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ABSTRACT 
 
This paper presents a physics-informed deep learning approach for predicting the 

replicator equation, allowing accurate forecasting of population dynamics. This 

methodological innovation allows us to derive governing differential or difference 

equations for systems that lack explicit mathematical models. We used the SINDy model 
first introduced by Fasel, Kaiser, Kutz, Brunton, and Brunt 2016a to get the replicator 

equation, which will significantly advance our understanding of evolutionary biology, 

economic systems, and social dynamics. By refining predictive models across multiple 

disciplines, including ecology, social structures, and moral behaviours, our work offers 

new insights into the complex interplay of variables shaping evolutionary outcomes in 

dynamic systems  
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1. INTRODUCTION 
 

Game theory helps to understand how strategic behaviours evolve and persist in biological, 
social, and economic systems where individuals interact. It also helps in how complex social 

behaviours and strategies can evolve and persist in diverse contexts. Analysing in the principles 

of Nash equilibrium (NE) defined by John F. and Nash, Jr (1) offers insights into the stability and 

evolution of strategies within populations, shedding light on how cooperative or competitive 
behaviours evolve and endure across various contexts. This approach not only enriches 

theoretical understanding but also informs practical strategies in fields ranging from biology to 

economics.  
 

The concept of evolutionary game theory was first proposed by John Maynard Smith and George 

R Martin (2) which extends classical game theory by focusing on the dynamics of strategy 

evolution within populations over time. Unlike traditional game theory, which typically analyses 
the strategic interactions of rational, decision-making individuals aiming to maximize their 

payoffs, EGT considers populations of interacting agents whose strategies evolve based on their 

success. In EGT, strategies represent phenotypic traits, such as aggression or body size, that 
impact fitness and survival. The success of a strategy is determined by its reproductive success in 

the population, influenced by selective pressures. This approach permits the mathematical 

analysis of the development of strategies, giving us an understanding of the evolutionary stability 
of behaviours and characteristics in biological populations. The replicator equation plays a key 

role in evolutionary game theory. used to model the dynamics of strategy distribution within a 
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population. The replicator is a non-linear differential equation that allows us to capture the real 
world strategies and interactions. The replicator dynamics can be used to find out how the percent 

of people using one particular strategy varies over time and other parameters like changing 

payoffs. Beyond its classical applications, the replicator equation has been employed in diverse 
optimization and control scenarios, such as bandwidth allocation (4) and service levels in water 

distribution systems (5).  

 
Predicting the behaviour of non-linear differential equations from their trajectories is challenging 

due to non-linear systems often exhibit sensitivity to initial conditions, where small variations in 

starting points can lead to vastly different outcomes due to system the system being chaotic 

(butterfly effect). This sensitivity makes long-term prediction unreliable due to finite precision 
error. Third, the presence of multiple equilibrium and bifurcations in non-linear systems 

complicates the analysis, as trajectories can converge to different stable states depending on 

initial conditions and perturbations. Non linear systems can also have tipping points which by just 
monitoring the population we won’t be able to exactly predict when the tipping point may occur.   

A method discovered by Bongard and Lipson (5), as well as Schmidt and Lipson (6), presented a 

new method for uncovering the underlying structure of nonlinear dynamical systems from data. 
This approach used genetic programming (7) to derive nonlinear differential equations. Other 

strategies for identifying dynamical systems from data include methods for extracting governing 

equations from time-series data equation-free modelling (7), empirical dynamic modelling (9, 

10), modelling emergent behaviours (11), and automated dynamic inference (11–13).  
 

In this paper, the aim is to predict the replicator equation using the SINDy (Sparse Identification 

of Nonlinear Dynamical systems) architecture that can be used to solve ordinary and partial 
differential equations and validate its use in this field, first introduced by Steven L. Brunton, 

Joshua L. Proctor, and J. Nathan Kutz in (8). Sparse identification of nonlinear dynamical 

systems (SINDy) uses the fact that the sparsity of most physical systems, only have few functions 

as their basis function to define the dynamics which is generally the case in Evolutionary game 
theory, resulting in governing equations that are sparse in a high-dimensional nonlinear function 

space. The SINDy framework identifies these sparse representations efficiently, even in complex 

systems, and has demonstrated success in capturing the essential dynamics with minimal 
computational overhead. Additionally, a weak form of SINDy was developed by A.Messenger, 

Dall’Anese(14) Bortzto handle noisy data, as there is always some noise in the data collected 

from real world applications. SINDy can be applied to a variety of contexts, including 
discretetime systems, nonlinear systems, and other complex dynamical systems, making it a 

versatile tool for discovering underlying dynamics from data. Its adaptability to different types of 

systems and robustness against noise make it useful for finding the replicator equation.  

