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ABSTRACT 
 
IoT applications usually rely on cloud computing services to perform data analysis such as filtering, 

aggregation, classification, pattern detection, and prediction. When applied to specific domains, the IoT 

needs to deal with unique constraints. Besides the hostile environment such as vibration and electric-
magnetic interference, resulting in malfunction, noise, and data loss, industrial plants often have Internet 

access restricted or unavailable, forcing us to design stand-alone fog and edge computing solutions. In this 

context, we present STEAM++, a lightweight and extensible framework for real-time data stream 

processing and decision-making in the network edge, targeting hardware-limited devices, besides 

proposing a micro-benchmark methodology for assessing embedded IoT applications. In real-case 

experiments in a semiconductor industry, we processed an entire data flow, from values sensing, 

processing and analysing data, detecting relevant events, and finally, publishing results to a dashboard. 

On average, the application consumed less than 500kb RAM and 1.0% of CPU usage, processing up to 239 

data packets per second and reducing the output data size to 14% of the input raw data size when notifying 

events. 
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1. INTRODUCTION 
 

In the last few decades, we have seen many advances in computing technologies, both in 
hardware miniaturization, data communication, and software solutions, enabling a scenario for 

using “smart” devices embedded in the most diverse areas of daily life. Nowadays, many 

healthcare, energy grids, cities, transportation, agriculture, and industry domains use connected 

sensors, devices, and machines autonomously communicating via the Internet [1, 2, 3, 4, 5]. Each 
domain area has its particularities and constraints, demanding different resources while sensing, 

processing, transmitting and presenting data [6, 7]. 

 
While IoT is an environment where smart devices such as gadgets and home appliances are 

interconnected or communicate with cloud-hosted services, Industrial IoT (IIoT) lays over a 

particular scenario. The industrial environment differs from the other in factors such as the high 
number of sensors and the need for short data processing response time, besides a harsh 

environment [8]. In manufacturing, erroneous data and outliers may appear due to sensor noise, 

communication errors, process disturbances, instrument degradation, mechanical faults, human-

related errors, and so on [8]. When an application processes this corrupted sensor data, the overall 
performance of the system is compromised, making it inaccurate and unreliable. Taking wrong 
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decisions in a manufacturing process can cause out-of-specification products, machinery damage, 
and even work accidents with human victims [9]. 

 

For detecting sensor faults and outliers, we can use Statistical, Nearest-Neighbor, Artificial 

Neural Network, Cluster-Based, Classification-Based techniques, and so on [10, 11]. Most of the 
existing methods to process sensor data rely on cloud architecture and Stream Processing (SP) or 

Complex Event Processing (CEP) services, bringing some problems to industrial plants [12, 13]. 

Sometimes, companies operating in remote places such as the countryside, offshore or 
underground do not have reliable and stable Internet access [14]. Usually, IIoT applications 

execute real-time analysis in product supply chain management, performance evaluation, and 

simulation [1]. In these cases, data processing is performed by heterogeneous IoT devices on the 
network edge, with limited processing, memory, and communication capabilities [15]. 

 

In Fog computing, data processing and analysis are performed by gateway devices at the network 

edge, reducing bandwidth requirements, latency, and the need for communicating data to external 
servers [16]. Deploying fog nodes directly within the network fabric pushes processing even 

further to the network edge, bringing the fog computing layer closer to the smart end-devices 

such as sensors and actuators [17]. This approach decreases latency and increases the autonomy 
of the subsystems since the calculation and decisions are performed locally, and depend mainly 

on the device’s perception of the situation. 

 
Analysing the literature, we found challenges addressed to IoT, such as inaccurate data, lacking 

Internet access, and real-time applications [14]. However, a significant challenge is the 

development of infrastructure containing a common framework. Most proposed frameworks 

cannot be reused for all types of data since they were designed specifically for a particular 
domain [1]. The studies presented in this paper approached anomaly detection in the network 

edge applied to a specific area, including underground mining [14], automotive assembly plant 

[18], water quality monitoring [19], and industrial machinery monitoring [8]. Authors used 
diverse techniques, such as K-means and C-means [14, 18], Confidence Interval and Interval 

Variance [20], FFT over vibration and ANN [18], One-Class Classifier SVM, Isolation Forest 

and Elliptic Envelope [19], Principal Component Analysis (PCA) and R-PCA [21], Chi-Square 

Distance [8] and Hierarchical Temporal Memory [22].  
 

