
International Journal of Computer Science & Information Technology (IJCSIT) Vol 14, No 2, April 2022

DOI: 10.5121/ijcsit.2022.14203 19

FAILURE FREE CLOUD

COMPUTING ARCHITECTURES

Yolam Zimba1, Hastings Maboshe Libati2 and Derrick Ntalasha2

1University of Lusaka, Zambia

2Copperbelt University, Zambia

ABSTRACT

Cloud computing has gained popularity over the years, some organizations are using some form of cloud

computing to enhance their business operations while reducing infrastructure costs and gaining more

agility by deploying applications and making changes to applications easily. Cloud computing systems just

like any other computer system are prone to failure, these failures are due to the distributed and complex

nature of the cloud computing platforms.

Cloud computing systems need to be built for failure to ensure that they continue operating even if the
cloud system has an error. The errors should be masked from the cloud users to ensure that users continue

accessing the cloud services and this intern leads to cloud consumers gaining confidence in the availability

and reliability of cloud services.

In this paper, we propose the use of N-Modular redundancy to design and implement failure-free clouds.

KEYWORDS

Cloud Computing, Cloud Consumer, Failure Free, N-Modular Redundancy

1. INTRODUCTION

Cloud computing is an emerging method of computing that is prone to many challenges due to
the nature of its complexity. It is therefore important to understand that cloud systems just like

any other complex computing system, will contain flaws and experience failures. This does not

mean that cloud systems should be disqualified from performing important work, but it does

mean that techniques for detecting failures, isolating the failures and understanding the
consequences of the failures, and remediating the failures, should be employed and should be a

central issue for researchers to understand before the wide-scale adoption of cloud computing

systems [1].

Cloud Computing systems are distributed systems. [2] States that a key feature of distributed

systems is that they should mask failures and continue operating if some aspect of the system
fails. An important goal of distributed systems design is to design systems that can automatically

recover from partial failures without seriously affecting the overall performance of a system. A

system should continue to operate even in the event of a failure while the failure is being fixed

[2].

The techniques that are used to create the fault tolerance capabilities in cloud computing can be

divided into three categories. Redundancy techniques, fault tolerance policies, and load balancing
[5].

http://airccse.org/journal/ijcsit2022_curr.html
https://doi.org/10.5121/ijcsit.2022.14203

International Journal of Computer Science & Information Technology (IJCSIT) Vol 14, No 2, April 2022

20

The key technique for handling failures in computer systems is redundancy [2]. The redundancy
techniques ensure that cloud computing architectures are failure-free and they can handle faults

and continue operating even in the event of errors.

2. THE CONCEPT OF DEPENDABILITY

According to [2] being fault-tolerant or failure-free is strongly related to being dependable.

Dependability is a term that covers several useful properties for distributed systems. [2] further

define these properties as:

 Availability: This is the probability that a system is operating correctly at any given point

in time.

 Reliability: This refers to the property of a system being able to run continuously without

failure.

 Safety: This refers to the situation when a system temporarily fails to operate correctly

without catastrophic consequences.

 Maintainability: This refers to how easily a failed system can be repaired and brought

back to a state of operating correctly.

The dependability of a system according to [6] is defined as “the systems ability to avoid service
failures that are more frequent and more severe than is accepted”

Dependable cloud systems should deliver the correct services. Correct service is delivered when
the service implements the system function it was designed for[6]. Service failures occur when a

system transitions from correct service to incorrect service.

Many means have been developed to ensure that dependability in computer systems is attained.
These means can be grouped into four categories[6]:

 Fault Prevention: This involves the means to prevent the occurrence of failures.

 Fault Tolerance: This involves the means to avoid service failures in the presence of

faults.

 Fault Removal: This involves the means to reduce the impact of faults.

 Fault Forecasting: Involves the means to estimate the present and future fault incidents
and the likely consequences of the faults.

Fault prevention and fault tolerance techniques are aimed at ensuring that the services provided
by a computer system can be trusted, while fault removal and fault forecasting are aimed at

reaching confidence in the ability for services to be trusted by justifying that the functional and

dependability specifications are adequate and that the system is likely to meet the specifications

and functions[6].

3. SYSTEMS FAILURES

System failures are a result of faults that are caused by errors. [7] define faults as “any event that
occurs in a system which impacts the normal operation of the system. A fault is the fundamental

impairment of the normal system operation, faults cause errors.”

