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ABSTRACT 
 
This study presents a century-long bibliometric review of steganography based on 8,241 articles and 

49,572 citation links. Using direct citation analysis, we mapped the field’s intellectual landscape and 

identified nine major clusters, ranging from classical image-based methods and foundational theory to 

audio, text, reversible, video-based techniques, and emerging AI-driven paradigms such as deep learning 

and GANs. Temporal mapping reveals a shift from foundational principles to AI-enabled and quantum-

informed approaches, while geographic analysis highlights China’s leading role, followed by India and the 

United States. The review also identifies critical gaps in unified security frameworks, evaluation metrics, 

and human factors, and outlines future opportunities in quantum steganography, blockchain, coverless 

methods, and application-driven domains. 

 

KEYWORDS 
 
Steganography, Systematic Review, Citation Network, Bibliometrics, Research Landscape   

 

1. INTRODUCTION 
 
Steganography, derived from the Greek words "steganos" (covered) and "graphein" (writing), 

represents the art and science of concealing information within seemingly innocuous carriers in a 

manner that masks the very existence of the hidden communication [1]. Unlike cryptography, 
which encrypts messages to make them unintelligible but visible, steganography aims to hide the 

presence of secret communication entirely [2]. This fundamental distinction positions 

steganography as a critical component in the broader landscape of information security, offering 

complementary protection that addresses the vulnerability of encrypted communications to 
detection and targeted attacks [3].  

 

The practice of steganography has evolved dramatically from its ancient origins—where 
messages were hidden using invisible inks, concealed within wax tablets, or tattooed on shaved 

heads of messengers—to sophisticated digital techniques that exploit the characteristics of 

modern media formats [1], [4]. Contemporary steganographic methods predominantly utilize 
digital carriers such as images, audio files, video sequences, and text documents, with digital 

images emerging as the most popular medium due to their ubiquity, high redundancy, and the 

human visual system's limited sensitivity to subtle changes in pixel values [5]. 

 
Digital image steganography encompasses diverse approaches, including spatial domain 

techniques that directly modify pixel values (such as least significant bit substitution and pixel-

value differencing), transform domain methods that embed data in frequency coefficients (DCT, 
DWT, or SVD), and adaptive techniques that adjust embedding strategies based on image 
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characteristics [3], [6]. The evolution of these methods reflects an ongoing tension between three 
fundamental objectives: imperceptibility (ensuring visual quality remains uncompromised), 

capacity (maximizing the amount of hidden data), and security (resisting detection by steganalysis 

tools) [1]. This "steganographic triangle" represents an inherent trade-off, as optimizing for one 
objective typically comes at the expense of others [7]. 

 

The applications of steganography extend across numerous domains, from secure communication 

and copyright protection to medical data privacy and military intelligence [8]. In healthcare, 
steganographic techniques safeguard sensitive patient information by embedding it within 

medical images, preserving both data confidentiality and the diagnostic value of the images [9]. 

In digital rights management, steganography enables copyright protection through imperceptible 
watermarking that can later verify content ownership [10], [11]. The financial sector employs 

steganographic methods to enhance document security, while intelligence agencies utilize these 

techniques for covert communication [2]. 

 
However, the dual-use nature of steganography presents significant challenges. The same 

technologies that enable legitimate privacy protection can potentially facilitate illicit activities, 

including unauthorized data exfiltration and covert communication by malicious actors [1]. This 
duality has intensified research interest in both steganography and steganalysis—the counterpart 

science focused on detecting hidden communications—creating an evolutionary arms race that 

continues to drive innovation in both fields [4]. 
 

Recent technological advancements have dramatically transformed the steganography landscape. 

The integration of artificial intelligence, particularly deep learning and generative adversarial 

networks (GANs), has revolutionized both embedding techniques and detection methods [11]. 
Quantum steganography has emerged as a frontier domain, leveraging quantum information 

principles to establish fundamentally new approaches to information hiding [12]. Meanwhile, the 

concept of coverless steganography represents a paradigm shift by establishing mappings between 
secret messages and inherent features of existing media without actual modification [3]. 

 

Despite steganography’s long history and growing significance in contemporary data security, 
several important gaps hinder a comprehensive understanding and future advancement of the 

field. Most notably, steganography research currently lacks a thorough bibliometric analysis that 

clearly delineates its intellectual structure, major research clusters, and their historical progression 

over the past century. While previous surveys have focused on specific aspects or limited periods 
[1], [4], [5], they have not fully captured the extensive evolution and thematic connections within 

the discipline [3]. The fragmentation of steganographic research across diverse domains, 

including image processing, information theory, artificial intelligence, and quantum computing, 
has resulted in siloed communities with limited cross-domain integration [11]. This fragmentation 

complicates efforts to establish unified theoretical frameworks and standardized performance 

benchmarks, thereby creating inconsistencies in evaluation methodologies across different studies 

[6]. Additionally, the rapid advancement in machine learning-based steganalysis methods has 
created an urgent demand for more robust and fundamentally undetectable steganographic 

techniques [13], [14]. Furthermore, systematic assessments of current steganographic approaches 

remain sparse, limiting the identification of their strengths and weaknesses [15]. Lastly, the field 
has not adequately explored geographical and institutional patterns of contribution, despite their 

significance in understanding global research trends and collaborative dynamics. 

