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ABSTRACT 
 

MatBase is an intelligent prototype data and knowledge base management system based on the Relational 
(RDM), Entity-Relationship, and (Elementary) Mathematical ((E)MDM) Data Models, built upon Relation-

al Database Management Systems (RDBMS). ((E)MDM) has 61 constraint types, out of which 21 apply to 

autofunctions as well. All five relational (RDM) constraint types are passed by MatBase for enforcement to 

the corresponding RDBMS host. All non-relational ones are enforced by MatBase through automatically 

generated code. This paper presents and discusses both the strategy and the implementation of MatBase 

autofunction non-relational constraints enforcement algorithms. These algorithms are taught to our M.Sc. 

students within the Advanced Databases lectures and labs, both at the Ovidius University and at the De-

partment of Engineering in Foreign Languages, Computer Science Taught in English Stream of the Bucha-

rest Polytechnic University, as well as successfully used by two Romanian software companies. 
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1. INTRODUCTION 
 

MatBase is an intelligent prototype data and knowledge base management system based on the 
Relational Data Model [1, 5, 13] (RDM), Entity-Relationship Data Model (E-RDM) [4, 13, 25], 
and (Elementary) Mathematical Data Model ((E)MDM) [12, 13, 14, 15, 16], built upon Relational 
Database Management Systems (RDBMS), and currently having two versions: one in VBA on 
MS Access and one in C# on MS SQL Server [17]. 
 
Any universe of discourse that is interesting for data modeling is made of object sets, their prop-

erties, and the business rules that are governing it. Mathematically, object sets are abstracted as 
sets (be them atomic or relations, i.e. subsets of Cartesian products), properties as functions, and 
business rules as first order predicate calculus closed formulas. In relational databases (dbs), sets 
are implemented as tables, functions as their columns, and constraints either as relational ones, 
enforceable in pure SQL and/or in the Graphic User Interfaces (GUI) of RDBMSes, or as non-
relational, enforceable with either extended SQL (generally with triggers) or/and a high-level 
programming language embedding SQL (generally with trigger-type event-driven procedures). 

 
RDM introduced five types of (relational) constraints: domain (range; codomain – mathematical-
ly), not null (totally defined – mathematically), key (uniqueness; minimally one-to-oneness – 
mathematically), typed inclusion (referential integrity, foreign key; function images inclusion – 
mathematically), and tuple (check; closed first order predicate calculus formulas having only one 
variable universally quantified and whose functions have same domain – mathematically). 
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RDBMSes also generally provide a sixth one, which is also provided by MatBase, namely col-
umn (function – mathematically) default value. Both existing MatBase versions are enforcing 

these by simply passing them to their RDBMS hosts [18]. 
 

In RDBMSes, autofunctions (i.e. functions of type f : AB, with BA or AB) are implemented 
as foreign keys referencing their table (e.g. in table PERSONS, having primary key x, both Moth-
er and Father are referencing x). Consequently, only not-null, key, referential integrity, and tuple 
constraints are applicable to autofunctions, from the RDM point of view (plus the default value, 

from the RDBMS’ one). 
 
From the (E)MDM’s one (which also considers compound functions, not only singleton ones), for 
any function there are also non-primeness (i.e. the function may not be part of any key), ontoness, 
and bijectivity. As autofunctions are particular cases of dyadic relations, both (null-)reflexivity, 
(null-)irreflexivity, (null-)symmetry, asymmetry, (null-)idempotence, anti-idempotence, canonical 
surjectivity (ontoness), and acyclicity are also applicable (while (in)Euclidianity and connectivity 

are not, as they do not make sense for functions [14]). Moreover, general object constraints [14, 
16] are also possible for autofunctions too. This paper focuses on the algorithms used by MatBase 
to enforce these latter 16 (non-relational) constraint types.  
 