Errors cause a system to fail. In order for a system to continue operating during failures, fault
tolerance techniques need to be implemented or built into a system to ensure that failures are

masked and the system is failure-free. This is true for cloud systems. The fault tolerance

International Journal of Computer Science & Information Technology (IJCSIT) Vol 14, No 2, April 2022

21

techniques need to be implemented in cloud systems and this phenomenon should underpin cloud
systems as they are developed. Fault tolerance is defined as a measure of the ability of a system

to continue serving its client requests in the presence of a failure[7].

Fault tolerance is crucial for cloud systems to permit cloud users to continue accessing the needed
cloud services even in the presence of cloud failures[8]. The figure below represents how faults

cause errors and this, in turn, results in system failure.

Figure 1. Adapted from [8]

There are four kinds of system faults, each fault is briefly described below[7]:

 Transient faults: occur as a result of some temporary condition affecting the system. In

cloud computing, this includes conditions such as network connectivity failures and service

unavailability. Transient faults disappear as soon as they are rectified. Transient faults can
also be resolved by restarting system components.

 Intermittent faults: occur randomly at irregular intervals and they normally resemble

malfunctioning of a system, hardware device, or component. Intermittent faults are
extremely difficult to diagnose and resolve permanently. An example could be a hard disk

that stops functioning as a result of temperature fluctuations but it returns to normal at

some stage.

 Permanent faults: These faults continue to exist until the root cause of the fault is found

and resolved. These faults normally occur as a result of a complete malfunction of a system

component, and it is normally straightforward to diagnose permanent faults.

 Byzantine faults: These faults are the hardest to detect. With Byzantine Faults, a system
component might behave illogically and provide incorrect results to the client. This can be

a result of a corrupted internal state of a system, data corruption, or incorrect network

routes. They are extremely hard and expensive to handle.

4. BUILDING FAILURE-FREE CLOUD SYSTEMS

The previous sections have introduced the basic concepts of dependability and the need for

dependable cloud systems. This section will delve deeper and look at two main approaches that
are used to build failure-free cloud systems

.

Understanding failure in cloud systems helps cloud service providers and cloud system
developers build cloud systems that are resilient and able to continue even if there is a failure.

Building cloud systems for failure involves using fault tolerance techniques to ensure that cloud

systems continue operating even in the event of a failure. [9] theorises that fault tolerance ensures
more availability and reliability of cloud services during application execution.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 14, No 2, April 2022

22

Fault tolerance approaches are necessary as they aid in detecting and handling faults in cloud
systems that may occur either due to hardware failure or software faults [8]. Fault tolerance is

especially crucial in cloud platforms as it gives assurance regarding the performance, reliability,

and availability of cloud applications and services. It is therefore important to understand fault

tolerance in order to build failure-free cloud systems. Fault-tolerant systems can continue
responding to client requests even when certain parts of a system are experiencing failures.

There are two common approaches used to build resilient cloud systems. The first approach is the
reactive approach. With this approach, the influence of the failure on the cloud system is

decreased after the fault or failure has occurred[8]. The following techniques are used to achieve

reactive fault tolerance:

 CheckPointing: This technique involves saving the system state at a certain point in time.

If for some reason the system fails, it can still roll back to the point or state that was last

saved.[11]. When failures occur, tasks can resume on a different physical machine based

on the last saved checkpoint image. In other words, the tasks need not be restarted from the
beginning but only from the last saved state. Checkpointing can reduce lost time due to

physical machine faults and improve cloud service reliability [12].

 Replication: Replication involves sharing information between redundant components to
ensure consistency. The redundant components could be hardware or software systems.

The main aim of replication is to ensure that cloud systems are robust, available, and

reliable[7]. Replication creates multiple copies of tasks and stores replicas at different
locations, the tasks continue execution in the presence of malfunction or failures until all

replicas are destroyed. This appraoch ensures that cloud services remain accessible to

cloud users even in the event of failures[8]. In the replication mechanism, the same task is

synchronously or asynchronously handled on several physical servers or virtual machines.
This mechanism ensures that at least one replica can complete the task on time in case the

other servers or components are in a state of failure. The replication mechanism has high

implementation costs, hence this mechanism is more suitable for real-time or critical cloud
services[12]. The replication technique works by duplicating system components which are

then deployed simultaneously across different cloud resources. This technique aims to

make the system robust, increase availability, and guarantee the execution of jobs or

workloads in cloud systems [7].