 
To address these challenges, this study undertakes a comprehensive bibliometric review of 

steganography research spanning a century, carefully tracing the evolution of its primary thematic 

areas and methodological approaches. Utilizing direct citation analysis, this research maps the 
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intellectual landscape, identifies key clusters, examines their temporal development, and clarifies 
interconnections among different thematic areas. It further investigates the progression of 

steganographic methods from early historical techniques to contemporary, sophisticated 

approaches. Additionally, the study evaluates institutional and geographical contributions, 
highlighting significant research hubs. By identifying critical research gaps, the study proposes 

specific areas for further investigation and outlines promising directions for future research. 

Ultimately, this analysis aims to serve as a valuable resource for new researchers by providing 

accurate and up-to-date insights into the prevailing methodologies, central challenges, and state-
of-the-art advancements in steganography. By offering a unified and integrated perspective, the 

study intends to guide targeted and impactful future research efforts. 

 
The rest of this paper is organized as follows. Section 2 reviews the literature and introduces our 

conceptual framework. Section 3 details the data and methods. Section 4 presents the results of 

the bibliometric analysis. Section 5 discusses key findings. Section 6 concludes with implications, 

and Section 7 outlines future research directions. 
 

2. LITERATURE REVIEW 
 

The field of steganography has witnessed substantial scholarly attention, with numerous review 
studies and analyses examining its various aspects. This section provides a critical examination of 

previous literature review studies and bibliometric analyses in steganography research, 

establishing the foundation and context for our comprehensive century-spanning review. 

Additionally, we propose a novel conceptual framework that integrates multiple dimensions of 
steganography research to guide our analysis. 

 

2.1. Past Literature Review Studies on Steganography 
 

Literature reviews in steganography have evolved significantly over time, reflecting the field's 

expanding scope and increasing sophistication. Cheddad et al. [1] provided one of the most 
influential surveys on digital image steganography, analyzing various methods while establishing 

evaluation criteria focused on undetectability, robustness, and capacity. Their framework helped 

standardize comparisons but was limited by its emphasis on image-based methods, leaving other 
media largely unexplored. Building on this foundation, Mandal et al. [4] conducted a more 

comprehensive survey of spatial and transform domain techniques, emphasizing security 

considerations. However, their analysis primarily catalogued approaches and offered little critique 
of methodological weaknesses or evaluation inconsistencies. 

 

As the field diversified, specialized reviews addressed narrower areas. Hussain et al. [5] 

examined spatial domain techniques in detail, tracing progress from simple LSB substitution to 
adaptive methods that incorporate human visual system properties. Yet their review lacked 

discussion of scalability and cross-domain applicability. Similarly, Singh et al. [2] provided a 

broad overview across carriers, but their synthesis did not adequately assess comparative 
performance across modalities, limiting its utility in identifying research priorities. 

 

The integration of artificial intelligence into steganography prompted reviews that tracked this 
technological convergence. Singh et al. [10] surveyed watermarking techniques using soft 

computing approaches, including neural networks and evolutionary algorithms, showing 

improved adaptability and robustness. Nonetheless, they overlooked critical challenges such as 

adversarial vulnerability and explainability of AI models. Mansour and Abdelrahim [17] 
proposed an evolutionary computing model resilient to RS steganalysis, but their focus on a 
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single application domain restricted the generalizability of findings. Similarly, Evsutin et al. [11] 
reviewed AI-driven methods but provided limited discussion on their scalability or ethical 

implications, which are increasingly relevant in practice. 

 
Application-specific reviews further expanded the scope. Douglas et al. [8] examined 

steganography for biometric protection, highlighting privacy benefits but neglecting usability and 

real-world deployment challenges. Magdy et al. [9] systematically reviewed medical image 

security, yet their focus on healthcare overlooked broader cross-sectoral lessons. Sajjad et al. [18] 
proposed a mobile-cloud medical framework, but its technical feasibility in diverse healthcare 

infrastructures was not critically examined. Rathore et al. [19] extended applications to the 

Internet of Vehicles, integrating encryption and steganography, though without addressing 
interoperability with existing IoT standards. AlSabhany et al. [20] provided a systematic 

classification of digital audio steganography, but their scope was confined to carrier-specific 

issues rather than cross-modal integration. 

 
Comprehensive surveys began to emphasize methodological and evaluative aspects. Kadhim et al. 

[3] reviewed image steganography techniques and evaluation methodologies, stressing the need 

for standardized frameworks. However, their analysis did not propose actionable paths toward 
such standardization. Setiadi et al. [6] expanded on goals, datasets, and methods, offering a more 

holistic view, yet the rapid evolution of AI-driven techniques since 2020 makes parts of their 

review quickly outdated. Kaur et al. [21] examined computational image steganography, 
identifying algorithmic advances but offering limited reflection on how these approaches address 

long-standing challenges such as balancing imperceptibility and security. Collectively, these 

reviews catalogued progress but often lacked critical synthesis, leaving the field without a unified 

perspective on persistent gaps, trade-offs, and research priorities. 
 