For example, such a non-relational constraint exists even in an extremely simple db consisting 
only of the tables STATES(x, Country, State, StateCapital) and CITIES(x, City, State): “any state 
has as capital a city of its own” (or, dually, “no state may have as its capital a city of another 

state”). Considering functions State : CITIES  STATES and StateCapital : STATES  CITIES, 

this constraint can be formalized as State  StateCapital = 1STATES (where  denotes function com-

position and 1STATES is the unity mapping of STATES, 1STATES(x) = x, x STATES) or, equivalent-

ly, as State  StateCapital reflexive. This constraint is associated to the E-RD cycle from Figure 1 
(where StateCapital has a double arrow because it is one-to-one). 
 

 
 

Figure 1.  An example of an E-RD cycle having an associated non-relational constraint. 

 

Failing to enforce this constraint could result, for example, in letting users store in such a db in-
stance the fact that London is the capital of Romania’s state Teleorman and/or that the Romanian 
city Caracal is the capital of the U.S.’ state California! 
 
From MatBase users’ point of view, all above mentioned first 15 non-relational constraint types 
may be added / removed from a db scheme by simply clicking the corresponding check-boxes of 

its FUNCTIONS form (be it standalone or as a subform of the SETS_DETAILED one), available 
in its Math Scheme submenu. 
 
Removing such a constraint is straightforward: if it is implied by the rest of the constraints (e.g. if 
f is asymmetric, you cannot remove its irreflexivity), MatBase does not allow it, while otherwise 
it does, which means that the corresponding code enforcing that constraint is deleted from the 
class(es) associated to the form(s) that manage(s) corresponding data (i.e. built upon the table cor-

responding to the autofunction domain). 
 

Detecting that a constraint is implied by the rest of the constraint set to which it belongs, as well 
as whether adding it to a constraint set would make that set incoherent is done by using the Mat-
Base knowledge base and algorithm presented in [14]. 
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Whenever adding a constraint preserves corresponding constraint set’s coherence, MatBase au-
tomatically injects the needed code for enforcing it into the class(es) associated to the form(s) that 

manage(s) the corresponding data (that are automatically generated by MatBase when the corre-

sponding domain set is added to the db scheme). Composed functions (e.g. State  StateCapital 
above) may be either explicitly specified by users or automatically generated by MatBase when-
ever it is detecting cycles in a db E-RD [16, 19]. 
 
As another example, even for only one table, e.g. PERSONS(x, FirstName, LastName, Mother, 

Father, Sex, BirthDate, PassedAwayDate), where Mother and Father are acyclic autofunctions, 
non-relational general object-type constraints may exist as well: mothers should have sex ‘F’, fa-
thers ‘M’, no child may be born either after his/her mother’s death, or more than 9 months after 
his/her father’s death, etc. Constraints of this general type are expressible in MatBase in its 
OBJECT_CONSTRAINTS form, where users are expected to type the corresponding formula in a 
user-friendly first-order predicate calculus structured language. For the time being, neither coher-
ence, nor minimality is automatically enforced by MatBase for this object constraint type, but left 

to its users. 
 
MatBase, just like most of the db applications, is presenting autofunctions to users as combo-
boxes in the form(s) built over the table corresponding to their domain. Generally [15], whenever 
possible, non-relational constraints should be enforced preventively, by eliminating from these 
combo-boxes all implausible data. When this is not possible [15], they should be enforced cura-
tively through extended SQL triggers or/and SQL embedding trigger-type methods. 

 
For example, the reflexivity constraint associated to Figure 1 above is preventively enforced par-
tially with only two VBA / C# statements of the Current event-driven method associated to cursor 
entering on a line: the first one dynamically changes the WHERE clause of the StateCapital com-
bo-box of the form(s) based on the STATE table, such that only cities belonging to the current 
state are selected, and the second one re-queries the combo-box to apply its changed definition. 
However, this constraint might be also violated whenever users were trying to move capital cities 
to another state: therefore, MatBase also automatically generates code in the BeforeUpdate (for 

its MS Access version) and Validating (for its MS .NET version) event-driven methods attached 
to the State combo-box of class CITIES form(s) to reject such requests. 
 