 Retry: With the retry approach, a task or request is constantly executed until it is

processed[8]. This approach is suitable for transient failures. Retry is the simplest of all

fault tolerance mechanisms[13]. It is simple because the cloud user resubmits the request
until it is executed on the same cloud resource. The retry approach works by simply

retrying a failed request on the same resource multiple times [7].

With the retry method, a retry mechanism is applied to recover from the effects of a fault.

This mechanism makes the defective module retry its activity for some time. If the fault

lasts longer than the retry period, then it is considered a permanent fault. The retry period

should be long enough to make the transient fault disappear and short enough to avoid
overlapping of faults [14].

 Job Migration: This technique involves migrating tasks that have failed to execute on a

specific physical resource because of component failure onto a different physical resource
[8].

International Journal of Computer Science & Information Technology (IJCSIT) Vol 14, No 2, April 2022

23

 Task Resubmission: With task resubmission, a failed task is detected and resubmitted to

the same or different cloud resource for execution [7]. Task resubmission and replication
techniques are widely used techniques in distributed systems for fault tolerance. This

technique consumes a lot of system resources since failed tasks are continuously being

resubmitted to the same or different cloud resources [7]. Task resubmission enables a

system to continue working after the failure of the task until it will not be able to proceed
without amending the fault [8].

 Rescue Workflow: Rescue workflow techniques are aimed at solving fault tolerance for

workflow-based systems. The workflow is allowed to continue even if the task fails until it
becomes impossible to continue without attending to the failed task [7].

 SGuard: SGaurd is based on rollback recovery. The use of the checkpointing technique

for fault tolerance is expensive, SGuard improves efficiency by best utilization of
resources through new file systems like the GFS(Google File System) and the

HDFS(Hadoop Distribution File System)[14]. SGuard checkpoints the state of stream

processing nodes periodically and restarts failed nodes from their most recent checkpoints.

Unlike other fault-tolerance methods, SGuard performs checkpoints asynchronously by
continuously checking operators processing streams during the checkpoint and in turn

reducing the potential disruption due to the checkpointing activity [15].

A second approach is a proactive approach. With the proactive approach, failures are

detected before they occur, when the failure is predicted, the job or workload is moved to

another virtual machine or server that is more stable. This approach avoids recovery from
errors by ensuring that failures or faults are identified and dealt with before they occur,

this, in turn, ensures that cloud services are highly available to cloud consumers[8]. The

main techniques used for proactive fault tolerance are described below:

 Self Healing: This technique enables the cloud system to automatically detect, diagnose
and repair software and hardware faults. Such systems are made up of multiple

components that are deployed on multiple Virtual Machines[7]. Numerous instances of the

same application run on various Virtual Machines, this ensures that the failure of the
application's instances are handled automatically. This method permits the cloud system to

recognize and heal from problems occurring, without depending on the administrator [8].

 Software Rejuvenation: This method is designed for periodic restarts[7]. In this approach,
the system undergoes periodic reboots and begins from a new state every time [8].

 Preemptive Migration: This technique prevents the system components that are about to

fail from impacting the performance of the system[7]. This is achieved through monitoring

and by moving components away from nodes that are about to fail and run them on more
stable nodes. This method uses a feedback loop to constantly monitor and analyse

applications for failure [8].

 Load Balancing: This approach is used to balance the load of memory and CPU when it
exceeds a certain limit. The load of exceeded CPU is transferred to some other CPU that

does not exceed its maximum limit.[8]. Load balancing is not limited to just CPU and

memory, load balancing fault tolerance techniques can be implemented via hardware,

software, and networks[16]. Load balancing in cloud computing is based upon the
distribution of workloads. It balances all workload requests by various resources. These

resources could be virtual machines, physical servers, and frameworks[17]. Load balancing

International Journal of Computer Science & Information Technology (IJCSIT) Vol 14, No 2, April 2022

24

mechanisms are considered to be one of the best fault-tolerance methods in cloud
computing because these methods provide easy logical resource management in cloud

computing environments [16]. Even though [16] has stated that load balancing is one of

the best fault-tolerance methods, it has a single point of failure. The load balancer itself is a

potential point of failure.

A third method for building fault-tolerant cloud systems called the Resilient Fault Tolerance

method. This approach is proposed by[7]. Resilient fault tolerance methods involve building
intelligent cloud systems. These cloud systems can predict failure in the cloud system and

respond to failure automatically without human intervention. These smart cloud systems can

learn failures and the appropriate response to the failure by using Machine Learning and
Artificial Intelligence. The use of resilient fault tolerance techniques for cloud systems is leading

to the development of cloud systems that are termed smart clouds [7].