2.2. Past Bibliometric Analyses on Steganography 
 

Despite the abundance of technical reviews, comprehensive bibliometric studies of steganography 

remain limited. While bibliometric methods have been widely applied in cryptography and digital 

forensics, steganography has not received comparable scientometric attention [22]. This lack of 
systematic mapping has constrained understanding of its intellectual evolution and collaborative 

structures. 

 
The few existing bibliometric analyses are narrow in scope. Reinel et al. [23] examined deep 

learning-based steganalysis, while Azam et al. [24] focused on cover selection methods. Other 

niche studies considered quantum steganography [12] or medical applications [9]. Although 
valuable, these works relied heavily on descriptive statistics such as citation counts and 

authorship patterns. They did not apply advanced techniques such as clustering or semantic 

mapping, thereby missing the opportunity to uncover deeper intellectual structures or cross-

domain linkages. As Donthu et al. [25] emphasized, methods like co-citation analysis and direct 
citation networks remain underutilized in this domain. 

 

This methodological gap has left unanswered questions about the field’s maturity, its thematic 
interconnections, and the drivers of its evolution. By failing to integrate temporal, geographic, 

and institutional perspectives, past bibliometric work has provided only fragmented insights. Our 

study addresses this limitation by offering the first century-spanning bibliometric analysis of 

steganography. Using advanced techniques such as direct citation clustering and semantic linkage 
analysis, we provide a macroscopic, data-driven perspective that complements and extends prior 

technical reviews. 

 



International Journal of Computer Science and Engineering Survey (IJCSES) 

Vol.16, No.1/2/3/4/5, October 2025 
 

5 

 

2.3. Conceptual Framework for Steganography Research Analysis 
 

We propose a three-dimensional framework to analyze steganography research, integrating 
technical evolution, application domains, and evaluation paradigms. 

 

The technical evolution dimension traces the field’s progression from spatial to transform domain 
methods, from fixed to adaptive strategies, and from handcrafted to learning-based approaches, 

extending to quantum and biological computing. Early models by Lee and Chen [26] and more 

advanced approaches such as Fakhredanesh et al. [16] exemplify this trajectory, aligning with Li 
et al.’s [27] comprehensive classification. 

 

The application domains dimension highlights diversification beyond secure communication to 

areas such as copyright protection, healthcare, military intelligence, and IoT. Examples include 
Sajjad et al.’s [18] medical image framework, Rathore et al.’s [19] Internet of Vehicles model, 

and Zear et al.’s [28] medical watermarking technique. 

 
The evaluation paradigms dimension covers the shift from visual inspection to statistical, 

application-specific, and adversarial methods. Mansour and Abdelrahim’s [17] RS attack-resilient 

model and Subhedar and Mankar’s [29] multi-dimensional framework underscore this evolution. 

These dimensions clarify how technical innovation, practical application, and evaluation intersect, 
offering a structured basis for identifying gaps and guiding future research directions. The three-

dimensional framework offers a holistic view of steganography research by linking how methods 

evolve, where they are applied, and how they are evaluated. This integration clarifies research 
maturity, uncovers underexplored intersections, and provides a structured basis for guiding future 

work. 

 

3. DATA AND METHODS 
 

3.1. Data 
 
We retrieved bibliographic data from the Web of Science Core Collection, which is widely used 

for bibliometric analysis due to its structured content and complete citation linkages [30]. The 

search query ALL=("Steganograp*") was used to collect articles containing "Steganography" and 

its variations (e.g., "Steganographic") in the title, abstract, or keywords. The dataset includes 
publications from April 1, 1924, to the retrieval date, February 4, 2025, totaling 9,403 records. 

 

3.2. Methods 
 

We mapped the research landscape using direct citation analysis. Previous studies have shown 

that this method effectively captures the structure of research fields and identifies emerging 
academic topics [31]. We applied the Louvain modularity maximization algorithm [32] to form 

clusters, ensuring that only strongly connected nodes were retained. This algorithm was selected 

for its ability to effectively handle large networks and produce interpretable clustering solutions 
that maximize modularity, ensuring more connections exist within clusters than between them 

[33]. For each resulting cluster, we calculated key quantitative data including the number of 

articles, average publication year, and average citation count. We then labeled (i.e., named) 
clusters based on their most common keywords and the content of their most-cited articles. 
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To examine the relationship between Steganography research clusters, we conducted a semantic 
linkage analysis by comparing vocabulary across clusters from different networks. This approach 

allowed us to identify topical overlaps and potential synergies between research clusters. To do 

so, we employed a sentence-transformer approach based on BERT (Bidirectional Encoder 
Representations from Transformers) to convert these aggregated cluster texts into dense vector 

representations [34]. Unlike traditional bag-of-words approaches that treat words as independent 

units, BERT-based transformers process text bidirectionally, allowing the model to understand 

words in context by considering both preceding and following terms. This contextual 
understanding enables the model to capture polysemy (words with multiple meanings), semantic 

relationships, and domain-specific terminology that might be missed by simpler vectorization 

methods. The following flowchart (Figure 1) summarizes the methods used to conduct this 
review. We began by retrieving articles on steganography from the Web of Science database. 

These articles were then represented as nodes in a citation network constructed using direct 

citation links. Weakly connected and isolated nodes were removed, and the Louvain algorithm 

was applied to group the remaining articles into clusters. Each cluster was labeled based on 
common keywords and the themes of its most-cited papers. Finally, we analyzed the semantic 

similarity between clusters using cosine similarity measures to explore topical overlaps and 

relationships across the research landscape. 
 

