersection between symbolic and sub-symbolic AI represents a fascinating and
promising area of research within AI. This interests both worlds: symbolic AI’s explicit rea-
soning and interpretability with the learning capabilities and adaptability of sub-symbolic
AI, particularly neural networks. This hybrid approach aims to overcome the limitations
inherent in each approach when used in isolation, enabling the development of AI sys-
tems that are both powerful and understandable. This report explores the origins, notable
case studies, advantages, and disadvantages of the intersection between symbolic and sub-
symbolic AI.
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6.1 Origins

The dichotomy between symbolic and sub-symbolic AI has its roots in the early days of
AI research. Symbolic AI, dominant in the early stages of AI development, focuses on
logic and rule-based systems. In contrast, sub-symbolic AI, which gained prominence with
the advent of machine learning and neural networks, emphasizes learning from data and
pattern recognition. The idea of merging these two approaches emerged from recognizing
their complementary strengths and weaknesses. Symbolic AI’s ability to handle complex
reasoning and explicit knowledge representation, combined with sub-symbolic AI’s profi-
ciency in dealing with raw data and learning from experience, presented a compelling case
for integration.

6.2 Notable Case Studies

– Neuro-Symbolic AI for Visual Question Answering (VQA): Research projects have
combined neural networks with symbolic reasoning to improve VQA systems, which
answer questions about images. These hybrid systems use neural networks to interpret
visual data and symbolic systems to reason about the content, enabling more accurate
and interpretable answers.

– Commonsense Reasoning: Projects like OpenAI’s GPT-3 have integrated symbolic rea-
soning to enhance the model’s ability to perform commonsense reasoning tasks. These
systems can better understand and generate human-like responses by embedding sym-
bolic representations within a neural framework.

– Robotics and Planning: Combining symbolic AI for high-level planning and decision-
making with sub-symbolic AI for perception and motion control has led to more versa-
tile and efficient robots. This approach allows robots to navigate and interact with their
environment in a more human-like manner, adapting to new tasks and environments
through learning.

6.3 Advantages

– Enhanced Reasoning and Generalization: Integrating symbolic and sub-symbolic AI
can lead to systems that learn from data and apply logical reasoning to generalize
beyond their training data. This results in more flexible and capable AI systems [17].

– Improved Interpretability and Transparency: Symbolic components can provide clear
explanations for the decisions made by sub-symbolic models, addressing one of the
major drawbacks of purely sub-symbolic AI systems.

– Efficient Learning and Knowledge Representation: Symbolic AI can encode domain
knowledge that guides the learning process of sub-symbolic models, making them more
efficient and effective in learning from data. Conversely, sub-symbolic models can dis-
cover patterns and relationships that can be formalized into symbolic knowledge.

– Flexibility and Adaptability: Hybrid systems can adapt to new tasks and environ-
ments more readily by leveraging the learning capabilities of sub-symbolic AI with the
structured knowledge representation of symbolic AI.

6.4 Disadvantages

– Complexity in Integration: Combining symbolic and sub-symbolic AI involves signifi-
cant challenges, including integrating disparate representations and reasoning mecha-
nisms. This complexity can make the development of hybrid systems more challenging
and resource-intensive.
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– Scalability Issues: The scalability of hybrid AI systems can be limited by the symbolic
component, which may not easily handle the vast amounts of data that sub-symbolic
models can process [18].

– Limited Understanding of Integration Mechanisms: The field is still exploring the most
effective ways to integrate symbolic and sub-symbolic AI. This includes challenges
in combining learning and reasoning, representing knowledge, and ensuring that the
systems are robust and reliable.

6.5 Summing-up

The intersection between symbolic and sub-symbolic AI holds great promise for the future
of AI. By combining the strengths of both approaches, researchers and practitioners aim
to create AI systems that are powerful and capable of learning from vast amounts of data
but can also reason, generalize, and explain their decisions in a manner understandable to
humans. This hybrid approach represents a step towards more sophisticated, versatile, and
trustworthy AI systems that can be effectively applied in various domains, from health-
care and finance to autonomous systems [6]. However, realizing the full potential of this
intersection requires overcoming significant challenges, including integrating different AI
paradigms, scalability, and developing effective mechanisms for combining learning and
reasoning. Continued research and experimentation in this area are crucial for advancing
the state of the art and for achieving the goal of creating AI systems that are both intelli-
gent and interpretable. As the field evolves, it is expected that the integration of symbolic
and sub-symbolic AI will play a key role in developing next-generation AI systems capable
of addressing complex problems with unprecedented efficiency and effectiveness.