As identified in the literature, the lacking of standardization in IoT application development, the 

heterogeneity of IoT hardware and data formats, the variety and complexity in implementing data 
analytic functions in the fog are the motivations of the present work. To address this challenges, 

we present STEAM++, a framework for real-time data stream processing and decision-making in 

the network edge, targeting hardware-limited devices. Although it is very simple to develop a 
program using the STEAM++ framework, it allows the design of rich solutions regarding data 

collection and analysis, event detection, and publication of results for external applications and 

services. Figure 1 represents a high-level overview of our architecture. On the left side (a), we 

can see the standard cloud-dependent architecture usually adopted in IoT applications. On the 
right side (b), we can see the STEAM++ architecture for comparison purposes and have a better 

understanding of our contribution. 

 
A typical IoT application begins with data production, represented as generic raw data sources 

transmitted over sensor networks. After collected, raw data are processed by a gateway at the 

network edge, which usually only encapsulates the data frames in a standard protocol and 
transmits to client applications using Intranet or Internet. Since we propose to bring data analytics 

techniques to the network edge applying the fog computing concept, we highlight the Analysis, 

Enrichment, and Evaluation processes executed on far-edge devices by a STEAM++ application. 
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Lastly, the client applications are responsible for data consumption and business rules processing, 
and can be hosted either on LAN or cloud. 

 

Besides the STEAM++ framework, we propose a micro-benchmark methodology for assessing 

embedded IoT applications, monitoring CPU and memory usage, measuring processing time, and 
calculating output/input data size ratio. To prove the concepts and feasibility of the STEAM++ 

model and framework, we implemented two applications for processing real scenarios from a 

semiconductor industry. We performed an entire data flow, from values sensing, processing and 
analysing data, detecting relevant events, and finally, publishing results to a dashboard. Using our 

proposed micro-benchmark, the STEAM++ application running on a Raspberry Pi 3 Model B+ 

consumed on average less than 500kb RAM and 1.0% of CPU usage, processing up to 239 data 
packets per second and reduced the output data size to 14% of the input raw data size. The results 

were encouraging, enabling the development of lightweight, fast, interconnected, and valuable 

IoT applications built with simple programming commands. 

 
Thus, the contributions of this article are twofold: 

 

 The STEAM++ programming framework, simplifying the development of end-to-end 

IoT applications for real-time data analytics and decision-making in the edge; 

 A micro-benchmark methodology for assessing IoT applications embedded in hardware-
limited devices. 
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Figure 1. Overview of a Standard Cloud-Dependent IoT Architecture (a) 
compared to the STEAM++ Architecture (b)  

 
The rest of the paper is structured as follows. Section 2 is a summary of research and work 

related to data processing in the edge focusing industrial environment, our proposed model, 

framework implementation and API are discussed in Section 3, followed by the detailing of the 
evaluation methodology and experimental study in Section 4. The results are presented and 

discussed in Section 5, and Section 6 concludes the article. 

 

2. RELATED WORK 
 
We analysed the literature aiming to find initiatives performing data analytics in real-time in the 

network edge. We focused on industrial applications due to their specific conditions regarding 

harsh environments deployment, susceptible to a variety of interference, noise, and in many 
cases, without Internet access. The outcome is listed in Table 1. In the sequence, we present a 

discussion of the main aspects of related works. 
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Table 1: Related work and their main features 
 

Reference Year Proposal Objective Techniques 
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Liu et al. [14] 2021 Algorithm ✓    K-Means, C-Means 

Yin et al. [20]  2020 Algorithm ✓    Confidence Interval 

De Vita et al. [18]  2020 Architecture ✓    FFT, ANN, K-Means 

Bourelly et al. 