All the techniques mentioned above are aimed at developing architectures and services that are
highly available, scalable, secure, and fault-tolerant [22] to ensure that the services provided by

cloud systems are failure-free. These approaches bring about a justifiable level of trust in the

cloud systems and services provided by cloud service providers.

5. RELATED WORK

The previous sections introduced the concepts of dependability and fault- tolerance as a means to

build failure-free clouds. This section will look at what other researchers have written or done
concerning the subject of fault-free cloud computing architectures.

In [5] Fault Tolerance Policies (Reactive and Proactive Policies) are suggested as a means of
building failure-free clouds. The policies in [5] can be applied to hardware and software. These

techniques are quite complex to implement and might introduce points of failure in a cloud

system due to the nature of their complexity.

In [18] the use of an Artificial Neural Network for fault detection and a heartbeat detection

strategy is proposed. This is rather complex and might need specialized skills to manage. This

complexity in it self makes it difficult to manage this implementation. [22] define a heartbeat as a
cluster management software that enables a cluster infrastructure to identify its hosts, active and

inactive, by periodic message exchanges.

In [19] a hybrid cloud using open source software to implement fault tolerance is proposed. [21]

used an architectural approach to effectively represent and analyse fault-tolerant software

systems. This solution relies on exception handling to tolerate faults associated with component
and connector failures, architectural mismatches, and configuration faults. The approach by[21]

is more focused on software systems.

Antifragility is a technique proposed by [24], the proposal by [24] suggests the use of failure
induction techniques which are comprised of monitoring and learning mechanisms. Antifragility

is a phenomenon that proposes that systems can be strengthen when they are exposed to aberrant

conditions in their operating environment. This technique is not very different from chaos
engineering which proposes the experimental injection of faults into systems in production so as

to observe the behavior of the system and come up with resilient solutions that enable the system

to operate under aberrant conditions [25]. Through exposure to shocks and knocks the system is

able to adjust and adapt to these conditions [24].

International Journal of Computer Science & Information Technology (IJCSIT) Vol 14, No 2, April 2022

25

[25] posits that chaos engineering is one technique that can be used to build reliable cloud
systems by injecting faults in the system while it is in production. Chaos engineering is widely

used at Netflix, [25] further states that other cloud service providers use this technique but use

other names to describe the same phenomenon.

6. N-MODULAR REDUNDANCY

The previous section looked at some of the research that has been done in terms of fault tolerant

computing. These techniques are rather complex and bring in overheads interms of processing
and the cost of the infrastructure and daily operation. This section will focus on redundancy as a

solution for providing failure free clouds. Redundancy implementation topologies are discussed.

Cloud computing is distributed in nature and this in itself brings in complexity. We propose the
use of N-Modular redundancy especially for hardware redundancy.

Redundancy may be applied to hardware, information, and software that governs the operations

of a cloud system. Various configurations of redundant system design may be used based on the
cost, performance, associated risk, and management complexity. These configurations take

various forms, such as N, N+1, N+2, 2N, 2N+1, 2N+2, 3N/2. These multiple levels of

redundancy topologies are described as N-Modular Redundancy [23].

[23]further breaks down the building blocks of N-Modular redundancy by describing them as

follows:

1. In N-Modular Redundancy(NMR), N refers to the bare minimum number of independent

components required to successfully perform the intended operation.

2. N+X refers to a redundant system that contains X number of spare components to act as an
independent backup when the primary component fails to operate as intended.

3. YN refers to the number of times the capacity is available to replace the entire set of

original components.
4. YN+X refers to the combination of the above two topologies(N+X and YN).

5. AN/B refers to a shared redundancy topology, where A amount of backup capacity is

available for total B amount of load or original components.

The choice of the redundancy topology largely depends on what level of availability is required.

Redundancy brings in extra cost and complexity in cloud systems. It is critical that organisations

consider the level of availability required and they should be able to take on the risk of increased
cost and system complexity.