7 From ANN (sub-symbolic) to Rules (symbolic)

Extracting rules from Artificial Neural Networks (ANNs) is a critical step towards de-
mystifying these models’ ”black-box” nature, making their decisions understandable and
interpretable to humans. This process involves translating the complex, non-linear re-
lationships learned by the network into a set of human-readable rules. Let’s explore a
comprehensive example illustrating how rules can be extracted from an ANN trained on
a simplified dataset for predicting loan approval based on applicant features.

7.1 Background

Consider a financial institution that has developed an ANN to assess loan applications.
The ANN inputs include applicant features, such as Age, Income, Credit Score, and Em-
ployment Status, and it outputs a binary decision: Approve or Deny. Despite the ANN’s
high accuracy, the decision-making process is opaque, making it difficult for loan officers
to justify decisions to applicants or to ensure compliance with regulatory standards. The
institution seeks to extract interpretable rules from the ANN to address this.

7.2 ANN Architecture

The ANN in this example is a simple feedforward network with one hidden layer. The
input layer has four neurons corresponding to the applicant features. The hidden layer has
a few neurons (say five for simplicity) using ReLU (Rectified Linear Unit) as the activation
function [11]. The output layer has one neuron and uses a sigmoid activation function to
output a probability of loan approval.
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7.3 Rule Extraction Process

The rule extraction process involves several steps designed to translate the ANN’s learned
weights and biases into a set of if-then rules that replicate the network’s decision-making
process as closely as possible:

– Simplification: The first step involves simplifying the ANN to make the rule extraction
more manageable. This could include pruning insignificant weights (shallows values)
and neurons that have little impact on the output based on sensitivity analysis.

– Discretization: Since ANNs deal with continuous inputs and hidden layer activations,
a discretization process is applied to convert these continuous values into categorical
ranges. For instance, age might be categorized into ’Young’, ’Middle-aged’, and ’Old’;
Income into ’Low’, ’Medium’, and ’High’; Credit Score into ’Poor’, ’Fair’, ’Good’, and
’Excellent’; and Employment Status into ’Unemployed’ and ’Employed’.

– Activation Pattern Analysis: Next, the activation patterns of the neurons in the hidden
layer are analyzed for each input pattern. This involves feeding various combinations of
the discretized input variables into the simplified network and observing which neurons
in the hidden layer are activated for each combination. An activation threshold is
defined to determine whether a neuron is considered activated.

– Rule Generation: Based on the activation patterns observed, rules are generated to
replicate the ANN’s decision process. Each rule corresponds to a path from the input
layer through the activated hidden neurons to the output decision. For example:
• If (Age is Young) and (Income is High) and (Credit Score is Good) and (Employ-

ment Status is Employed), then Approve Loan.
• If (Age is Middle-aged) and (Credit Score is Poor), then Deny Loan.

This step involves identifying which combinations of input features and hidden neuron
activations lead to loan approval or denial, effectively translating the ANN’s complex
decision boundaries into more interpretable formats.

– Rule Refinement and Validation: The initial set of rules may be too complex or too
numerous for practical use. Rule refinement techniques simplify and consolidate the
rules without significantly reducing their accuracy in replicating the ANN’s decisions.
The refined rules are then validated against a test dataset to reflect the ANN’s behavior
accurately. This may involve adjusting the rules based on misclassifications or applying
techniques to handle exceptions and edge cases.

After applying the rule extraction process to our hypothetical ANN, we might end up
with a set of simplified, human-readable rules such as:

– Rule 1: If (Income is High) and (Credit Score is Excellent), then Approve Loan.
– Rule 2: If (Employment Status is Unemployed) and (Credit Score is Poor or Fair),

then Deny Loan.
– Rule 3: If (Age is Old) and (Income is Low) and (Employment Status is Employed),

then Deny Loan.