1.1 Related Work 
 

Generally, there are very few results on non-relational constraints, except for (E)MDM related 
ones ([12, 14, 15, 16,19]). The most closely related approaches are based on business rules man-
agement (BRM) [8, 9, 20, 24, 27] and their corresponding implemented systems (BRMS) and 
process managers (BPM), like IBM Operational Decision Manager[10], IBM Business Process 
Manager [6], Red Hat Decision Manager [21],  Agiloft Custom Workflow/BPM [2], etc., general-
ly based on XML (but also on the Z notation, Business Process Execution Language, Business 
Process Modeling Notation, Decision Model and Notation, or the Semantics of Business Vocabu-
lary and Business Rules), which is the only other field of endeavor trying to systematically deal 

with business rules, even if informally, not at the db design level, but at the software application 
one, and without providing automatic code generation. From this perspective, MatBase is also a 
BRMS, but a formal, automatically code generating one. 
 
A somewhat related approach as well is the logical constraint programming [7, 11, 22, 23, 26], 
which aims only at solving polynomial-complexity combinatoric problems (e.g. planning, sched-
uling, etc.) [3]. 

 

https://en.wikipedia.org/wiki/Z_notation
https://en.wikipedia.org/wiki/Business_Process_Execution_Language
https://en.wikipedia.org/wiki/Business_Process_Modeling_Notation
https://en.wikipedia.org/wiki/Business_Process_Modeling_Notation
https://en.wikipedia.org/wiki/Decision_Model_and_Notation
https://en.wikipedia.org/wiki/Semantics_of_Business_Vocabulary_and_Business_Rules
https://en.wikipedia.org/wiki/Semantics_of_Business_Vocabulary_and_Business_Rules


International Journal of Computer Science & Information Technology (IJCSIT) Vol 11, No 5, October 2019 

66 

1.2 Paper Outline 
 
Section 2 introduces MatBase architecture. Section 3 describes the relevant portions of its Graph-
ical User Interface (GUI). Section 4, the paper’s core, presents the algorithms for enforcing auto-
function non-relational constraints. Section 5 illustrates them with examples. Section 6 discusses 
their complexity, optimality, implementation, and utility. The paper ends with conclusion, further 
work, and references. 
 

2.  MATBASE ARCHITECTURE 
 

MatBase has a standard 4-tier architecture, whose tiers are (in the top-down order) the following: 

GUI, business logic (BL), ActiveX Data Objects (ADO), and db (DB) [17]. 
 

The MS Access version DB is composed of two shared dbs, namely MatBaseDB.accdb and Geog-
raphyDB.accdb (stored on a file server folder, identified through network mapping as virtual logic 
drive V:), and each workstation storing eight other dbs, namely MatBaseTmp.accdb, Geogra-
phyTmp.accdb, StocksDB.accdb, StocksTmp.accdb, BookstoreDB.accdb, BookstoreTmp.accdb, 
UserDB.accdb, and UserTmp.accdb (stored in a folder declared, through subst, as being virtual 
logic drive U:). 
 

MatBaseDB contains the Matbase’s metacatalog (storing metadata on the managed dbs, tables, 
constraints, etc.) and knowledge base (storing data on coherence and minimality of constraint 

sets, Datalog inference rules, object constraint type ones, etc.). As MatBase also provides four db 
application examples (Geography, shareable, Stocks, Bookstore, and User) there are also db files 
storing their data. All needed temporary tables are stored in corresponding Tmp dbs. 
In its MS SQL Server versions, all these 5 fundamental dbs are stored on a server instance, 
whereas all temporary ones in the corresponding system tempDB db. 
 

ADO is the (de facto industry standard) middleware between BL and DB, completely transparent 
to programmers in the .net and SQL Server MatBase version, carrying SQL statements as strings 

from BL to DB and returning error codes and selected data. In the Access version, ADO is also 
explicitly used, as, for example, there is no CHECK constraint in its SQL. 
 