 
 

Figure 1. Workflow of data retrieval, citation network construction, clustering, and semantic similarity 

analysis. 



International Journal of Computer Science and Engineering Survey (IJCSES) 

Vol.16, No.1/2/3/4/5, October 2025 
 

7 

4. RESULTS 
 

4.1. Overview of the Research Landscape 
 

The bibliometric analysis of steganography research over the past century revealed a vibrant and 
evolving research landscape. The study mapped 8,241 articles connected by 49,572 direct citation 

links, forming nine major thematic clusters and an "Others" category comprising 13% of the 

articles. The two largest clusters, " Classical Image-Based Steganography" (21%) and " 
Foundational Steganography and Steganalysis " (18%), dominate the field in terms of volume. 

However, citation impact analysis indicates that cluster size does not always correlate with 

influence. Notably, " Machine Learning and Deep Steganography" (Cluster 3) and " Reversible 

Steganography and Media Integrity" (Cluster 7) exhibited the highest average citation counts 
(22.92 and 22.27, respectively). 

 

In total, articles were disseminated across 220 different journals. The most frequent publication 
venues were MULTIMEDIA TOOLS AND APPLICATIONS with 539 articles, IEEE ACCESS 

with 206 articles, and IEEE TRANSACTIONS ON INFORMATION FORENSICS AND 

SECURITY with 153 articles. The top three most prolific publishing authors were Chang (222 
articles), Fridrich (132 articles), and Zhang (108 articles), with their most influential works cited 

as [34], [35], and [36] respectively. 

 

Several overarching trends emerged across clusters. First, there is a notable rise in deep learning 
integration, particularly through convolutional neural networks and GANs. Second, interest in 

coverless steganography is expanding, representing a conceptual shift in hiding paradigms. Third, 

while nascent, quantum steganography and GAN-based steganographic applications are 
beginning to surface in keywords, suggesting new interdisciplinary research opportunities. Table 

1 presents key information for the clusters, including each cluster’s name (representing the 

dominant topic discussed in the cluster’s articles), the number of articles, the average publication 

year of the articles (APY), and the top three authors and journals where research articles were 
published. 

 
Table 1. Overview of the steganography research clusters by article count (N), average publication year 

(APY), and top contributing journals. 

 
ID Cluster name N (%) APY Top 3 Journals N 

C1 

Classical Image-

Based 

Steganography 

1770 

(21%) 
2017.3 

MULTIMEDIA TOOLS AND 

APPLICATIONS 
195 

IEEE ACCESS 50 

EXPERT SYSTEMS WITH 

APPLICATIONS 
18 

C2 

Foundational 

Steganography 

and Steganalysis 

1503 

(18%) 
2010.4 

INFORMATION HIDING 42 

IEEE TRANSACTIONS ON 

INFORMATION FORENSICS AND 

SECURITY 

27 

MULTIMEDIA TOOLS AND 

APPLICATIONS 
27 

C3 

Machine 

Learning and 

Deep 

Steganography 

930 

(11%) 
2019.4 

IEEE TRANSACTIONS ON 

INFORMATION FORENSICS AND 

SECURITY 

76 

MULTIMEDIA TOOLS AND 

APPLICATIONS 
61 

IEEE ACCESS 40 



International Journal of Computer Science and Engineering Survey (IJCSES) 

Vol.16, No.1/2/3/4/5, October 2025 
 

8 

C4 

Audio and 

Multimedia 

Steganography 

929 

(11%) 
2015.1 

MULTIMEDIA TOOLS AND 

APPLICATIONS 
30 

SECURITY AND COMMUNICATION 

NETWORKS 
25 

IEEE ACCESS 24 

C5 

GAN-Based and 

Coverless 

Steganography 

488 

(6%) 
2021.3 

IEEE ACCESS 33 

MULTIMEDIA TOOLS AND 

APPLICATIONS 
20 

CMC-COMPUTERS MATERIALS & 

CONTINUA 
18 

C6 
Linguistic and 
Semantic Text 

Steganography 

465 

(6%) 
2018.2 

IEEE SIGNAL PROCESSING LETTERS 26 

MULTIMEDIA TOOLS AND 
APPLICATIONS 

21 

IEEE ACCESS 14 

 

 

C7 

Reversible 

Steganography 

and Media 

Integrity 

425 

(5%) 
2015.3 

MULTIMEDIA TOOLS AND 

APPLICATIONS 
67 

INFORMATION SCIENCES 12 

JOURNAL OF VISUAL 

COMMUNICATION AND IMAGE 

REPRESENTATION 

12 

C8 

Motion-Based 

and Compressed 

Video 

Steganography 

342 

(4%) 
2018.1 

MULTIMEDIA TOOLS AND 

APPLICATIONS 
42 

IEEE ACCESS 13 

CMC-COMPUTERS MATERIALS & 

CONTINUA 
7 

C9 

Multimodal 

Steganography 

Applications 

337 

(4%) 
2013.2 

MULTIMEDIA TOOLS AND 

APPLICATIONS 
8 

IEEE TRANSACTIONS ON 

VISUALIZATION AND COMPUTER 

GRAPHICS 

5 

INTERNATIONAL JOURNAL OF 
INNOVATIVE COMPUTING 

INFORMATION AND CONTROL 

5 

C10 Others  
1052 

(13%) 
2016.7 - - 

 

In terms of geographic distribution, China leads steganography research output, particularly 
contributing heavily to Clusters 1, 3, 5, and 8. India and the United States follow, with India 

being notably active in Clusters 1, 2, and 4, while the United States shows a stronger presence in 

theoretical foundations and steganalysis research. Among institutions, Feng Chia University and 

the Chinese Academy of Sciences emerge as the most prolific, with SUNY Binghamton being 
particularly influential in advancing steganalysis methodologies. 