These rules provide clear criteria derived from the ANN’s learned patterns, making
the decision-making process transparent and justifiable.

7.4 Advantages and Challenges

Advantages:

– Transparency: The extracted rules make the ANN’s decisions transparent and under-
standable to humans.
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– Compliance: Clear rules can help ensure compliance with regulatory requirements for
explainable AI.

– Trust: Understanding how decisions are made can increase user trust in the AI system.

Challenges:

– Complexity: The rule extraction process can be complex, especially for deep or highly
non-linear networks [19].

– Approximation: The extracted rules approximate the ANN’s decision process and may
not capture all nuances.

– Scalability: Extracting rules from large, deep neural networks with many inputs and
hidden layers can be challenging and may result in many complex rules [20].

7.5 Summing-up

Extracting rules from ANNs offers a pathway to making AI decisions transparent, un-
derstandable, and justifiable. While the process has challenges, particularly with complex
networks, it represents a crucial step towards responsible and ethical AI use. By making
AI systems more interpretable, we can build trust with users, ensure compliance with
regulations, and provide valuable insights into decision-making.

8 Fuzzy Cognitive Maps

The pendulum in AI is swinging back from purely statistical approaches toward integrating
structured knowledge. FCMs are powerful cognitive tools for modeling and simulating
complex systems. They blend elements from artificial neural networks, graph theory, and
semantic nets to offer a unique approach to understanding and predicting system behavior
[21]. FCMs incorporate the concept of fuzziness from fuzzy logic, enabling them to handle
ambiguity and uncertainty inherent in real-world scenarios. This extensive report delves
into the origins of FCMs, provides illustrative case studies, and discusses their advantages
and disadvantages, with references to their similarities to artificial neural networks, graphs,
and semantic nets [22].

8.1 Origins

Bart Kosko introduced the concept of FCMs in the 1980s as an extension of cognitive maps.
Cognitive maps, developed by Axelrod, were diagrams that represented beliefs and their
interconnections. Kosko’s introduction of fuzziness to these maps allowed for the represen-
tation of causal reasoning with degrees of truth rather than binary true/false values, thus
capturing the uncertain and imprecise nature of human knowledge and decision-making
processes. FCMs combine elements from fuzzy logic, introduced by Lotfi A. Zadeh, with
the structure of cognitive maps to model complex systems.

8.2 Structure and Functionality

FCMs are graph-based representations where nodes represent concepts or entities within
a system, and directed edges depict the causal relationships between these concepts. Each
edge is assigned a weight that indicates the relationship’s strength and direction (positive
or negative). This structure closely mirrors that of artificial neural networks, particularly
in how information flows through the network and how activation levels of concepts are

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT),
                                               Vol.14, No.1/2/3/4, August 2024

13



updated based on the input they receive, akin to the weighted connections between neurons
in neural networks [23].

However, unlike typical neural networks that learn from data through backpropagation
or other learning algorithms, the weights in FCMs are often determined by experts or de-
rived from data using specific algorithms designed for FCMs. The concepts in FCMs can
be activated like neurons, with their states updated based on fuzzy causal relations, allow-
ing for dynamic modeling of system behavior over time. Integrating structured knowledge
graphs with distributed neural network representations offers a promising path to aug-
mented intelligence. We get the flexible statistical power of neural networks that predict,
classify, and generate based on patterns—combined with the formalized curated knowledge
encoding facts, logic, and semantics via knowledge graphs [24].

8.3 Case Studies

FCMs have been applied across various domains, demonstrating their versatility and ef-
fectiveness as a hybrid AI tool:

– Decision Support Systems: FCMs model complex decision-making processes, integrat-
ing expert knowledge and data-driven insights to support decisions in healthcare, en-
vironmental management, and business strategy.

– Predictive Modeling: In healthcare, FCMs model the progression of diseases or the
impact of treatments, incorporating medical expertise and patient data to predict
outcomes and support personalized medicine [25].

– System Analysis and Design: FCMs help analyze and design complex systems, such as
socio-economic systems or ecosystems, by modeling the interactions between various
factors and predicting the impact of changes or interventions.

