
International Journal of Computer Science & Information Technology (IJCSIT) Vol 15, No 4, August 2023 

DOI:10.5121/ijcsit.2023.15402                                                                                                                      13 

 
DETECTION OF STRUCTURED QUERY LANGUAGE 

INJECTION ATTACKS USING  
MACHINE LEARNING TECHNIQUES  

 

Taapopi John Angula  and Valerianus Hashiyana 

 

Department of Computing, Mathematical and Statistical Sciences, University of 

Namibia, Windhoek, Namibia  
 

ABSTRACT  
 
This paper presents a comparative analysis of various machine learning classification models for 

structured query language injection prevention. The objective is to identify the best-performing model in 
terms of accuracy on a given dataset. The study utilizes popular classifiers such as Logistic Regression, 

Naive Bayes, Decision Tree, Random Forest, K-Nearest Neighbors, and Support Vector Machine. Based on 

the tests used to evaluate the performance of the classifiers, the Naïve Bayes gets the highest level of 

accurate detection. The results show a 97.06% detection rate for the Naïve Bayes, followed by 

LogisticRegression (0.9610), Support Vector Machine (0.9586), RandomForest (0.9530), DecisionTree 

(0.9069), and K-Nearest Neighbor (0.6937). The code snippet provided demonstrates the implementation 

and evaluation of these models.  

 

KEYWORDS 

 
Classification models, SQL-I, Python, Machine learning, Evaluations 

 

1. INTRODUCTION  
 

SQL (structured query language) injection vulnerabilities encompass the measures inculcated to 
protect individual websites, network systems, and database infrastructures that host different 

applications. As viewed by [1], they cause sections of institution’s web pages to hang 

significantly, further increasing the spread of viruses, network paralysis, data privacy breaches, 

and remote control of the servers. According to [2], the straightforward nature of SQL injection 
vulnerabilities makes them a prime choice for network attacks aimed at infiltrating targeted 

systems. One of the common ways hackers intrude into databases is through an SQL injection 

attack [2]. This fact explains why programmers rely on using different modes to create codes that 
may be used in addressing these vulnerabilities [3]. However, several challenges have been 

exhibited that span from the limitations in accessing input data’s authenticity during the design 

and the development of codes, which poses security concerns [4]. To this effect, SQL-I is a web 
application security vulnerability that permits an attacker to execute mischievous SQL statements 

on a web application’s backend database hosted on an SQL server.   

 

This paper focuses on SQL injection attack detection and prevention that specifically target user 
input fields in web server applications, such as XAMP. The objective of these attacks is to exploit 

vulnerabilities in the system by injecting malicious SQL statements. SQL injection is a type of 

web attack where an attacker inserts inputs that are executed as sequential queries. The targeted 
system is typically unprepared to handle such input, leading to potential data disclosure and 

https://airccse.org/journal/ijcsit2023_curr.html
https://doi.org/10.5121/ijcsit.2023.15402


International Journal of Computer Science & Information Technology (IJCSIT) Vol 15, No 4, August 2023 

14 

unauthorized access. The consequences of a successful attack can be severe, impacting the 
security aspects of confidentiality, integrity, and data availability.  

 

During an SQL injection, the malicious actor inserts an SQL statement into an input field on a 

client web application i.e., login page username field to access a database server. SQL is used to 
represent queries to database management systems (DBMSs). Maliciously injected SQL statement 

is designed to extract or modify data from the database server [5].  
 

A successful injection can lead to verification and circumvention, as well as alterations to the 

database through the insertion, alteration, or removal of data, resulting in data loss and potential 

destruction of the entire database. Additionally, this type of attack has the capability to 
overwhelm and execute commands on DBMS, often leading to more severe consequences [5]. 

Consequently, SQL injection attacks pose significant risks to organizations. Numerous studies 

have been conducted to address this threat, introducing diverse artificial intelligence (AI) 
approaches for detecting SQL injection attacks using machine learning and deep learning models 

[5]. This approach includes threat detection by learning from past data that represents both attacks 

and normal data.   
 

On that bases historical data has become valuable for teaching machine learning (ML) models to 

recognize attack patterns, comprehend detected injections, and even predict future attacks before 

they occur [5]. In light of this the malicious actor and security defender of SQL injection attacks 
must possess an understanding of how the SQL language operates in order to exploit its 

vulnerabilities [6]. To extract or modify data from a database, queries must be written using the 

SQL language and adhere to a standardized syntax, such as: "SELECT * FROM users WHERE 
username = 'John_Doe'".  