 

2. NETWORK ARCHITECTURE 
 

The sparse identification of nonlinear dynamical systems using the fact that most differential 

equations have very few terms that define the dynamics, making the governing equations sparse 
in a high-dimensional nonlinear function space uses sparse regression techniques to reduce the 

unwanted terms in the differential equation due to noise in the data. Progress in compressed 

sensing and sparse regression has made the concept of sparsity advantageous. These 

advancements allow us to identify non-zero terms without resorting to a combinatorial, 
intractable brute-force search. This ensures that we can find the sparse solution with high 

probability using convex methods that efficiently scale to large problems, in line with Moore's 

law. Consequently, the identified sparse model strikes a balance between complexity (i.e., the 
sparsity of the righthand-side dynamics) and accuracy, thus preventing overfitting to the data.  
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2.1. Data  
 

The sparse identification of nonlinear dynamical systems takes either x(t) or x˙(t) for continuous 
time, or x[n] or ∆x[n] for discrete-time. The sparse identification of nonlinear dynamical systems 

takes either x(t) or x˙(t) for continuous time, or x[n] or ∆x[n] for discrete-time. The x and x˙ 

sampled over time are arranged in a matrix as shown below, where t1,t2,...,tm are the time points 

sampled in increasing order.  
 

 
 

Then a matrix Θ(X) consisting of the functions that may be present in the basis functions X. 
needs to be constructed based on the functions that may be present in the differential equations  

 

Θ(X) = [1    X2 · · · sin(X) cos(X)]  

 
Its capabilities were extended to models trained using multiple dynamic trajectories, and the 

generation of many models with subsampling and ensembling methods by U. Fasel, J. N. Kutz, 

B. W. Brunton and S. L. Brunton(15) which will be useful when the dynamics of the replicator 
equation gets complicated helping it in accurately predicting the equation. One recent 

development is that researchers have started considering feedback like Joshua S. Weitza,b,1, 

Ceyhun Eksin a,c , Keith Paarpornc , Sam P. Brown, and William C. Ratcliff  

 

3. METHODOLOGY 
 

3.1. Data Generation  
 
For training the SINDy model, we generated data by simulating the game we are testing on. 

Knowing the dynamics of the game, we derived the replicator equation to model the strategy 

evolution. To obtain a variety of trajectories, we employed a technique for generating random 
trajectories using Runge-Kutta algorithm. Then we converted to barycentric coordinates, which 

are particularly suited for capturing the proportions of strategies in a simplex.  

 

3.2. Model Training and Prediction  
 

In the context of replicator dynamics for n strategies, the sum of the strategy frequencies xi must 
always equal 1, i.e  

𝑛 
 ∑ 𝑥𝑖= 1  (1) 

𝑖=1 
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This constraint allows us to reduce the number of equations that need to be predicted using the 
SINDy model. Instead of predicting all n equations, we only need to predict n-1 equations, as the 

final one can be determined directly from the constraint. There is no need to explicitly substitute 

one variable (example  ) into the system to match the solution for verification.  

By reducing the number of equations, the process becomes computationally less taxing, 
especially for smaller models. This allows the already-built SINDy model to perform faster, 

without sacrificing accuracy, making it more efficient while maintaining the ability to accurately 

capture the system's dynamics.  
 

4. REPLICATOR EQUATION 
 

The replicator equation tells how individuals or populations change over time. The most famous 

game is of rock paper scissors with the origin of RPS has been difficult to trace, but there is some 
written evidence suggesting the Chinese played it already in the Han Dynasty more than 2000 

years ago. There are three possible action choices: Rock(R), Paper (P), and Scissors (S) with the 

payoff given below in the table (1).  
 

 
 

The above payoff matrix gives a mixed strategy Nash equilibrium of (1/3, 1/3, 1/3) This simple 

game has many real-life examples. Colour polymorphism of male side-blotched lizards (17) is 
one of the real-world examples. Another instance is when European honeybees after being put in 

the local habitat of Japanese hornets in Japan, invaded the local honeybees but were not 

developed for attacks from Japanese hornets. In contrast, Japanese honeybees have developed a 

collective thermal defence mechanism against the hornets as a result of evolutionary adaptation 
from being in the same environmental place (18). The replicator equations for the Rock-

PaperScissors game are given by:  

 

 𝑥�̇� = 𝑥𝑅(−𝑥𝑃+ 𝑥𝑆−𝑓̅ )  (2) 

 𝑥𝑃 ̇ = 𝑥𝑃(𝑥𝑅−𝑥𝑆−𝑓̅ )  (3) 

𝑥�̇� = 𝑥𝑆(−𝑥𝑅+ 𝑥𝑃−𝑓̅ )  
 
where the finesses and the average fitness are:  

(4) 

𝑓̅𝑅= −𝑥𝑃+ 𝑥𝑆 (5) 

𝑓̅𝑃= 𝑥𝑅−𝑥𝑆 (6) 

𝑓̅𝑆= −𝑥𝑅+ 𝑥𝑃 (7) 

𝑓̅  = 𝑥𝑅𝑓̅𝑅+ 𝑥𝑃𝑓̅𝑃+ 𝑥𝑆𝑓̅𝑆 (8) 

 

It has evolved from symmetric games where all the individuals have the same payoff matrix and 
the same strategies available to non-symmetric games where the players have different strategies 

or payoffs assigned to them. One of the most popular non-symmetric games is the Battle of sexes. 