[19] 

2020 Algorithm 
✓    

SVM, Isolation Forest, Elliptic 

Envelope 

YR et al. [21]  2020 Framework ✓  ✓ ✓ PCA, R-PCA 

Liu et al. [8]  2020 Algorithm ✓ ✓   Chi-Square Distance 

Greco et al. [22]  2019 Architecture ✓   ✓ HTM, Node-RED, Flink, Kafka 

 

Liu et al. [14] proposed an anomaly detection method using K-Means and C-Means over a sliding 
window, executed on a sink node on the network edge. They monitored multiple sensors in real-

time inside an underground mine. In [20], Yin et al. developed an algorithm for anomaly 

detection using confidence interval, interval variance, and median of a sliding window over a 
sensor data set. This algorithm computed on the network edge also could distinguish the source 

of the abnormality. Aiming anomaly detection in an automotive assembly plant, De Vita et al. 

[18] developed an architectural framework using FFT over vibration, ANN, and K-Means 
techniques. Bourelly et al. proposed an algorithm for anomaly detection in water quality 

monitoring [19]. They used One-Class Classifier SVM, Isolation Forest, and Elliptic Envelope 

for detecting a predefined set of substances commonly considered as dangerous and indicative of 

an anomalous use of water. 
 

In [21], YR and Champa developed a framework for data aggregation and outlier detection, 

processing data from 54 sensors, claiming that sensors’ inaccuracies and noise make it difficult to 
define and anticipate data behaviour. They used Principal Component Analysis (PCA) and R-

PCA. Liu et al. [8] presented an algorithm computing chi-square distance over a sliding window 

performing anomaly detection and noise removal for Industrial IoT sensor data in a 

manufacturing process. Sensors installed in the compressor collected data on temperature, speed, 
and vibration. For processing wearable sensor data streams, Greco et al. [22] developed an edge-

stream computing infrastructure enabling real-time analysis on data coming from wearable 

sensors. They used the Hierarchical Temporal Memory algorithm, Node-RED, Apache Flink, and 
Apache Kafka. 

 

3. STEAM++ MODEL 
 

In this section, we present STEAM++, a model and framework designed to enable real-time data 
analytics, decision-making, and data streams enrichment at the network edge. We first presented 

STEAM in [23], therefore, the current work is an extension of the previous one with three main 

enhancements. The first improvement of STEAM++ is the Evaluation layer, bringing the 
decision-making to the Fog and eliminating the cloud dependency. Second, we enhanced the 

framework’s class library, simplifying the development of applications by adding new classes. 

Last, we propose a micro-benchmark methodology for assessing IoT applications embedded in 
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limited devices on the network edge. The STEAM++ project is hosted on GitHub, and the source 
code is available at https://github.com/steam-project/steam. 

 

3.1. Architecture 
 

There are several steps between reading raw data from a sensor until the detection of an event 

such as anomaly, noise or outlier. Next, we present how STEAM++ performs stream processing 
in the edge, from data capturing from sensors until providing enriched streams and event 

detection to client applications. Figure 2 depicts a detailed view of STEAM++ architecture. It 

consists of a five-layered framework for the development of applications targeting resource-

limited devices located at the network edge. Following, we describe each layer in detail. 

 

 
Figure 2. Detailed STEAM++ architecture 

 

– Device Abstraction and Data Acquisition: This is the input layer, responsible for 

capturing data from sensors and far-edge devices in many formats and protocols, parsing, 
standardizing, and forwarding data streams to the processing step; 

– Data Analysis: This is the processing step, a layer that provides a set of data analysis 

techniques, such as filtering, transformation, pattern recognition, outlier detection, 

prediction, etc. We can also develop custom data analysis functions; 
– Stream Enrichment: This layer is intended to merge the outcome of the previously 

mentioned Data Analysis layer along with the original data streams, generating an 

enriched data packet; 
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– Evaluation: The fourth layer evaluates rules, logic, threshold comparing, and performs 

custom analysis to provide event detection and decision-making. For instance, in this 
step, we can identify behaviours, noise, outliers, and decide whether or not to send alert 

messages to client applications or commands to actuators located in the sensor network in 

specific situations; 

– Protocol Connector: The output layer is the Protocol Connector, responsible for 
providing output data streams in a standard format and using different communication 

protocols, enabling client applications to access data in a standard and transparent 

manner. In this step, a STEAM++ application can publish data sending messages directly 
to client applications, integration services, message brokers, dashboards, actuators, etc. 