– Healthcare Management: FCMs have been employed to model and predict patient
outcomes in healthcare settings. For example, an FCM can be developed to understand
the complex interplay between patient symptoms, treatment options, and possible
outcomes, aiding medical professionals in decision-making [26].

– Environmental and Ecological Systems: In environmental studies, FCMs have been
used to model the impact of human activities on ecosystems, allowing for the simula-
tion of various scenarios based on different policies or interventions. This application
showcases the strength of FCMs in handling systems where data may be scarce or
imprecise [27].

– Business and Strategic Planning: FCMs assist in strategic planning and decision-
making within business contexts by modeling the relationships between market forces,
company policies, and financial outcomes, offering a tool for scenario analysis and
strategy development [28].

8.4 Advantages

The hybrid nature of FCMs offers several advantages:

– Interpretability and Transparency: The symbolic representation of concepts and causal
relationships in FCMs provides clarity and understandability, facilitating communica-
tion with experts and stakeholders and supporting explainable AI.

– Flexibility and Adaptability: FCMs can be easily updated with new knowledge or
data, allowing them to adapt to changing conditions or insights. This makes them
particularly valuable in fields where knowledge evolves rapidly.
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– Handling of Uncertainty: Using fuzzy values to represent causal strengths enables
FCMs to deal effectively with uncertainty and ambiguity, providing more nuanced
and realistic modeling of complex systems [29].

– Integration of Expert Knowledge and Data-Driven Insights: FCMs uniquely combine
expert domain knowledge with learning from data, bridging the gap between purely
knowledge-driven and purely data-driven approaches.

– Interpretability: The graphical representation of FCMs, similar to semantic nets, allows
for straightforward interpretation and understanding of the modeled system, making
it accessible to experts and stakeholders without deep technical knowledge of AI.

– Flexibility: FCMs can incorporate quantitative and qualitative data, effectively han-
dling uncertainty and imprecision through fuzzy logic. This flexibility makes them
suitable for a wide range of applications.

– Dynamic Modeling Capability: FCMs can simulate the dynamic behavior of systems
over time, providing valuable insights into potential future states based on different
inputs or changes in the system [30].

8.5 Limitations

Despite their advantages, FCMs also face several challenges:

– Complexity with Large Maps: As the number of concepts and relationships in an
FCM increases, the map can become complex and challenging to manage, analyze,
and interpret [16].

– Learning and Optimization: While FCMs can learn from data, adjusting the fuzzy
values of causal relationships can be computationally intensive and may require so-
phisticated optimization techniques, especially for large and complex maps [31].

– Quantification of Expert Knowledge: Translating expert knowledge into precise fuzzy
values for causal relationships can be challenging and may introduce subjectivity, re-
quiring careful validation and sensitivity analysis [32].

– Subjectivity in Model Construction: The reliance on expert knowledge for constructing
FCMs can introduce subjectivity, especially in determining the strength and direction
of causal relationships between concepts.

– Complexity with Large Maps: As the number of concepts increases, the FCM can
become complex and challenging to manage and interpret, potentially requiring so-
phisticated computational tools for simulation and analysis.

– Limited Learning Capability: While FCMs can be adjusted or trained based on data to
some extent, they lack the deep learning capabilities of more advanced neural networks,
which can autonomously learn complex patterns from large datasets [33].

8.6 Similarities to ANNs, Graphs, and Semantic Nets

FCMs share several similarities with artificial neural networks, graphs, and semantic nets:

– Artificial Neural Networks: Like neural networks, FCMs consist of nodes (concepts)
and weighted edges (causal relationships), where the state of each concept is updated
based on the inputs it receives, akin to the activation of neurons. However, FCMs
use fuzzy logic to handle the degrees of truth, whereas neural networks typically use
continuous activation functions.

– Graphs: FCMs are directed graphs with weighted edges, employing graph theory con-
cepts to represent and analyze the causal relationships between concepts. This graph-
ical structure facilitates the visualization and analysis of complex systems [34].
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– Semantic Nets: FCMs resemble semantic nets using nodes representing entities or con-
cepts and edges representing relationships. However, FCMs focus on causal relation-
ships and use fuzzy logic to capture the uncertainty and vagueness inherent in real-
world systems [35].