For its both versions, BL is made of object-oriented classes (most of them also event-driven, as-
sociated to forms and reports) and libraries grouping methods commonly used by at least two 
classes. Every db application has its own library (e.g. Geography, Stocks, Bookstore, etc.). Mat-
Base’s core has several specialized ones: Constraints, Datalog, ERD, General, Mappings, Sets, 
and Tools, with General including methods, variables, and constants commonly used by at least 
two other libraries. 
 

For example, the Constraints one includes parameterized Boolean functions for enforcing object 

constraints (enforceObjConstraint), autofunction reflexivity (autoFunctReflex), irreflexivity (au-
toFunctIrreflex), etc. Whenever the current data passed as parameters satisfies the corresponding 
constraint, these functions return False, otherwise they return True (following the event-driven 
methods’ Cancel parameter conventions). 
 

Whenever enforcing of a non-relational constraint is possible (i.e. it would not violate coherence 
or minimality of the corresponding constraint set and the current db instance satisfies it), MatBase 
injects in the corresponding BeforeUpdate / Validating event-driven method associated to the cor-

responding autofunction (in the object-oriented class(es) of the form(s) associated with the table 
corresponding to the autofunction domain set) an assignment of type Cancel = call to the corre-
sponding Boolean function from Constraints; therefore, if the returned value is False, then the 
corresponding data update is accepted and saved in the db; otherwise, it is rejected, with a corre-
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sponding context-dependent error message inviting users to modify it or cancel the current re-
quest. 
 

Constraints also includes Boolean functions isCoherent (checking that adding / removing a con-

straint satisfies or violates coherence), isValid (checking whether the current db instance satisfies 
a given constraint), injectConstraint (inserting code lines into an event-driven class), deleteMod-
uleLines (deleting all lines in a class exactly containing a string parameter value), as well as many 
other useful functions for automatically enforcing constraints, like findModuleLines (returning the 
first line number in a class containing a string parameter value), etc. 
 

GUI includes a tree-like menu, forms, and reports, all of them carefully designed, as user-friendly 
as possible. Each fundamental db table has at least one standard associated form, automatically 
generated, which manages corresponding data management (i.e. inserts / updates / deletes). 

 

3. MATBASE GUI FOR AUTOFUNCTION AND OBJECT CONSTRAINTS 
 

In the MatBase MetaCatalog / Scheme Updates / EMDM Scheme submenu, the form 
FUNCTIONS may be opened either standalone (with the Mapping Set button of the Mappings 
submenu), for managing all functions known to the system, or as a subform of the 
SETS_DETAILS form (opened with the button Update SETS set by set button of the Sets sub-
menu), for managing functions grouped by their domain set; the form OBJECT_CONSTRAINTS 
may be opened with the homonym button from the submenu Constraints of the same menu path. 
 

The form FUNCTIONS displays one row per function (be it fundamental or computed). For com-
posed ones, another instance of it may be opened as a subform, displaying a line for each member 
function, in their composition order. All metadata on functions is displayed and may be updated 
in its column controls, from its name, domain, codomain, description, and up to its constraints 
(except for the object-type ones). For constraint types, check-boxes are used, except for the de-

fault value one, which needs a text box. For example, for State  StateCapital from Figure 1 only 

the reflexive check-box should be checked; for Mother and Father, only the acyclic one should be 
checked, which triggers MatBase to automatically check the implied constraints asymmetric, irre-
flexive, and anti-idempotent as well. 
 
The form OBJECT_CONSTRAINTS displays one row per object constraint. For example, there 
should be a line reading “for any x in PERSONS Sex(Mother(x)) = ‘F’” (which formalizes 

“mothers should have sex ‘F’”), another one reading “for any x in PERSONS Sex(Father(x)) = 
‘M’” (which formalizes “fathers should have sex ‘M’”), one reading “for any x in PERSONS 
BirthDate(x) <= PassedAwayDate(Mother(x)) and BirthDate(x) <= PassedAwayDate(Father(x)) 
+ 9 * 30.5” (which formalizes “no child may be born either after his/her mother’s death, or more 
than 9 months after his/her father’s death”), etc. 
 