 

3.2. Micro-benchmark Methodology and Metrics 
 

For the assessment of the STEAM++ applications, we are proposing a micro-benchmark 

methodology and three metrics: CPU/Memory Usage, Processing Time and Output/Input Ratio, 
depicted in Figure 3. 

 

 

 

Figure 3: Micro-benchmark methodology and metrics for assessing the STEAM++ framework 

 

To read the system's CPU and memory usage, we are using cpu_percent() and virtual_memory() 
methods from psutil Python's library, respectively. These values are measured at the end of the 

processing flow for each received packet, indicating the CPU consumption and memory usage 

during the tasks. For the Processing Time metric, we are measuring the time spent per each 
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STEAM++'s processing layer per packet, from reading raw data until the dispatching of the 
enriched packet. For this metric, we are using time_ns() method from time Python's library, that 

returns an integer number of nanoseconds since the epoch. We are also measuring the total 

amount of bytes received from sensors, and after, sent to external applications. With these 

information, we calculate the Output/Input Data Size Ratio, indicating the increasing or 
decreasing factor over the data stream size obtained as the result of STEAM++ processing. When 

the application ends, the micro-benchmark saves a log file containing the collected and calculated 

metrics for each processed data packet, where each line represents one data packet processed by 
the STEAM++ application and the columns represent the metrics, separated by tab characters. 
 

3.3. Framework Classes 
 

The STEAM++ framework was developed in Python 3.8 as a class library, depicted in Figure 4. 

Following, we present each class and its functionality. 

 

 

Figure 4: STEAM++ framework class diagram. The main class is Device. The classes highlighted in gray 

color are new, indicating enhancements in the framework comparing with the previous version. 

 

– Device: The main class of a STEAM++ application, storing the data, processing logical and 

analytical functions, and organizing the entire execution flow; 

– Input: Abstract class that interfaces with the sensor network. The STEAM++ framework 
extends this class to create specific data acquisition features, supporting several industrial 

communication protocols such as RS232, Modbus, OPC, etc; 

– Parser: The default Parser class handles raw data frames with a single or multiple values, 

separated by a single character or a string. We can extend this class, adding the capability of 
interpreting complex raw data frames structures; 

– Function: Base class for performing data analysis. The STEAM++ framework extends this 

class to provide a rich class library. Until this moment, we implemented the following classes: 

Min, Max, Sum, Count, Mean, Median, EWMA, StDev, Slope, Arima, and Equation; 

– Enrich: Class that handles the data stream enrichment process, updating the raw data packets 
from sensors with the processed data returned from analytical functions; 

– Condition: Class that evaluates a condition, indicating the occurrence of an event. The 

STEAM++ framework provides the EquationCondition, MissingValueCondition and 

ThresholdCondition classes. We can extend the Condition class to provide customized 
evaluation conditions and complex event detection; 
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– Format: Class that formats the enriched data packet before sending it to client applications. 

The STEAM++ framework extends this class providing a set of formats, such as 
MessageFormat, CSVFormat, TSVFormat, JSONFormat, and WSO2Format; 

– Endpoint: Base class for implementing the output layer of a STEAM++ application, defining 

the destination of the processed and enriched data streams, messages and events. The 

STEAM++ framework provides the FileEndpoint and HTTPEndpoint classes, enabling file 
storage and HTTP post capabilities, respectively. We can extend this class to create custom 

publication services, implementing protocols such as MQTT, AMQP, and CoAP, for instance. 
 

4. EXPERIMENTAL STUDY 
 

In order to assess the STEAM++ framework, we developed two applications for monitoring the 

dew-point temperature in a microchip manufacturer's production chain. The infrastructure used in 

the experiments and the applications are described below. 