 

The above query is employed to fetch data from a table named "users." In this query, the asterisk 
(*) denotes all columns, while the condition "WHERE username = 'John_Doe'" specifies that only 

rows with the username 'John_Doe' should be selected. This query allows user to retrieve user 

records from the database that match the specified username ‘John_Doe’.  

 
Now, let’s assume a malicious actor wants to inject malicious SQL to the given query; i.e., 

 

 " SELECT∗ FROM users WHERE   username = ′John_Doe′  " 
 

What would most likely happen is that the malicious actor would add ' OR '1'='1 to the end of the 

above query. This would result in all the details in the table called users to be returned as a result 

of the that addition. The typical representation would be type like this:  
 

 "SELECT ∗ FROM users WHERE username = ′John_Doe′OR′1′ = ′1′ " 
 
All the data from the users table will be returned because the added string '1'='1' always equals 

true and adding OR informs the database that it should return all the data from the users table 

WHERE the username = ‘John_Doe’ or 1 = 1. Meaning this query would always return all the 

other users’ details because 1 is aways equal to 1. This type of attack is sometimes referred to as a 
tautology type attack [7]. In addition, tautology type attacks aren’t the only type of attacks that 

represent a threat to databases and web applications. According to [5], alternative techniques, 

apart from tautology, can be employed, like when a malevolent intruder purposely inserts a wrong 
query to force the database server into producing a typical error page. This page could potentially 

contain valuable insights that could assist the intruder in comprehending the database, thereby 

facilitating a more sophisticated assault. The term "UNION" can similarly be leveraged to extract 
data, in addition to numerous other approaches rooted in the same concept of exploiting SQL 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 15, No 4, August 2023 

15 

syntax to extract or modify information within the designated database. The below example 
shows this other method:  

 

SELECT * FROM users WHERE username=''  

UNION  
SELECT * FROM users WHERE 1=1;  

 

Given the dangers identified from SQL injections, the question that remains is how an 
organization or developer can detect and prevent such attacks from affecting them?  

 

As indicated earlier one method could be using ML, where a classifier is trained using a large 
dataset of labeled data then allowed to identify if a username contains any SQL injection or not. 

The outcome of which is to identify and reject requests to the database if suspicious activity is 

identified. The labeled dataset is used on a ML that employs a supervised learning method. This 

translates to bad data being labeled as bad and good data as good, this helps the ML learn and 
recognize the difference between good and bad data such that when it come cross any of the two 

it would be able to correctly assume and act.  

 
[5], further elaborate on supervised learning, which involves using a labeled training dataset to 

train a classifier. In this approach, the input data is already labeled as normal or abnormal, 

enabling the algorithm to establish a straightforward mapping between the input and the known 
output. The algorithm iteratively modifies its weights until achieving an acceptable classification 

accuracy. Subsequently, a separate test dataset is employed to evaluate the classifier's 

performance. If the results fall within an acceptable accuracy range, the classifier becomes 

capable of detecting novel data that was not part of the training or testing process. However, 
generating and labeling the training and testing data can be time-consuming, especially for 

complex attacks. Supervised learning encompasses two main categories: classification and 

regression algorithms. Popular examples of supervised learning algorithms include Bayesian 
networks, decision trees, support vector machines, K-nearest neighbors, and neural networks. The 

foremost input of this paper is to provide a systematic review of machine learning techniques and 

input validation that are used to detect and prevent injections. Through this comprehensive 

review, our objective is to provide the insights and enhance the comprehension of the 
convergence of an SQL injection attack and artificial intelligence, thereby keeping researchers 

well-informed of the current developments in this field.  

 

2. OBJECTIVES  
 

The main objective of this research is to detect structured query language injection attacks (SQL-

I) using machine learning techniques and achieve the following sub-objectives:  
 

a) Evaluate the effectiveness of different machine learning classification models for 

SQLdetection.  

b) Identify the model(s) that demonstrate the highest accuracy and performance in detecting 
SQL-I attacks.  

c) Determine the most suitable model(s) for building a robust SQL-I detection system.  

d) Compare the models based on metrics such as accuracy, precision, recall, F1-score, and 
computational efficiency.  

e) Provide insights and recommendations for selecting and implementing machine learning 

models for SQL-I prevention in real-world applications.  