 

Figure 2 illustrates the temporal evolution of the nine major steganography research clusters from 
1990 to 2024, revealing distinct developmental patterns that reflect the field's dynamic nature. 

The utilized methods did not retain any articles with publication year before 1990. The 

"Foundational Steganography and Steganalysis" cluster (C2) dominated the early 2000s, peaking 

around 2008 before gradually declining, indicating the maturation of theoretical foundations. 
Conversely, "Classical Image-Based Steganography" (C1) shows remarkable growth from 2010 

onward, becoming the predominant cluster by 2024, demonstrating the enduring importance of 

image-based techniques. Most notably, "Machine Learning and Deep Steganography" (C3) and 
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"GAN-Based and Coverless Steganography" (C5) exhibit steep upward trajectories from 2015 
onward, reflecting the field's embrace of artificial intelligence approaches. Meanwhile, 

specialized domains like "Linguistic and Semantic Text Steganography" (C6) and "Audio and 

Multimedia Steganography" (C4) show moderate but steady growth, indicating diversification of 
carrier media. Taken together, the visualization captures a clear progression: steganography 

research has transitioned from theoretical and foundational concerns toward application-driven, 

AI-enhanced methods that align with broader advances in computer vision, data security, and 

machine learning. This pattern underscores both the stability of core image-based approaches and 
the accelerating influence of AI in shaping future research agendas. 

 

 
 

Figure 2. Temporal evolution of the nine steganography research clusters (1990–2024). 

 

To examine the relationship between thematic maturity and scholarly impact across 

steganography research, Figure 3 plots the average publication year against the average citation 

count for the top nine clusters. The resulting distribution reveals a nuanced landscape of evolving 
subfields. Clusters like "Machine Learning and Deep Steganography" (C3) and "Reversible 

Steganography and Media Integrity" (C7) stand out with the highest citation impact, reflecting the 

growing academic and practical value of AI-powered steganalysis and lossless data hiding 
methods. In contrast, "GAN-Based and Coverless Steganography" (C5) is the most recent in 

terms of average publication year, underscoring its emergence as a cutting-edge domain that 

redefines traditional embedding through generative models. Meanwhile, "Foundational 
Steganography and Steganalysis" (C2) retains its relevance with high citation scores despite its 

early emergence, due to its theoretical grounding and methodological influence. Clusters such as 

"Linguistic and Semantic Text Steganography" (C6) and "Motion-Based and Compressed Video 

Steganography" (C8) exhibit lower citation density, likely reflecting their specialized, domain-
specific nature and more recent expansion. Importantly, this temporal-impact mapping highlights 

how research maturity does not always translate into declining influence: foundational clusters 

continue to anchor the field, while newer AI-driven areas gain rapid recognition despite limited 
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time to accumulate citations. This dynamic suggests an evolving balance where established 
theories provide continuity, even as disruptive innovations reshape the research frontier.  

 

 
 

Figure 3. Average publication year versus citation counts across the nine clusters. 

 

4.2. Cluster-Level Analysis 
 

The largest research cluster, Classical Image-Based Steganography (Cluster 1), centers on 

traditional techniques such as Least Significant Bit (LSB) embedding, pixel-value differencing, 

and histogram-based methods. These methods emphasize simplicity, imperceptibility, and 
minimal distortion. Foundational works in this cluster include studies on JPEG quantization table 

manipulation [34] and directional embedding strategies [36], which remain highly cited for their 

practicality and influence. The cluster reflects the foundational architecture of image 
steganography and maintains a significant presence despite a declining trend in recent years, 

likely due to the emergence of deep learning–driven alternatives. Its persistence, however, 

illustrates the continued importance of low-complexity, interpretable methods in scenarios where 
computational resources or transparency are critical. 

 

Foundational Steganography and Steganalysis (Cluster 2) encompasses the theoretical and 

algorithmic basis for both embedding and detection strategies. It includes work on adaptive 
embedding, LSB matching analysis, and JPEG-specific steganographic schemes. Pioneering 

steganalysis techniques for grayscale and JPEG images [35], [37], as well as frameworks for 

evaluating detectability and robustness, are central to this cluster. Although its average 
publication year skews earlier, the intellectual foundations laid here have strongly shaped newer 

methodological developments. Its continued influence highlights how theoretical underpinnings 

remain relevant for benchmarking and for guiding the design of more advanced detection-

resistant models. 
 