 

4.1. Infrastructure 
 

The infrastructure used in the experiments is depicted in Figure 5. In this scenario, the sensor 

network consists of one node (SN-Node) receiving measurements from 3 sensors (Sensors) at a 
transmission rate of 1 measurement per second per sensor. The SN-Node relays the data to the 

STEAM++ application running in a Raspberry Pi 3 Model B+ 1GB RAM with Raspbian OS (IoT 

Device) through a raw TCP connection. The TCP data frame consists of an ASCII string 
containing 6 fields separated by tab characters, as follow: 

 

– id: Sequential identification of measurement. Integer; 

– timestamp: Timestamp of measurement. ISO-8601; 
– unit: Dew-point temperature measurement unit. String; 

– s1: Dew-point temperature of sensor 1. Float; 

– s2: Dew-point temperature of sensor 2. Float; 

– s3: Dew-point temperature of sensor 3. Float; 
 
The STEAM++ applications receive, process, and publish the data, both saving a local log file 

and sending it to a Node-RED dashboard running in a laptop (Terminals) connected to the local 

network via Wi-Fi. Both dashboard applications simply receive data through an HTTP service 
and display it in a line chart or text area, without performing any data processing. 

 

4.2. Applications 
 

Writing STEAM++ applications is very simple compared to build a from-the-scratch IoT 
application. The STEAM++ framework provides a set of ready-to-use classes and built-in 

functions, making it unnecessary to use structured code, complex logic, loops, and conditional 

statements. The classes' relationships ensure the consistency of the application, assigning to the 

developer only the task of configuring parameters and objects binding. Figure 6 illustrates the 
basic application used in the experiments. Line 2 is the Device object instantiation, configured to 

manage a sliding window with the last 20 sensor's measurements. Line 5 defines the data Input 

method as a TCP communication on port 5000. Lines 8 to 11 create the Parser object, setting a 
tab character as a values separator and identifying the columns' names. Lines 14 to 16 configure 

the HTTPEndpoint, that consists of the Node-RED chart's input stream URL, format the data 

output as JSONFormat, finally binding the objects to the Device. Line 19 starts the application 
execution. 
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Figure 5: Infrastructure for evaluating the STEAM++ applications 

 

 

Figure 6: Basic application developed with the STEAM++ framework 

 

Starting from the previous base code, we designed two applications to assess the STEAM++ 

framework. Both receive data from a sensor node, perform statistical functions, evaluate 
expressions, and finally enrich the data stream with the outcome of the processed data. Then, the 

applications send the enriched data stream to a Node-RED dashboard, plotting line charts and 

displaying relevant event messages. Following, we explain the two applications in detail. 
 

4.2.1. One sensor 

 

This application, whose source code is depicted in Figure 7, receives one single measurement 
value from one sensor per second and initially computes the standard deviation (line 35) and 

moving average (line 34) over a sliding window of the last 20 values, corresponding to 20 
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seconds of measurements. For detecting anomalies in the data stream, we are using a Statistical 
Process Control (SPC) technique, based that common sources of variations result in a normal 

distribution of samples, where the mean m and standard deviation σ can be estimated, configured 

on lines 37 to 41. Any observation outside this control range computed by m± 3σ is considered 

abnormal [24], and reported as a warning message, coded from line 2 to 19. All these values and 

messages are stored in a local log file (lines 22 to 31) and sent to a remote Node-RED dashboard 

that plots a line chart and displays the warning messages. 
 

 

Figure 7: One Sensor source code application developed with the STEAM++ framework 
 

4.2.2. Multiple sensors 
 

The multiple sensors application, whose source code is depicted in Figure 8, reads the input data 

stream containing the measurements from three sensors and detects missing values (line 3). After, 

from line 21 to 26 it calculates the instantaneous dew-point temperature slope, comparing the 
current value against the previous measurement for each sensor. Since the sensors monitor the 

same industrial process, the disagreement of slew rate among the measurements indicates an 

anomaly, defined between lines 29 and 33. A Node-RED dashboard hosted on a laptop connected 
to the factory's administrative network receives the values captured from sensors besides the data 

computed by the STEAM++ application. A line chart plots the measurements of each sensor, and 
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a text area displays event messages such as missing measurements, out-of-threshold values, and 
slope disagreements, configured on lines 2 to 8 and 11 to 17. 