4.  MATBASE ALGORITHMS FOR ENFORCING AUTOFUNCTION  

      AND OBJECT-TYPE NON-RELATIONAL CONSTRAINTS 
 

Figures 2 and 3 show the pseudocode algorithms for enforcing object and autofunction 

non-relational constraints, respectively, which summarizes all the above and that are im-

plemented in both current MatBase versions: 

 
ALGORITHM A1. MatBase Algorithm for Enforcing Object Constraints 

 
Input: - a db scheme S, its associated OBJECT_CONSTRAINTS form instance,  

                  the user request (delete / insert / update), and the corresponding object  
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    constraints from its current row c and c’, the former one updated to c; 

            - Cancel = False; 

Output: if Cancel then S else if delete then S = S  {c} else if insert then S = S  {c}  

else S = S  {c’}  {c}; 

Strategy: 

select user request 

    case delete: 

        if user does not confirm his/her delete request then Cancel = True; 

        else 

loop for all object sets s mentioned in the current object constraint c 

    loop for all event-driven methods of the classes associated to s 

        delete line assigning to Cancel the value returned by objConstraint for c;  

    end loop; 

end loop; 

S = S  {c}; 

if there is no other object constraint of the type t of c then 

    if user agrees with it then delete t from the knowledge base; 

end if; 

        end if; 

    case insert or update: 

        Cancel = isValid(c); 

        if Cancel then display “Constraint cannot be enforced: current db instance violates it!”; 

        else 

if c type is not known to the knowledge base then save its type;  // which also generates  

        // and saves in Constraints a corresponding method for enforcing it; 

end if; 

        end if; 

    case insert: 

        if not Cancel then 

            loop for all object sets s mentioned in the current object constraint c 

                loop for all event-driven methods of the classes associated to s that are stored in the 

                               knowledge base for the type of c (and generate all those that might be missing) 

                    inject line assigning to Cancel the value returned by objConstraint for c;  

  end loop; 

            end loop; 

            S = S  {c}; 

        end if; 

    case update: 

        if not Cancel then 

loop for all object sets s mentioned in the current former object constraint c’ 
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    loop for all event-driven methods of the classes associated to s 

                     delete line assigning to Cancel the value returned by objConstraint for c’;  

    end loop; 

end loop; 

loop for all object sets s mentioned in the current object constraint c 

loop for all event-driven methods of the classes associated to s that are stored in the  

             knowledge base for the type of c (and generate all those that might be missing) 

                     inject line assigning to Cancel the value returned by objConstraint for c;  

    end loop; 

end loop; 

S = S  {c’}  {c}; 

        end if; 

end select; 

End ALGORITHM A1;  

Figure 2.   Algorithm A1 (MatBase Algorithm for Enforcing Object Constraints) 

 

ALGORITHM A2. MatBase Algorithm for Enforcing Non-Relational Autofunction Constraints 
 

Input: - a db scheme S, its associated FUNCTIONS form instance, the user request (check / un 

    check), the corresponding function f : D  D, non-relational constraint type c from its  

    current row, and the implied by c set I, as well as the set I’ of the constraints implied  

    only by c and not desired anymore in S; 

            - Cancel = False; 

Output: if Cancel then S else if uncheck then S = S  {c}  I’ else S = S  {c}  I; 

Strategy: 

select user request 

    case uncheck:  

        if user does not confirm his/her delete request then 

Cancel = True; 

            check c’s checkbox; // undo request 

        else 

            if c is implied by some subset of constraints C’ then 

    Cancel = True; 

    check c’s checkbox; // undo request 

    display “Constraint cannot be deleted as it is implied by C’!”; 

else 

    loop for all object sets s that are domains of the functions g composing f 

        loop for all event-driven methods of the classes associated to g 

delete line assigning to Cancel the value returned for c by the 

corresponding constraint type enforcement Boolean function;  

        end loop; 
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    end loop; 