Redundancy systems may offer Active, Passive, Load Sharing, or Standby configuration. Active
redundancy means that the redundant component is operating simultaneously with the primary

component, but the secondary component or node is only used when the primary component

fails. The Passive component is switched on only after the original component fails. The Standby

redundancy component fills in the availability gap temporarily until the issue with the primary
component is resolved. Additional load-sharing redundancy may be applied to offer partial

redundancy in meeting the necessary resilience goals in an event that there is an increase in

workloads leading to the stressing of the cloud system[23]. The load balancing mechanism
should detect this increase and distribute the workload to other standby nodes to ease the stress

on the cloud system. This will in turn lead to improved quality of service in terms of the response

time experienced by the cloud consumer.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 14, No 2, April 2022

26

7. ARCHITECTURAL DIAGRAMS

The above sections have mostly given descriptions of the N Modular reduancy architectures. In

this section, we present the architectural diagrams of some of the N Modular redundancy

architectures as a way of qualifying the concepts described above. In this section, we present the

architecture when N=1, N+1 and 2N+1

When N=1, the failure of the Virtual Machine(VM1) will mean that the cloud system will not be

accessible. Users will not be able to perform any computing functions on the system until VM1 is
restored.

Figure 2. N=1, adapted from [26] [27]

Figure 3. N+1, adapted from [26] [27]

International Journal of Computer Science & Information Technology (IJCSIT) Vol 14, No 2, April 2022

27

In the figure above, the N+1 architecture is shown. In this architecture, VM2 can either be live or
on standby. When both virtual machines are live, the load is shared between the two virtual

machines. Data is replicated between VM1 and VM2 so that if VM1 has a problem, the load can

be transferred to VM2 and users will continue operating without noticing a significant shift in the

performance of the cloud system.

Figure 4. 2N+1, adapted from[26][27]

In the architecture shown above,VM1,VM2 and VM3 are all connected, data is replicated
amongst the virtual machines. The load can be shared amongst the three virtual machines to

improve the performance of the virtual machine. VM1 and VM2 can be in production while VM3

is on standby, VM3 will move into live status if there is a problem with VM1 or VM2 and in
some cases VM1 and VM2 can have a problem at the same time. In such a scenario VM3 will be

live while errors on VM1 and VM2 are resolved.

8. CONCLUSION

In this paper we introduced the concept of dependability in computer systems and proceeded by

explaining the failures that affect computer systems and the methods that can be used to bulid

failure free clouds. We propose the use N-Modular redundancy topologies when designing and
implementing failure free clouds. We also state that the topology chosen depends on the level of

availability or dependability that should be gained from the cloud system. We further show

examples of the architural diagrams as proof of concept.

REFERENCES

[1] Lee Badger, Tim Grance, Robert Patt-Corner, Jeff Voas, NIST Special Publication 800-146: Cloud

Computing Synopsis and Recommendations: May 2012.

[2] Andrew S. Tanenbaum, Maarten Van Steen, Distributed Systems: Principles and Paradigms, Second

Edition, Prentice Hall, Pearson Education,2007, Upper Saddle River NJ 07458.

[3] Martin L. Shooman, Reliability of Computer Systems and Networks: Fault Tolerance, Analysis, and

Design,2002 John Wiley & Sons, Inc.

[4] Antonio Bucchiarone, Henry Muccini and Patrizio Pelliccione, Architecting Fault-tolerant

Component-based Systems: from requirements to testing, Electronic Notes in Theoretical Computer

Science 168 (2007) 77–90

International Journal of Computer Science & Information Technology (IJCSIT) Vol 14, No 2, April 2022

28

[5] Ehdi Nazari Cheraghlou, Ahmad Khadem-Zadeh, and Majid Haghparast,2015:A SURVEY OF

FAULT TOLERANce Architecture in Cloud Computing, Journal of Network and Computer

Applications,http://dx.doi.org/10.1016/j.jnca.2015.10.004.

[6] Algirdas Avizienis, Jean-Claude Laprie, Brian Randall and Carl Landwehr, Basic Concepts and

Taxonomy of Dependable and Secure Computing, IEEE Transactions on Dependable and Secure
Computing, Volume 1, Number 1, January-March 2004.

[7] Mukosi A. Mukwevho and Turgay Celik, Toward a Smart Cloud: A Review of Fault-Tolerance

Methods in Cloud Systems, Transactions on Services Computing, DOI

10.1109/TSC.2018.2816644,2018.

[8] Priti Kumari and Parmeet Kaur, A survey of fault tolerance in cloud computing: Journal of King Saud

University Computer and Information sciences,2018.

[9] Eman AbdElfattah, Mohamed Elkawkagy and Ashraf El-Sisi,A Reactive Fault Tolerance Approach

For Cloud Computing, 2017 13th International Computer Engineering Conference

(ICENCO),Electronic ISSN: 2475-2320.