 

 

Figure 8: Multiple Sensors source code application developed with the STEAM++ framework 

 

5. RESULTS AND DISCUSSION 
 

This section presents the detailed findings from the experiments, making a profile of the 

STEAM++ applications' behaviour in the specified scenarios. 

 

5.1. Dashboards 
 
The first result is the user's point-of-view, in other words, two Node-RED dashboards for data 

visualization containing a line chart and a display of relevant events. Figure 9 depicts the One 

Sensor Application, described in subsection 4.2.1. The upper and lower lines are the dynamic 

upper and lower thresholds respectively, computed by m± 3σ equation. The centralized green line 

is the moving average m, and the oscillating blue line is the dew-point temperature read from the 

sensor. The chart also shows a red circle where the dew-point temperature exceeds the upper 
threshold, and a blue circle where the temperature gets below the lower threshold. On the right 

side of the chart, a text area displays messages containing the events detected by the application. 

In blue are the warnings related to low values, and in red are the messages associated with high 

values. 
 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 14, No 1, February 2022 

43 

 

 

Figure 9: Node-RED dashboard screenshot for one sensor application 

 

The dashboard of Multiple Sensors Application is illustrated in Figure 10. The chart is plotting 

three lines, representing three sensors of dew-point temperature. The blue circles are pointing 
missing values, indicating the absence of a sensor reading or a transmission failure, causing the 

lacking of values in the time series. The vertical red lines are indicating slope disagreement 

among the sensor's measurements, as detailed in subsection 4.2.2. As the previous dashboard, this 
one also displays warning messages. In blue are the value missing alerts and in red color are the 

slope disagreement messages. 

 

 

 
Figure 10: Node-RED dashboard screenshot for multiple sensors application 

 

5.2. CPU and Memory Usage 
 

Due to limited computational resources, CPU and memory usage are key indicators in the IoT 
environment. To have a significant and reliable overview of resource consumption, we executed 

each application 30 times, collecting the instant system’s CPU load and the overall used memory. 

Figures 11 and 12 depicts a typical One Sensor and Multiple Sensors application behaviours 
respectively, regarding CPU and memory consumption. In both scenarios, the average CPU load 

is below 1% with peaks less than 2.5%, and the average memory usage is less than 500kb, with 

peaks below 800kb, excluding the outliers. The exact values are detailed in Table 2 and the data 
distribution is presented in Figure 13. 
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Figure 11: Typical CPU and Memory usage behaviour for a test with one sensor 

 

 
 

Figure 12: CPU and Memory usage for one test of multiple sensors application 

 

Table 2: Average CPU and Memory usage - compilation of 30 experiments with one packet per second 

 

Application One Sensor Multiple Sensors 

Metric CPU (%) Memory (kb) CPU (%) Memory (kb) 
     

Minimum 0.804 193.41 0.685 168.25 

Maximum 0.955 1127.93 0.814 851.64 

Average 0.867 523.82 0.741 435.64 

Median 0.864 496.92 0.744 395.78 

1st quartile 0.846 377.49 0.724 291.05 

3rd quartile 0.886 590.72 0.757 581.72 

 

5.3. Processing Time 

 
The experiments initially performed in this work for assessing time used a processing rate of 1 

packet per second. Applying the Processing Time metric described in subsection 3.2, we 
collected the time spent in Input, Processing and Output layers. Figure 14 presents the 

distribution of time spent per processing layer. The Input step, responsible for collecting and 

parsing the raw data from sensors, is the fastest of all, consuming 728μs on average. The 
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Processing layer, that performs calculations and evaluates conditions, used on average 5554μs to 
complete the tasks. Output, the slower layer, consumed on average 108997μs to format and send 

data to the endpoints, which in this case, consisted of saving a local log file and sending to Node-

RED dashboard via HTTP. Proportionally, the Input process took 0.63%, the Processing layer 

consumed 4.82%, and the Output registered 94.55% of the time spent for processing the packets. 
Table 3 presents the detailing of processing time metric, and Figure 15 depicts the data 

distribution. 