 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 15, No 4, August 2023 

16 

3. BACKGROUND AND RELATED WORK  
 

[8] provide a foundational review of the types of SQL injection attacks being broadly categorized 

into In-band and Out-of-band. The former occurs when the attacker can receive the results of the 
injected SQL query through the same channel as the web application. On the other hand, out-

ofband attacks involve the attacker receiving the results through a different channel, such as email 

or a separate website. They further suggest some counter measures such as input validation, 
parameterized queries, and stored procedures. Input validation involves checking the user input 

for malicious SQL code before it is sent to the database. While, parameterized queries and stored 

procedures use pre-defined SQL commands that do not allow for arbitrary user input.  
 

[9] add to the foundation laid by stating that on top of these counter measures, machine learning 

techniques can be applied to detect SQL injection attacks.These methods include decision trees, 

neural networks, and support vector machines. By training the machine learning models with a 
large dataset of legitimate and malicious queries, the models can detect the malicious queries with 

high accuracy.  

 
In conclusion, the combination of both methods provides an efficient way to detect and prevent 

SQL injection attacks.  

 

4. METHODOLOGY  
 
The research adopts a comparative analysis methodology to assess and identify machine learning 

classification models that are most effective in preventing SQL injection attacks on a given 

dataset. The primary objective is to evaluate the performance of different models and determine 
the optimal model(s) for SQL injection prevention.  

 

4.1. Research Design  
 

The research employed a quantitative research design to conduct a comparative analysis of 

machine learning classification models for SQL injection prevention on a given dataset. The study 
encompassed a review of existing research materials, including journal articles, conference 

papers, articles, blogs, books, webpages, and academic tools.The research project was divided 

into several stages to ensure a systematic and comprehensive approach. The stages followed in the 
study are as follows:  

 

4.1.1. Dataset Selection 

 
4.1.1.1. Identified a suitable dataset specifically designed for evaluating SQL injection 

prevention models.  

4.1.1.2. Ensured the dataset encompassed a diverse range of SQL injection attack instances 
and benign queries, representing real-world scenarios.  

 

4.1.2. Preprocessing and Feature Extraction 
 

4.1.2.1. Performed necessary preprocessing steps on the dataset, such as data cleaning, 

handling missing values, and ensuring data quality.  

4.1.2.2. Extracted meaningful features from the dataset using appropriate techniques, such as 
tokenization, vectorization, or n-gram representation, to represent the SQL queries 

effectively.  

 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 15, No 4, August 2023 

17 

4.1.3. Model Selection 
 

4.1.3.1. Evaluated various machine learning classification models suitable for SQL injection 

prevention, such as decision trees, logistic regression, support vector machines, 

neural networks, and others.  
4.1.3.2. Considered factors such as model performance, interpretability, computational 

requirements, and scalability to select the most promising models for further 

evaluation.  

 

4.1.4. Model Training and Evaluation 

 
4.1.4.1. Trained the selected models using the preprocessed dataset, allowing the models to 

learn the patterns and characteristics of SQL injection attacks and normal queries.  

4.1.4.2. Evaluated the trained models' performance using appropriate metrics, including 

accuracy, precision, recall, and F1-score, to assess their effectiveness in SQL 
injection prevention.  

 

4.1.5. Comparative Analysis 
 

4.1.5.1. Conducted a comprehensive comparative analysis of the trained models, considering 

their strengths, weaknesses, and suitability for SQL injection prevention.  
4.1.5.2. Compared the models based on metrics, interpretability, and scalability to identify 

the optimal model(s) for SQL injection prevention on the given dataset.  

 

4.1.6. Results and Conclusions  
 

4.1.6.1. Analyzed and interpreted the results obtained from the comparative analysis.  

4.1.6.2. Drew conclusions on the performance and effectiveness of the different machine 
learning classification models in SQL injection prevention.  

4.1.6.3. Provided recommendations and insights based on the findings to guide future 

research and implementation of SQL injection prevention systems.  

 
By following these stages, the research project aimed to provide valuable insights into selecting 

the most suitable machine learning classification models for SQL injection prevention, 

contributing to the development of effective security measures for database systems and web 
applications.  

 

4.2. Dataset Selection  
 

To conduct the study, A dataset containing both malicious and benign payloads was needed. 

Specifically the SQL statements for SQL injection (SQL-i). Our datasets primarily focused on 
payloads transmitted via HTTP requests to web applications. It's important to note that our 

research did not cover other types of XSS attacks, such as "reflected." The collection obtained 

encompasses a wide range of payloads, including obfuscated and non-obfuscated scripts, as well 
as both long and short scripts, covering SQL-i.  