8.7 FCMs as a Hybrid AI Approach

There is momentum toward hybridizing connectionism and symbolic approaches to AI
to unlock potential opportunities for an intelligent system to make decisions. This hybrid
approach is gaining ground; FCMs embody a hybrid AI approach through their integration
of symbolic and sub-symbolic elements:

– Symbolic Components: The concepts and causal connections in FCMs are symbolic,
explicitly representing entities and their interrelations. This aligns with the symbolic
AI paradigm, where knowledge is structured and interpretable, allowing for reasoning
and inference based on explicit rules and relationships [36].

– Sub-symbolic Components: The strengths of the causal relationships in FCMs are rep-
resented by fuzzy values, which are learned and adjusted based on data or expert input,
much like the weights in neural networks. This learning capability and the use of fuzzy
logic to handle uncertainty and ambiguity mirror the characteristics of sub-symbolic
AI, which learns from patterns in data without requiring explicit programming.

FCMs offer a compelling hybrid approach to AI, combining the symbolic representa-
tion of knowledge with sub-symbolic learning and reasoning; they bridge a crucial gap
between symbolic AI’s interpretability and structured knowledge representation and the
adaptability and data-driven learning of sub-symbolic AI. Their applications across diverse
domains underscore their versatility and potential to address complex problems by inte-
grating human-like reasoning with machine learning. The challenges FCMs face, including
complexity management and the quantification of expert knowledge, highlight areas for
further research and development. As AI continues to evolve towards more integrated
and versatile models, FCMs stand as a testament to the potential of hybrid approaches
to combine the strengths of symbolic and sub-symbolic AI, offering a pathway to more
intelligent, understandable, and adaptable AI systems [37].

8.8 Summing-up

FCMs offer a robust framework for modeling and analyzing complex systems, blending the
best symbolic and sub-symbolic AI by integrating fuzzy logic, graph theory, and neural
network-like dynamics. While FCMs provide a powerful tool for understanding system
behaviors and decision-making processes, their effectiveness is contingent upon accurately
representing causal relationships and managing map complexity. Future developments in
FCMs aim to enhance their learning capabilities, reduce subjectivity in their construction,
and improve scalability, further solidifying their role as a valuable tool in complex system
analysis and decision support across various domains [38].

9 Conclusion and reflection

While both approaches effectively solve complex problems, symbolic AI is best suited for
expert/knowledge systems requiring human input and domain-specific knowledge, and sub-
symbolic AI is ideal for applications requiring continuous learning, such as natural language
processing, speech recognition, and image recognition tasks. Therefore, it is essential to
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consider the problem requirements and constraints before deciding which approach to
use. Ultimately, the success of an AI application depends on selecting the appropriate
strategy that best suits the requirements of the problem. The debate between symbolic AI
and sub-symbolic AI is ongoing, with proponents on both sides. Symbolic AI proponents
argue it is the only way to achieve accurate intelligence and understanding, as it relies on
human-like cognitive processes such as reasoning and logic. They view sub-symbolic AI
as limited in its ability to produce truly intelligent behavior, as it is primarily based on
statistical algorithms and cannot reason abstractly. On the other hand, sub-symbolic AI
enthusiasts argue that it offers a more flexible and powerful means of achieving intelligence.
By mimicking how the brain processes information, it can better handle the complexity
and variability of real-world situations. Moreover, it is less dependent on hand-coding
and can learn from experience, achieving greater accuracy and adaptability over time.
Ultimately, the debate between symbolic and sub-symbolic AI cannot be quickly resolved.
Both approaches have their strengths and weaknesses, and the relative importance of each
will depend on the specific application at hand. Nevertheless, understanding the debate
and the merits of each approach can help drive progress toward the development of more
advanced and effective AI systems.