    S = S  {c}; 

    loop for all constraints c’ in S that were implied only by c 

        if user wishes to keep c’ in S then generate code needed to enforce c’; 

        else 

S = S  {c’}; 

uncheck c’s checkbox; // remove unwanted implied constraint 

        end if; 

    end loop; 

end if;   

    case check: 

        Cancel = isCoherent(c); 

        if Cancel then 

              uncheck c’s checkbox; // undo request 

display “Constraint rejected: constraint set would become incoherent!”; 

        else 

Cancel = isValid(c); 

if Cancel then 

                  uncheck c’s checkbox; // undo request 

    display “Constraint cannot be enforced: current db instance violates it!”; 

else 

    loop for all object sets s that are domains of the functions g composing f 

        loop for all event-driven methods of the classes associated to g (and generate all  

those that might be missing) 

inject line assigning to Cancel the value returned for c by the corresponding  

constraint type enforcement Boolean function;  

        end loop; 

    end loop; 

    S = S  {c}  I; 

    loop for all constraints c’ in I 

                    check the checkbox corresponding to c’; // store that f also obeys c’ 

    end loop; 

end if; 

        end if; 

end select; 

End ALGORITHM A2; 

 

Figure 3.   Algorithm A2 (MatBase Algorithm for Enforcing Non-Relational Autofunction Constraints) 
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5. EXAMPLES 
 

Consider the ER-D from the Geography db presented in Figure 1. Suppose that the db instance 

data satisfies constraint State  StateCapital reflexive and that adding this constraint does not vio-

late either coherence or minimality of the db constraint set [14].   
 

Then, when users check the Reflexive check box on the State  StateCapital row from the 
FUNCTIONS form, MatBase automatically adds code to both CITIES and STATES classes of 

their standard management forms (generally homonyms to their underlying table names), as well 
as to any other classes associated to forms built upon tables CITIES and STATES (that have, just 
like all other fundamental tables, primary keys named x) and allowing updates to columns State 
and/or StateCapital, the following code: 
 

  In class STATES, preventively, to the Current event-driven method (automatically 

launched by the system whenever the cursor arrives on a line of the underlying table 
STATES), a line reading Cancel = preventReflex(“State =”, Me!x) (in the MS Access ver-
sion; in the .Net one, Me!x is replaced by this.x) is added (and if this event-driven method 
does not exist, MatBase first creates it).  
The public preventReflex function of the Constraint library has only two lines: the first one 
modifies the row (data) source definition of the current combo-box control by adding to its 
WHERE clause a filter “State = “ & Me!x and the second one requeries the combo-box. 
In this case, if the initial row source definition is “SELECT x, City FROM CITIES 

ORDER BY City”, the modified one becomes “SELECT x, City FROM CITIES WHERE 
State = ” & Me!x & “ ORDER BY City”. Without this filter, on any row, the combo-box 
displays all cities from table CITIES. With this filter, whenever the cursor arrives on a row 
for which, e.g. x = 1, the row source is changed to “SELECT x, City FROM CITIES 
WHERE State = 1 ORDER BY City”, so, after re-querying it, the combo-box will display 
only the cities that belongs to the state having its x = 1. 