This game illustrates a coordination problem between two players with different preferences. The 

game involves two players who want to spend the evening together but have different preferences 



International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), 

Vol.14, No.6, December 2024 

5 

over two activities: football and ballet or any other conflicting hobbies. The husband prefers 
football, while the wife prefers ballet. Despite their different preferences, both players would 

prefer to be together than apart. This creates a situation where they need to coordinate their 

choices, leading to multiple equilibria.  
 

 
 

In this matrix, the first number in each pair represents the payoff for Player 1 (the husband) and 
the second number represents the payoff for Player 2 (the wife). There are two pure-strategy 

Nash equilibria: (Football, Football) and (Ballet, Ballet) one mixed-strategy equilibrium where 

both players try to get the best outcome for themselves.  

 
The following equations describe the replicator dynamics for this game. Let x represent the 

likelihood that Player 1 will select football, and y represent the likelihood that Player 2 will select 

football. The replicator equations for the strategies are:  
 

�̇� = 𝑥 (2𝑦 − 𝑥(2𝑦 + (1 − 𝑥)(1 − 𝑦)))  (9) 

𝑦̇ = 𝑦 (𝑥 − 𝑦(1𝑥 + 2(1 − 𝑦)(1 − 𝑥)))  (10) 

 

5. RESULTS AND DISCUSSION 
 

5.1. RPS Game  
 
In the Rock-Paper-Scissors (RPS) game, a Nash equilibrium (NE) occurs when players choose 

Rock, Paper, and Scissors with equal with equal probability to win, tie, or lose. While no player 

benefits from changing their strategy, the equilibrium’s stability depends on the relative payoffs 
for winning, losing, and tying. If a strategy performs better than the population average, its 

frequency rises, while less successful strategies decline. This leads to cyclical dominance, where 

one strategy temporarily prevails but is eventually overtaken, causing the population to oscillate 
in a closed loop as shown by the simulation as show in Figure (1) below.  

 

 
 

Fig. 1: RPS Game Simplex Triangle with Trajectory showing cyclical dominance  
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The oscillatory behaviour observed in the simulation reflects the dynamic interplay between the 
three strategies. Each strategy dominates for a short time but is ultimately replaced by another, 

ensuring that no single strategy is stable in the long run. This cyclical dominance is a key 

characteristic of many biological and social systems modelled by evolutionary game theory, 
where species, strategies, or behaviours rise and fall over time due to competition and adaptation.  

For the RPS game, a single trajectory of 1000 data points was enough for sindy to predict the 

replicator equation SINDy is easily able to predict the replicator equation for RPS game taking a 
smaller number of data points than these correctly predict the basis functions but the coefficients 

were slightly off.  

 

5.2. Battle of Sexe  
 

The Battle of the Sexes game has two pure strategy Nash equilibria, where both players 
coordinate on the same outcome: Both players choose Outcome A. The payoffs are (2, 1). Both 

players choose Outcome B. The payoffs are (1, 2).  

 

In addition to these pure strategy equilibria, there is a mixed strategy Nash equilibrium where 
both players play a mix of strategies. In this equilibrium, each player assigns probabilities to their 

choices such that they are indifferent to the other player's strategy. The mixed strategy 

equilibrium can be found by solving the following system:  
 

Let p represent the likelihood that Player 1 choose Outcome A, and 1-p represent the likelihood 

that Player 1 selects Outcome B. Let q represent the likelihood that Player 2 choose Outcome A, 

and let 1-q represent the likelihood that Player 2 selects Outcome B. The mixed strategy 
equilibrium is given by:  

 

P=1/3 Q=2/3  
 

In this equilibrium, each player chooses according to these probabilities, leading to expected 

payoffs where neither player has an incentive to deviate from their mixed strategy.   
 

To analyse the dynamics of the Battle of the Sexes using replicator dynamics, we consider the 

evolution of the strategies over time. The replicator equation for this game describes how the 

proportion of players using each strategy changes based on their relative fitness.   
 

For the battle of sexes game, the number of data points required were considerably more. In order 

to reduce the number of data points, multiple shorter trajectories were generated which gave 
better results compared to a single larger trajectory.  

 

6. CONCLUSION 
 

In conclusion, by applying the SINDy (Sparse Identification of Nonlinear Dynamics) framework, 
we can derive the replicator equation directly from observed data points (changes in the number 

of species). This approach enables us to get the underlying differential equation which will help 

us predicting the future outcomes.  
 

By understanding how the population of a species evolves over time, it will become possible to 

identify critical tipping points where the population of one species may blow up or go extinct due 
to over-harvesting or environmental changes. The governing equation will provide insights for 

preventing a species from being driven to extinction in a local environment.  
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