 

 

 

Figure 13: CPU and Memory distribution - compilation of 30 experiments with one packet per second 
 

 

 

Figure 14: Average time spent per processing layer - 30 experiments with one packet per second - 

logarithmic scale 
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Table 3: Average processing time per layer - 30 experiments with one packet per second 

 

Application One Sensor Multiple Sensors 

Metric (μs) Input Processing Output Total Input Processing Output Total 
         

Minimum 674 5143 99760 105801 746 5727 98169 104713 

Maximum 698 5431 117701 123527 810 6120 115166 121722 

Average 687 5239 109886 115811 768 5870 108069 114707 

Median 688 5235 110025 115995 763 5850 108880 115446 

1st quartile 680 5199 108107 114061 758 5823 106168 112775 

3rd quartile 693 5275 112295 118200 773 5884 109873 116548 

 

 

 

Figure 15: Total time distribution - compilation of 30 experiments with one packet per second 
 

5.4. Output / Input Ratio 
 

The raw data received from sensors usually present a small size, containing only relevant 

information in a simple structure. The processing flow calculates new values that are included in 
the data packet and formatted as a JSON structure, containing symbols, delimiters, and 

identifiers. Moreover, data sent to client applications can assume diverse structures and formats 

such as XML, HTML, and CSV, increasing the size of the published data. If on the one hand the 
processed data packet has increased in size, on the other hand the STEAM++ application can 

evaluate conditions and send only relevant messages to the client applications. This feature acts 

like a filter, and can drastically reduce the amount of transmitted data, and consequently, decrease 

the network traffic. 
 

The data processing flow depicted in Figure 16 demonstrate the differences in formats and sizes 

comparing one single data input and its corresponding output data packet for Multiple Sensors 
experiments. The STEAM++ application receives the raw data packet, performs calculations and 

assembles the enriched data packet in JSON format. Next, the application sends the packet to the 

Node-RED dashboard, and at the same time, converts it to a Tab Separated Values string (TSV) 
and saves it in a log file. 

 

In Table 4, we present the differences in data sizes detailed by output method and application. 

Compared with the raw data, the TSV formatted log file size increases between 141.73% and 
182.22% due to the inclusion of the calculated values. However, the publishing to the chart 

dashboard requires a JSON format, resulting in the increment from 528.65% to 608.18% in whole 

data size, compared to raw data. Nevertheless, we only send messages to the dashboard’s text 
area when we detect an event. It acts as a filter over the processed data, decreasing the whole size 
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of published data. In this case, the overall output data stream decreased to 14.23% and 18.65% 
sizes compared to the input raw data stream. 

 

 

 

Figure 16: Data transformation during the processing flow - Multiple Sensors 
 

Table 4: Output / Input data size ratio 

 

Application One Sensor Multiple Sensors 

Metric Size (bytes) Ratio Size (bytes) Ratio 
     

Raw Data Input 2874 - 4146 - 

Log File 5237 182.22% 5876 141.73% 

Dashboard Chart 17479 608.18% 21918 528.65% 

Dashboard Message 536 18.65% 590 14.23% 

 

5.5. Testing to the limits 
 

Until this moment, the applications implemented and executed in the experiments presented a 

low consumption of CPU and memory, running a processing rate of 1 data packet per second. 
However, one expected contribution of the STEAM++ framework is enabling the development of 

near real-time IoT applications. To identify the limits of the processing speed and computational 

resource consumption, we stored the sensor’s data in a text file. Then, we fed the application at 
the highest data flow rate it could process. We repeated this test 30 times to obtain a reliable 

result set. 

 

In the first stress test scenario, we used the same Multiple Sensors Application detailed in 
Subsection 4.2, but we simulated the sensors reading and forced the data transmission to the limit 

of the speed. Figure 17 illustrates one typical test, which the average CPU load reached 15.4% 

with peaks of 33.3%, and the average memory consumption was 527.04kb. Considering all the 30 
tests, the CPU load registered 15.4% and memory 289.81kb in average. 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 14, No 1, February 2022 

48 

 

 

Figure 17: CPU and Memory usage for a high speed data flow - Publishing data and messages to a 
dashboard 

 

For the second stress test, we removed the publication of data and messages to the Node-RED 

dashboard, since the HTTP network communication is a typically slow task comparing to 
accessing local resources. In this scenario, we only saved the processed data and messages to a 

local log file. We depicted an arbitrary test case in Figure 18, but we also performed the test 30 

times. The average CPU load for this specific test case reached 22.4% with peaks of 66.7%, and 
the average memory usage was 271.74kb. Compiling all the 30 tests, the CPU load reached 

18.0% and memory consumption was 196.91kb in average. 