It is essential to consider both the symbolic and sub-symbolic approaches in the devel-
opment of AI. Symbolic AI is advantageous in situations that require logical reasoning and
problem-solving that can be expressed using rules and symbols. In contrast, sub-symbolic
AI excels in areas where pattern recognition and learning from experience are essential,
such as speech recognition, image recognition, and natural language processing. Another
advantage of using both approaches is that they can be combined to create hybrid mod-
els that are more effective in solving complex problems. For instance, sub-symbolic AI
can be used for feature extraction in image recognition, while symbolic AI is used for
classification. Therefore, understanding the strengths and limitations of each approach
and applying them complementary can lead to more comprehensive and intelligent AI
systems that can overcome the challenges and limitations of individual approaches. Sym-
bolic AI and sub-symbolic AI both have their strengths and weaknesses when it comes
to different applications. Symbolic AI, with its rule-based system, works well when the
problem-solving process requires many rules and is well-defined. In contrast, sub-symbolic
AI, which focuses on learning, is better suited to deal with situations where the prob-
lem is not well-defined, and data can be used to generate new insights. Moreover, while
Symbolic AI requires expert knowledge to create well-defined rules, sub-symbolic AI only
needs raw data to learn from. On the other hand, symbolic AI has a more deterministic
and transparent approach, allowing developers to understand how the AI model reaches
its conclusions. In comparison, sub-symbolic AI is more of a black box, making it difficult
to know how the model generates its results. Ultimately, the choice between symbolic AI
and sub-symbolic AI depends on the specific application and the project’s goals.
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4. O. Emir and Şule Önsel Ekici, “An integrated assessment of food waste model through intuitionistic
fuzzy cognitive maps,” Journal of Cleaner Production, vol. 418, p. 138061, 2023.

5. E. Struble, M. Leon, and E. Skordilis, “Intelligent prevention of ddos attacks using reinforcement
learning and smart contracts,” The International FLAIRS Conference Proceedings, vol. 37, May 2024.

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT),
                                               Vol.14, No.1/2/3/4, August 2024

17
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18. M. Wrzesień, M. Wrzesień, and W. Homenda, “Time series processing with cognitive maps. the case
of general forecast modeling for time series of similar nature,” in 2022 IEEE International Conference
on Fuzzy Systems (FUZZ-IEEE), pp. 1–8, 2022.

19. Z. Yang, J. Liu, and K. Wu, “Learning of boosting fuzzy cognitive maps using a real-coded genetic
algorithm,” in 2019 IEEE Congress on Evolutionary Computation (CEC), pp. 966–973, 2019.

20. W. Liang, Y. Zhang, X. Liu, H. Yin, J. Wang, and Y. Yang, “Towards improved multifactorial particle
swarm optimization learning of fuzzy cognitive maps: A case study on air quality prediction,” Applied
Soft Computing, vol. 130, p. 109708, 2022.

21. M. Leon, N. Martinez, Z. Garcia, and R. Bello, “Concept maps combined with case-based reasoning
in order to elaborate intelligent teaching/learning systems,” in Seventh International Conference on
Intelligent Systems Design and Applications (ISDA 2007), pp. 205–210, 2007.

22. Y. Hu, Y. Guo, and R. Fu, “A novel wind speed forecasting combined model using variational mode
decomposition, sparse auto-encoder and optimized fuzzy cognitive mapping network,” Energy, vol. 278,
p. 127926, 2023.

23. W. Hoyos, J. Aguilar, and M. Toro, “A clinical decision-support system for dengue based on fuzzy
cognitive maps,” Health Care Management Science, vol. 25, no. 4, pp. 666–681, 2022.

24. W. Hoyos, J. Aguilar, and M. Toro, “Prv-fcm: An extension of fuzzy cognitive maps for prescriptive
modeling,” Expert Systems with Applications, vol. 231, p. 120729, 2023.

25. K. Poczeta and E. I. Papageorgiou, “Energy use forecasting with the use of a nested structure based
on fuzzy cognitive maps and artificial neural networks,” Energies, vol. 15, no. 20, 2022.

26. G. D. Karatzinis, N. A. Apostolikas, Y. S. Boutalis, and G. A. Papakostas, “Fuzzy cognitive networks
in diverse applications using hybrid representative structures,” International Journal of Fuzzy Systems,
vol. 25, no. 7, pp. 2534–2554, 2023.

27. O. Orang, P. C. de Lima e Silva, and F. G. Guimarães, “Time series forecasting using fuzzy cognitive
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