 

 As this constraint may also be violated by moving a state capital to another state, such at-

tempts must be rejected for such cities. This is why, in class CITIES, to the BeforeUpdate 
(Validating in .Net) event-driven method associated to the column control State (automati-
cally launched by the system whenever its value has changed and users want to save its 
new value), a line reading Cancel = enforceReflex(“STATES”, “StateCapital”, Me!x) is 
added (and if this event-driven method does not exist, MatBase first creates it).  
The public enforceReflex function from the Constraint library has the following strategy: 
enforceReflex = False; 
if not new record then 

    if current city is a state capital then 
   enforceReflex = True; 
          undo user update; 
          display “Current city is the state capital: request rejected!” 
    end if; 
         end if; 
 

Dually, when users uncheck the Reflexive check-box on the State  StateCapital row from the 

FUNCTIONS form, if users confirm their request MatBase automatically deletes the code it in-
jected (i.e. both Cancel = preventReflex(“State =”, Me!x) from STATES and Cancel = enforceRe-
flex(“STATES”, “StateCapital”, Me!x) from CITIES). 
 

As another example, suppose that a user adds in the OBJECT_CONSTRAINTS forms a row whose 
Constraint text box reads “for any x in PERSONS BirthDate(x) <= PassedAwayDate(Mother(x)) 
and BirthDate(x) <= PassedAwayDate(Father(x)) + 9 * 30.5” and that the current db instance sat-
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isfies it. Then, MatBase automatically adds in the classes attached to the forms based on the 
PERSONS table that allow updates to the BirthDate, PassedAwayDate, Mother, and/or Father the 

following code (supposing that this constraint gets the x identification value 1): 
 

- In the event-driven method BeforeUpdate / Validating associated to the BirthDate control 

a line reading Cancel = enforceObjConstraint(1, “PERSONS”, “BirthDate”); 
 

- In the event-driven method BeforeUpdate / Validating associated to the PassedAwayDate 
control a line reading Cancel = enforceObjConstraint(1, “PERSONS”, “PassedAwayDate”); 

 

- In the event-driven method BeforeUpdate / Validating associated to the Mother control a 
line reading Cancel = enforceObjConstraint(1, “PERSONS”, “Mother”); 

 

- In the event-driven method BeforeUpdate / Validating associated to the Father control a 
line reading Cancel = enforceObjConstraint(1, “PERSONS”, “Father”); 

 
 

- If any of these event-driven methods does not exist, MatBase first creates it. 
 

The public Boolean enforceObjConstraint function from the Constraint library (one of the most 
complex ones) enforces such constraints according to their corresponding formula type and given 
parameters (object constraint id, set / table name, and function / column name). 
 
Dually, when users delete this object constraint from the OBJECT_CONSTRAINTS form, Mat-
Base deletes all four lines injected as above. 
 

6. RESULTS AND DISCUSSION 
 

6.1 Algorithms Complexity, Optimality, and Implementation 
 
It is very easy to check that these algorithms are very fast, as they do not ever infinitely loop and 
their time complexities are linear: O(2 * k * (|F|)) = O(|F|) for A1 and O(k * (|F| + |I|)) = O(|F| + 
|I|) for A2. For both of them, k is the average number of forms built over fundamental tables 
(which is generally between 1 and 2). 
 

For A1, |F| is the average number of functions used in an object constraint (multiplied by 2 in the 
worst case, i.e. update, for which MatBase needs to both inject code for c and delete code for c’); 

generally, this never approaches 100 (conjecture we are advancing after 40+ years of experience 
in data modeling for lot of industries and services). 
 

For A2, |F| is the average number of functions that are members of a composed function (general-
ly at most 8, as circular E-RD cycles having length greater than 16 are very hard to detect and 
even harder to analyze for discovering associated autofunction constraints [19]) and |I| is the av-
erage number of implied constraints by a non-relational autofunction constraint (generally be-
tween 0 and 5 [16]).  

 
Moreover, these algorithms are, in fact, also optimal, as they search in every object-oriented class 
only within the event-driven methods and no such method is visited twice: their implementations 
merge for updates in A1 and deletions in A2 code injections and deletions in a same step, whereas 
checking of implied constraints by a newly added one in A2 is done in internal memory (and are 
saved in the db together with the one done by users in c’s check-box, when the current row corre-
sponding to f from FUNCTIONS is saved). 