 

 

 

Figure 18: CPU and Memory usage for a high speed data flow - Saving data and messages to a local log 

file 
 

Regarding processing time, we completed the first test in 1827.578 ms, and the second one in 
380.895 ms on average. We identified that this time difference refers to publishing data to the 

dashboard hosted on the remote computer. Converting these measurements to packets processed 

per time, the first scenario could handle 49.79 packets per second, while the second reached the 

rate of 238.91 packets per second. In other words, when sending data to the dashboard, each 
packet consumed 20083μs, and when saving to a local log file, the same process lasted 4186μs. 

Table 5 presents the compilation of time spent per each processing layer collected from the 30 

stress tests. 
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Table 5: Average processing time per layer - 30 stress test experiments 

 

Output Dashboard File 

Metric (μs) Input Processing Output Total Input Processing Output Total 
         

Minimum 345 3133 11995 15503 354 3306 317 3993 

Maximum 427 3891 52688 57005 409 3553 421 4298 

Average 369 3302 16413 20083 372 3467 347 4186 

Median 366 3275 12800 16448 372 3497 339 4214 

1st quartile 360 3217 12629 16234 366 3430 332 4120 

3rd quartile 369 3315 13724 17460 377 3518 360 4251 

 

Comparing the stress test with the real-case test, more specifically the output step, we noticed a 
significant disagreement between the times elapsed on sending data to the Node-RED dashboard. 

In the real case test, while the average time taken by the output step was 108978μs, this same step 

performed in the stress test consumed 16413μs on average, processing exactly the same data. 

Analysing the network status with the netstat command, we identified inactive connections 
between the Raspberry Pi and the Node-RED while sending one packet per second, illustrated in 

Figure 19. However, we witnessed three established and no inactive connections on the stress 

tests, depicted in Figure 20. The need for establishing new connections after the one-second wait 
results in an overall time increasing measured on the output layer, however, it does not happen in 

the stress test that uses the same connections over the entire test. 

 

 

 

Figure 19: Network status of a real-case test 
 

 

 

Figure 20: Network status of a stress test 

 

6. CONCLUSIONS 
 

Aiming the particularities of the Industrial IoT, this article presented STEAM++, a framework to 

simplify the development of end-to-end IoT applications for real-time data analytics and 
decision-making in the edge, besides the capability of publishing processed data and events to a 

variety of services and formats. We also proposed a micro-benchmark methodology for assessing 

embedded IoT applications, monitoring CPU and memory usage, measuring processing time, and 

calculating output/input data size ratio. 
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One remarkable aspect of writing STEAM++ applications is its simplicity compared to build a 
from-the-scratch IoT application. The framework provides a set of ready-to-use classes and built-

in functions, making it unnecessary to use structured code, complex logic, loops, and conditional 

statements. This feature enables even non-programmers the possibility to develop rich IoT 

applications by simply configuring parameters. 
 

To show the feasibility of the STEAM++ framework, we implemented two real-case applications 

in a semiconductor industry and achieved consistent outcomes. Since one of our goals was to 
build lightweight fog computing solutions, we obtained on average less than 1.0% of CPU load 

and less than 436kb of memory consumption, besides fast response times, processing up to 239 

data packets per second, reducing the output data size to 14% of the input raw data size when 
notifying events, and integrating with a remote dashboard application. 

 

The IoT is spreading daily and evolving to diverse areas such as healthcare, transportation, 

agriculture, and industry, facing specific situations and challenging requirements. To reinforce 
the fog computing principles, in future research, we intend to extend the STEAM++ framework 

to other IoT areas, propose a scalable architecture to deal with a dynamic data processing 

demand, and develop more analytic and communication modules, consolidating all data 
processing in the network edge. 
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