The third cluster, Machine Learning and Deep Steganography, marks a transition to data-driven 

approaches using convolutional neural networks, ensemble classifiers, and rich feature models. 
Seminal contributions include ensemble/rich feature models for image steganalysis [38] and 
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CNN-based classifiers for image steganalysis [39]. With the highest citation impact across all 
clusters, this research domain exemplifies the field’s shift toward optimization, adversarial 

learning, and automated detection and embedding. Its growth also indicates the increasing 

convergence between steganography and mainstream machine learning research, though 
challenges of adversarial robustness and explainability remain open. 

 

Audio and Multimedia Steganography (Cluster 4) addresses data hiding in non-image formats, 

particularly focusing on audio, VoIP streams, and network traffic. Research here includes 
Quantization Index Modulation (QIM) [40], network-layer steganography [41], and codec-based 

concealment in compressed audio formats [42]. The interdisciplinary nature of this cluster links 

communication theory with real-time media security, making it central to multimedia 
transmission applications. Its more modest size relative to image-based research reflects both the 

dominance of visual carriers and the technical challenges of embedding in perceptually sensitive 

audio streams. 

 
Closely aligned in its innovation trajectory, GAN-Based and Coverless Steganography (Cluster 5) 

represents one of the most recent and rapidly growing clusters. It encompasses work on 

generative models, coverless embedding, and semantic encoding techniques. Notable studies 
include the use of GANs to generate undetectable images for hiding [43] and distortion learning 

methods to improve imperceptibility [44]. This cluster demonstrates the move away from 

modifying existing media and toward synthetic generation for information concealment. Its sharp 
rise underscores the transformative role of generative AI but also raises open questions about 

standardization, reproducibility, and the potential misuse of synthetic content. 

 

Linguistic and Semantic Text Steganography (Cluster 6) is characterized by approaches that 
manipulate textual structure, syntax, and semantics using models like VAEs and RNNs. 

Techniques such as synonym substitution, syntactic tree manipulation, and semantic coherence 

optimization dominate this space. Research contributions in this area, including linguistic 
embedding via deep recurrent models [45], reflect a growing convergence between natural 

language processing and secure communication. However, the relatively lower citation density of 

this cluster suggests it remains a niche domain, partly due to the complexity of maintaining 
semantic fidelity across languages and the limited applicability of text steganography in 

bandwidth-intensive scenarios. 

 

Reversible Steganography and Media Integrity (Cluster 7) focuses on lossless data hiding 
methods that allow exact restoration of original content post-extraction. Key approaches include 

histogram shifting [46], predictive coding, and reversible vector quantization. Applications are 

prominent in domains requiring data integrity, such as medical imaging [47]. Influential works in 
this cluster demonstrate how to maintain media fidelity while supporting high-capacity, secure 

data embedding [48]. The strong applied orientation of this cluster highlights the importance of 

context-specific requirements, especially in regulated sectors like healthcare, where data integrity 

cannot be compromised. 
 

Motion-Based and Compressed Video Steganography (Cluster 8) addresses the challenges of 

hiding data in temporally structured media. It includes techniques leveraging motion vectors, 
inter-frame differences, and advanced video codecs like HEVC [49]. While smaller in volume, 

the cluster shows increasing relevance in light of rising video data usage. Recent studies 

demonstrate effective embedding in motion streams while preserving playback quality [50]. 
Despite this promise, the distinct challenges of temporal consistency and high compression rates 

mean video-based steganography remains less mature compared to image-based approaches. 
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The final primary cluster, Multimodal Steganography Applications (Cluster 9), aggregates 
application-driven research across diverse data types, including 3D mesh steganography [51], 

hybrid embedding schemes, and security-enhanced use cases. Early works on geometric 

modifications and cross-media embedding are cited prominently [52]. While the cluster exhibits a 
slightly older average publication year, its broad scope highlights the diversity of steganography’s 

real-world applications. Its heterogeneity, however, makes it less cohesive than other clusters, 

reflecting the application-driven rather than methodological orientation of the studies it 

aggregates. 
 

To complement the temporal and volume analysis, Figure 4 explores the semantic proximity 

between research topics by presenting a cosine similarity heatmap. High similarity values (closer 
to 1) indicate substantial thematic overlap, while lower values suggest more differentiated 

research areas. Several important patterns emerge based on the actual similarity metrics. 

 

 
 

Figure 4. Cosine similarity heatmap of semantic proximity among the nine clusters. 

 

Clusters 1 (Classical Image-Based Steganography) and 9 (Multimodal Steganography 
Applications) exhibit a very high cosine similarity of 0.97. This strong proximity reflects their 

shared reliance on traditional embedding techniques, particularly in image domains, and their 

focus on practical applications like covert communication and watermarking. Likewise, Clusters 
1 and 7 (Reversible Data Hiding and Lossless Data Embedding) also show high semantic 

similarity (0.96), driven by common technical underpinnings such as pixel-based manipulations, 

histogram shifting, and predictive coding to balance concealment and media integrity. 
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Cluster 2 (Foundational Steganography and Steganalysis), which covers general steganographic 
principles and steganalysis, demonstrates strong similarity with Cluster 3 (Machine Learning and 

Deep Steganography) at 0.95. This suggests that while Cluster 3 introduces advanced machine 

learning techniques, its roots are firmly anchored in the core problems and structures outlined in 
classical steganography. Meanwhile, Cluster 5 (GAN-Based and Coverless Steganography) 

shows moderately high similarity with Clusters 3 and 6, reflecting their converging use of modern 

AI models, particularly generative approaches, but with differences based on data modalities 

(e.g., images vs. text). 
 