 

Table 1 displays all the harmful and benign scripts collected from this data, encompassing SQL 

injections, and regular text. It's worth noting that the datasets contain a limited number of SQL 
injections, which is significant given the presence of malicious payloads within financial 

institutions' systems. Web pages have a short lifespan in terms of appearance, making datasets 

containing such attack payloads scarce.  
 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 15, No 4, August 2023 

18 

Table 1. Benign and Malicious Scrips  

 

Type Benign Malicious Total  

SQL-i 1,050  3,150  4,200  

 
The acquired data was used to construct datasets with the purpose of providing a simulation of 

intrusions in Namibia’s banking system. The dataset was split into two parts: one portion was 

used for training the models, while the other half was used for evaluating their performance. Once 
the classifiers were developed, the testing datasets were used in the evaluation process.  

 

4.3. Preprocessing and Feature Extraction  
 

Jupiter Notebook environment for python 3 was used in the entirety of this study. This 

environment was best suited for this study because it comes preinstalled with the vast majority of 
data analysis tools and machine learning libraries.  

 

The pandas libraries was used to conduct the data analysis and manipulation via the following 

command: 
 

𝑖𝑚𝑝𝑜𝑟𝑡 𝑝𝑎𝑛𝑑𝑎𝑠 𝑎𝑠 𝑝𝑑  # 𝐼𝑚𝑝𝑜𝑟𝑡 𝑡ℎ𝑒 𝑝𝑎𝑛𝑑𝑎𝑠 𝑙𝑖𝑏𝑟𝑎𝑟𝑦
 𝑓𝑜𝑟 𝑑𝑎𝑡𝑎 𝑚𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 
 

In addition, the large dataset was imported into Jupyter Notebook as a Pandas dataframe using:  

𝑝𝑑. 𝑟𝑒𝑎𝑑_𝑐𝑠𝑣command. The actual implementation is:  

 

 𝑑𝑓 = 𝑝𝑑. 𝑟𝑒𝑎𝑑_𝑐𝑠𝑣(′𝑑𝑎𝑡𝑎𝑠𝑒𝑡/𝑠𝑞𝑙𝑖. 𝑐𝑠𝑣′, 𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔 = ′𝑢𝑡𝑓 − 16′) 
 

The above simply reads the csv file into a pandasdataFrame, specify the file path and encode as 

'utf-16' since the file was encoded in UTF-16 format.  
 

Given the data frame being defined as df, a standard way to preview the it is by using the ℎ𝑒𝑎() 

command. This command comes after the variable name of the dataframe, which in this case was 

df. Thus, to preview the dataframe command is: 𝑑𝑓. ℎ𝑒𝑎() this resulted in the first first rows of 
the data frame being displayed:  

 

 
 

Figure 1. Dataframe output  

 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 15, No 4, August 2023 

19 

Also, the following command 𝑑𝑓. 𝑑𝑒𝑠𝑐𝑟𝑖𝑏() was used to generate a summary of the dataframe's 
mean, standard deviation and interquartile range:  

 

 
 

Figure 2. Dataframe summary  

 

Furthermore, to fully understand the dataframe an inspection of the number of missing values per 

variable was needed and this was conducted using the 𝑑𝑓. 𝑖𝑠𝑛𝑢𝑙𝑙(). 𝑠𝑢() command. This 
command output the following:  

 

 
 

Figure 3. Inspecting missing values using isnull().sum()  

 

The above indicated that there are 13 missing values in the column Sentence thus the need to use 

the 𝑑𝑓. 𝑑𝑟𝑜𝑝𝑛() command to delete the rows with no values was valuable but consequently 
resulted in 13 few rows from our initial 4200 rows.  

 

Equally important the need to perform split validation from the dataset was paramount. This step 
involved importing the necessary libraries through the following command:  

 

𝑓𝑟𝑜𝑚 𝑠𝑘𝑙𝑒𝑎𝑟𝑛. 𝑚𝑜𝑑𝑒𝑙_𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑖𝑚𝑝𝑜𝑟𝑡 𝑡𝑟𝑎𝑖𝑛_𝑡𝑒𝑠𝑡_𝑠𝑝𝑙𝑖𝑡   
 

This command simply imports train_test_split function for splitting data into training and testing 

sets.  

 
This step was implemented using the following lines of code:  

 

𝑋 = 𝑑[′𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒′] , in essence is assigning the 'Sentence' column as the feature (X) variable and  

𝑦 = 𝑑𝑓[′𝐿𝑎𝑏𝑒𝑙′], as the target (y) variable. Furthermore, given the two values, X = the input 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 15, No 4, August 2023 

20 

features and y = the output labels, creating the needed training and test data was optimal. Using 

the standard split validation parameters figure seen below, the split validation was created.  
 