[10] Madhu B. K and Ghamdan. M. Q, Proactive Fault Tolerance for Resilience Cloud Data Centers to

Improve Performance Efficiency, International Journal of Engineering Research & Technology,

ISSN: 2278-0181, Special Issue - 2016.
[11] Ao Zhou, Qibo Sun, Jinglin Li, Enhancing Reliability via Checkpointing in Cloud Computing

Systems, China Communications 2017.

[12] Jialei Liu, Shangguang Wang, Ao Zhou, Sathish A.P Kumar, Fangchun Yang, and Rajkumar

Buyya,Using Proactive Fault-Tolerance Approach to Enhance Cloud Service Reliability,IEEE

Transactions on Cloud Computing,DOI 10.1109/TCC.2016.2567392.

[13] Zeeshan Amin, Nisha Sethi, Harshpreet Singh, Review on Fault Tolerance Techniques in Cloud

Computing,International Journal of Computer Applications (0975 – 8887) Volume 116 – No. 18,

April 2015.

[14] Atul Kumar, Deepti Malhotra, Study of Various Reactive Fault Tolerance Techniques in Cloud

Computing, International Journal of Computer Sciences and Engineering, Vol-6, Special Issue-5, Jun

2018 E-ISSN:2347-2693.
[15] Yong Chul Kwon, Magdalena Balazinska, Albert Greenberg, Fault-tolerant Stream Processing using

a Distributed, Replicated File System,2008.

[16] Mehdi Nazari Cheraghlou, Ahmad Khadem-Zadeh, Majid Haghparast,A survey of fault tolerance

architecture in cloud computing,Journal of Network and Computer Applications,2015.

[17] Renu Sharma, Manohar Mishra, Janmenjoy Nayak, Bighnaraj Naik, Danilo Pelusi, Innovation in

Electrical Power Engineering, Communication, and Computing Technology,Proceedings of IEPCCT

2019.

[18] Amin, Z., Sethi, N., Singh, H., “Review on Fault Tolerance Techniques in Cloud Computing”

International Journal of computer Applications, Vol. 116, April 2015, p. 11-17.

[19] E.M. Hernandez-Ramirez, V.J. Sosa-Sosa, I.Lopez-Arevalo,A Comparison of Redundancy

Techniques for Private and Hybrid Cloud Storage, Journal of Applied Research and Technology,Vol.

10,December 2012
[20] Elena Dubrova,Fault-Tolerant Design,Springer New York Heidelberg Dordrecht London,DOI

10.1007/978-1-4614-2113-9,2013.

[21] Rogério de Lemos, Paulo Asterio de Castro Guerra and Cecília Mary Fischer Rubira,A Fault-Tolerant

Architectural Approach for Dependable Systems, IEEE Computer Society, 2006.

[22] Rosangela Melo, Vicente de Paulo F. Marques Sobrinho, Ivanildo José de Melo Filho, Fábio

Feliciano, Paulo Romero Martins Maciel, Redundancy Mechanisms Applied in Cloud Computing

infrastructures, 2019.

[23] Muhammad Raza,N, N+1, N+2, 2N, 2N+1, 2N+2, 3N/2 Redundancy

Explained,https://www.bmc.com/blogs/n-n1-n2-2n-3n-redundancy/, accessed on 2nd July 2021.

[24] Amal Abid, Mouna Torjmen Khemakhem, Soumaya Marzouk, Maher Ben Jemaa, Thierry Monteil,

Khalil Drira, 2014, Toward Antifragile Cloud Computing Infrastructures, 1st International Workshop
”From Dependable to Resilient, from Resilient to Antifragile Ambients and Systems”

(ANTIFRAGILE 2014), Procedia Computer Science 32 (2014) 850 – 855

[25] Russ Miles, 2019, Learning Chaos Engineering, First Edition, O’Reilly Media, United States of

America.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 14, No 2, April 2022

29

[26] Data Center Redundancy: N+1, 2N, 2(N+1) or 3N2, https://datacenter.com/news_and_insight/data-

center-redundancy-2plus1-2n-distributed-redundancy/ last accessed on 28th April 2022.

[27] An Introduction to UPS Redundancy, http://www.feace.com/single-post/an-introduction-to-ups-

redundancy last accessed on 28th April 2022

	[26] Data Center Redundancy: N+1, 2N, 2(N+1) or 3N2, https://datacenter.com/news_and_insight/data-center-redundancy-2plus1-2n-distributed-redundancy/ last accessed on 28th April 2022.
	[27] An Introduction to UPS Redundancy, http://www.feace.com/single-post/an-introduction-to-ups-redundancy last accessed on 28th April 2022