 

In fact, A1 is not implemented as such in MatBase, but split into the event-driven methods 
OnDelete (for delete requests) and BeforeUpdate / Validating for the control ObjectConstraint 
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(for insert and update requests) of the form OBJECT_CONSTRAINTS. A2 is implemented in the 
BeforeUpdate / Validating for check-box controls associated to the non-relational constraint types 

of the form FUNCTIONS.  
 

6.2 Algorithms Usefulness 
 

First, analyzing non-relational constraints is interesting even per se, within the study of sets, func-

tions, and relations semi-naïve algebra, as well as the one of data modeling and db constraint the-
ory, as it helps getting a better understanding on both single and compound autofunctions. More-
over, the object-type constraints are excellent real-world examples of closed first order predicate 
calculus with equality formulas. 
 
The main utility of these algorithms is, of course, in the realms of data modeling, db constraints 
theory, db and db software applications design and development. All constraints (business rules) 

that are governing the sub-universes modeled by dbs, be them relational or not, should be de-
clared in the corresponding mathematical dbs’ schemas and then enforced in its implementations: 
otherwise, their instances might be implausible.  
 

Generally, almost all autofunctions have associated non-relational constraints [16]. For example, 
in the MatBase Geography db there are 7 compound autofunctions that are reflexive, 8 asymmet-
ric, 7 irreflexive, one acyclic, and 16 have associated object constraints [16]. 
 

7. CONCLUSION AND FURTHER WORK 
 
In summary, we have designed, implemented, and successfully tested in both MatBase current 
versions (for MS Access and C# and SQL Server, respectively) algorithms for automatic en-
forcement of the non-relational constraints associated to autofunctions, analyzed their complexity 
and optimality, as well as outlined their usefulness for both sets, functions, and relations algebra, 

and, especially, for data modelling, db constraints theory, db and db software application design 
and development practices. 
 

Unfortunately, except for MatBase and BRMS users, the state of the art in db and db software 
application design and development related to non-relational constraints is exclusively using ad-
hoc approaches: very few db and/or software architects are aware of their types, optimal enforc-
ing ways per type, algorithmic approaches to discover all of them for any sub-universe of dis-
course, automatic enforcement, and even of their paramount importance; only from experience 
and common sense (e.g. nobody may be simultaneously present in several places, no slot may be 

simultaneously occupied by several objects, etc.) are they considering some such constraints and 
enforce them in db software applications (through either RDBMS triggers in extended SQL 
or/and high-level programming languages embedding SQL trigger-type methods).  
 

Very many such constraints are only discovered in production, in time, generally by db software 
application users, who report them as bugs. It would be highly preferable, of course, that db and 
software architects discover all of them in the data modeling phase and then developers enforce 
them from the beginning, up until MatBase (or/and other similar advanced DBMS products) will 
become worldwide available, to provide automatic code generation for enforcing non-relational 
constraints too, just like it is the case today with the relational ones. 

 
The algorithms presented in this paper are successfully used both in our lectures and labs on Ad-
vanced Databases (for the postgraduate students of the Mathematics and Computer Science De-
partment of the Ovidius University, Constanta and the Computer Science Taught in English De-
partment of the Bucharest Polytechnic University), as well as by two Romanian IT companies 
developing db software applications for many U.S. and European customers in the Fortune 100 
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ones, whose productivities have greatly increased ever since, as lot of software designing, devel-
oping, testing, and debugging efforts are spared by MatBase automatic code generation. 
 

In fact, MatBase is automatically generating code for enforcing non-relational constraints not on-
ly for autofunctions, but also for the rest of the functions (including Cartesian product ones), as 

well as for sets, which makes it also a formal BRMS and adds (E)MDM to the panoply of tools 
expressing business rules. 
 

Further work needs to be done for also assisting users in guaranteeing coherence and minimality 
for object-type constraints. This is not at all an easy task, as even the problem for the subclass of 
first order calculus predicate closed formulas is NP-complete.  
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