Lower similarity values highlight the distinctiveness of certain research streams. For instance, 

Cluster 6 (Linguistic and Semantic Text Steganography) records relatively low similarity (around 
0.78–0.82) with most image- or audio-based clusters. This gap arises because text steganography 

focuses on linguistic structures, syntactic transformations, and semantic integrity rather than 

pixel, vector, or frequency-domain manipulations. Similarly, Cluster 8 (Motion-Based and 

Compressed Video Steganography) maintains moderate similarity scores with image-related 
clusters but diverges significantly from text-focused and reversible hiding studies, reflecting its 

unique challenges such as temporal coherence and motion compensation. 

 
The heatmap reveals two broad semantic groupings: (1) a highly interconnected cluster of 

traditional and AI-augmented media steganography (Clusters 1, 2, 3, 5, 7, and 9) and (2) more 

specialized, distinct subfields such as text steganography (Cluster 6) and video-based 
concealment (Cluster 8). This division underscores how the field is consolidating around image- 

and AI-driven research, while maintaining smaller, domain-specific frontiers. The differentiation 

also signals opportunities for cross-domain innovation, particularly in bridging text, video, and 

multimodal approaches with the more established image- and AI-centric research streams. 
 

5. DISCUSSION 
 

5.1. Evolution of Steganography Research Paradigms 
 

The bibliometric analysis reveals a clear evolutionary trajectory in steganography research over 

the past century, characterized by distinct paradigm shifts that reflect both technological 
advancements and changing security requirements. The field has progressed from foundational 

theoretical concepts to increasingly specialized and sophisticated approaches, with each major 

transition building upon previous knowledge while introducing novel conceptual frameworks. 
 

The temporal distribution across clusters demonstrates this evolution, with "Foundational 

Steganography and Steganalysis" (Cluster 2, APY = 2010.4) establishing the theoretical 

underpinnings that guided subsequent developments. Early research focused on fundamental 
principles of information hiding, security models, and basic detection techniques [37], [53]. These 

foundational works created the intellectual framework necessary for understanding both 

embedding and detection principles, with their continued citation in recent publications 
underscoring their enduring influence. 

 

As digital media became ubiquitous, research shifted toward specialized techniques for specific 
carrier types, with image steganography (Cluster 1, APY = 2017.3) emerging as the dominant 

paradigm. This period saw the development of now-classical techniques such as LSB embedding, 

pixel-value differencing [54], and histogram-based methods. The concentration of research in this 

area reflects both the practical utility of images as steganographic carriers and the rich 
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opportunities they present for information hiding due to their inherent redundancy and perceptual 
characteristics. 

 

The most recent paradigm shift, evident in "Machine Learning and Deep Steganography" (Cluster 
3, APY = 2019.4) and "GAN-Based and Coverless Steganography" (Cluster 5, APY = 2021.3), 

represents the integration of artificial intelligence into steganographic practice. This transition 

marks a fundamental reconceptualization of the field, moving from hand-crafted algorithms to 

data-driven approaches that can automatically optimize for competing objectives such as 
imperceptibility, capacity, and security. The rapid growth of these clusters, despite their relative 

recency, signals a transformative moment in steganography research. 

 
Particularly noteworthy is the emergence of GAN-based techniques, which represent not merely 

an incremental improvement but a conceptual reimagining of the steganographic process. Rather 

than modifying existing carriers, these approaches generate steganographic content from scratch, 

fundamentally altering the traditional detect-and-modify paradigm. This shift from "hiding in 
existing media" to "generating media with hidden content" constitutes perhaps the most 

significant paradigmatic evolution in the field's recent history. 

 

5.2. Geographic and Institutional Contributions 
 

The geographic distribution of steganography research reveals significant patterns of regional 
specialization and institutional leadership that have shaped the field's development. China's 

dominance in overall research output (26.5%), particularly in Clusters 1, 3, 5, and 8, reflects its 

substantial investment in information security research and digital media technologies. This 
concentration of effort has contributed significantly to advancements in image-based techniques, 

deep learning integration, and emerging approaches such as coverless steganography. 

 
India (16.4%) and The United States (9.5%), while producing fewer publications overall, have 

exerted disproportionate influence in theoretical foundations and steganalysis research. U.S. 

institutions like SUNY Binghamton have made seminal contributions to detection methodologies, 

particularly in Cluster 3's machine learning approaches [55], [56]. Indian contributions are 
notable in Clusters 1, 2, and 4, demonstrating a focus on both foundational techniques and 

practical applications in multimedia steganography [57], [3]. Taiwan (7.2%) and Iran (2.9%) 

follow the leading three countries, making them among the most active contributors to 
steganography research. 

 

At the institutional level, Feng Chia University and the Chinese Academy of Sciences emerge as 
the most prolific contributors, establishing themselves as centers of excellence in steganography 

research. The concentration of high-impact work at specific institutions suggests the importance 

of specialized research groups and established expertise in driving innovation. The citation 

patterns indicate that while quantity of publications varies significantly across institutions, 
influence is more concentrated, with a smaller number of institutions producing the most highly 

cited works. 

The temporal analysis of geographic contributions reveals an interesting shift in the center of 
research gravity. Earlier work was predominantly from North American and European institutions, 

while more recent clusters show increasing dominance from East Asian contributors. This shift 

parallels broader trends in computer science research and reflects changing global research 

capacity and priorities. The emergence of new institutional players in recent years, particularly 
from regions previously underrepresented in the literature, suggests an ongoing democratization 

of steganography research that may further diversify the field's perspectives and approaches. 
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5.3. Technological Convergence and Research Gaps 
 

The steganography research landscape exhibits interesting patterns of technological convergence 

that have shaped its evolution, alongside persistent research gaps that present opportunities for 
future investigation. The convergence of steganography with artificial intelligence represents 

perhaps the most significant technological integration in recent years, transforming both 

embedding and detection capabilities as evidenced by the rapid growth of Cluster 3. This 
integration has enabled more sophisticated adaptive strategies that can automatically identify 

optimal embedding locations and patterns based on carrier characteristics. 

 
The marriage of steganography with generative adversarial networks in Cluster 5 has created 

entirely new paradigms for covert communication, fundamentally altering traditional approaches 

to carrier selection and modification. Emerging intersections with blockchain technology and 

quantum information [58], [12] signal new frontiers of technological convergence that are still 
nascent but potentially transformative, offering novel security guarantees and communication 

channels that may address limitations of traditional approaches. 

 
Despite substantial progress, several significant research gaps persist. A notable gap exists in 

comprehensive security models that account for modern adversarial capabilities. While individual 

techniques are often evaluated against specific detection methods, there is limited work on unified 

frameworks that can assess steganographic security across different carrier types and against 
diverse adversarial models. The increasing sophistication of machine learning-based steganalysis 

highlights the need for more robust security evaluation frameworks that can account for adaptive 

and learning adversaries. 
 

The evaluation metrics employed across the literature exhibit considerable inconsistency, making 

comparative assessment challenging. While certain metrics such as PSNR and SSIM are 
commonly used for image steganography [57], there is less consensus on appropriate metrics for 

other media types. Furthermore, the relationship between these technical metrics and practical 

security remains inadequately explored. The development of standardized, cross-media evaluation 

frameworks would significantly enhance the field's ability to assess progress and compare 
competing approaches. 

 

Human factors in steganography represent an underexplored dimension. While technical 
imperceptibility is extensively studied, the psychological aspects of steganographic security—

how human observers perceive and detect anomalies—receive comparatively little attention. This 

gap is particularly relevant for applications where human adversaries, rather than automated 
systems, represent the primary threat. The intersection of steganography with fields such as 

human perception, cognitive psychology, and human-computer interaction offers rich 

opportunities for addressing this limitation. 

 

6. CONCLUSION 
 

This bibliometric review of steganography research across a century highlights a dynamic field 

shaped by evolving paradigms, distinct clusters, and emerging frontiers. From 8,241 articles and 
49,572 citation links, nine major clusters were identified, mapping the intellectual structure and 

evolution of the discipline. 

 

Image-based approaches remain dominant, with foundational methods such as LSB embedding 
forming the largest cluster. Foundational theory continues to anchor the field, while machine 
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learning and GAN-based methods mark a clear paradigm shift toward AI-driven techniques with 
high impact despite their recency. Diversification into audio, text, video, and reversible 

steganography illustrates the adaptability of research to new carriers and application domains. 

 
Geographically, China leads in output, followed by India and the United States, with institutions 

such as Feng Chia University, the Chinese Academy of Sciences, and SUNY Binghamton shaping 

progress in both methodology and theory. Temporally, the field has advanced from early 

principles to deep learning, blockchain, and quantum approaches, reflecting a steady transition 
toward more sophisticated frameworks. 

 

Overall, this study provides the most comprehensive mapping of steganography to date, clarifying 
its intellectual organization and highlighting its adversarial nature, where steganography and 

steganalysis co-evolve. For researchers, this synthesis offers orientation to past achievements, 

present challenges, and future opportunities, serving as both a reference and a roadmap for 

advancing the field. 
 

7. FUTURE RESEARCH AGENDAS 
 

Our analysis points to several promising research directions. Quantum steganography stands out 
as a transformative frontier, offering fundamentally new security guarantees rooted in quantum 

principles. Coverless steganography, highlighted in Cluster 5, departs from traditional methods by 

mapping messages to inherent media features, potentially enhancing resistance to detection. 

Integration with blockchain, AI, and multimodal techniques opens further opportunities, alongside 
the urgent need for standardized evaluation frameworks to resolve current metric inconsistencies. 

Future work should also embrace human-centered evaluation, exploring psychological aspects of 

detection, and employ formal verification to strengthen theoretical foundations. Application-
driven research in areas such as medical data protection, privacy-preserving machine learning, 

IoT security, and censorship resistance promises high societal impact. Long-term ambitions 

include unifying theories across carriers, achieving near-perfect security, developing human–
machine collaborative systems, and designing adaptive frameworks for evolving threats. 

 

Finally, as steganography advances, ethical considerations and governance models must guide its 

responsible use. The field’s century-long evolution provides a strong base for pursuing these 
ambitious research agendas and sustaining its relevance in an increasingly complex digital 

landscape. 
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