Table 2. Split validation parameters  

 

Parameter  Argument  Explanation  Default  

test_size Float(between 0 and 

1.0)  

Proportion of test size, i.e. 

0,3 = 30% 

0.25 (if train_size is not 

specified)  

Integer  The number of test 

samples, i.e, 40 = for 40 

test samples   

None  Test value is automatically 

set to complement that of 

train_size.   

train_size 

(optional)  

Float (between 0 and 

1.0)  

Proportion of test size, i.e. 

0,7 # 70%   

Integer  Number of test samples, 

i.e. 60 = for 60 test 

samples   

random_state 

(optional)  

Integer  A seed number  

(integer) that can be reused 

to replicate the same 

random split. This ensures 

the model uses the same 

data split each time it's 

used.  
 

None  A random seed number is 

used.  

None  

Shuffle  

(optional)  

TRUE  Data is shuffled  TRUE  

FALSE  Data is not shuffled   

 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state = 10 
,shuffle=True)  

 

The above validation split consists of the following; X: The input features, y: The output labels, 
test_size: The proportion of the dataset to include in the testing set. Here, it is set to 0.3, which 

means 30% of the data will be used for testing, random_state: The random state used for shuffling 

the data before splitting. It ensures reproducibility of the split. In this case, it is set to 10 and 
lastly, shuffle: If True, the data will be shuffled before splitting. This helps in randomizing the 

data, which can be useful to avoid any bias in the splitting process.  

 

With the validation completed, the data needed to be converted into numerical representation 
based on the frequency of words (or n-grams) in the text using the CountVectorizerclasss. This 

class was imported using the following command:   

 

𝑓𝑟𝑜𝑚 sklearn. feature_extraction. text import CountVectorizer   
Secondly an instance of CountVectorizer is created using:  

 

 𝑣𝑒𝑐𝑡𝑜𝑟𝑖𝑧𝑒𝑟 = 𝐶𝑜𝑢𝑛𝑡𝑉𝑒𝑐𝑡𝑜𝑟𝑖𝑧𝑒𝑟() 
 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 15, No 4, August 2023 

21 

Then, the fit_transform method is applied to the training data X_train. This step fits the vectorizer 
to the training data and transforms the text into a numerical representation and thereafter, the 

result is stored in X_train_transformed.  

 

 𝑋_𝑡𝑟𝑎𝑖𝑛_𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑 = 𝑣𝑒𝑐𝑡𝑜𝑟𝑖𝑧𝑒𝑟. 𝑓𝑖𝑡_𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚(𝑋_𝑡𝑟𝑎𝑖𝑛) 
 

Finally, the transform method is applied to the testing data X_test using the already fitted 

vectorizer. This step transforms the testing data into the same numerical representation as the 
training data. The result is stored in X_test_transformed.  

 

 𝑋_𝑡𝑒𝑠𝑡_𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑 = 𝑣𝑒𝑐𝑡𝑜𝑟𝑖𝑧𝑒𝑟. 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚(𝑋_𝑡𝑒𝑠𝑡) 
 
After this transformation, one can use the transformed data X_train_transformed and 

X_test_transformed for training and evaluating machine learning models.  

 

4.4. Model Selection  
 

In order to select an appropriate machine learning model, a best suited model needed to be 
identified using training date and thus allow for a best accuracy to be utilized as performance 

measure and finally the actual model to be used.  

 
The first step was to import classification models into the workbook. Classification models were 

used because the objective is to build a SQL-I detection system that would receive a query and 

determine if that query is normal SQL or SQL-I. The below models were imported:  
 

𝑓𝑟𝑜𝑚 𝑠𝑘𝑙𝑒𝑎𝑟𝑛. 𝑙𝑖𝑛𝑒𝑎𝑟_𝑚𝑜𝑑𝑒𝑙 𝑖𝑚𝑝𝑜𝑟𝑡 𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛  

𝑓𝑟𝑜𝑚 𝑠𝑘𝑙𝑒𝑎𝑟𝑛. 𝑛𝑎𝑖𝑣𝑒_𝑏𝑎𝑦𝑒𝑠 𝑖𝑚𝑝𝑜𝑟𝑡 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙𝑁𝐵  

𝑓𝑟𝑜𝑚 𝑠𝑘𝑙𝑒𝑎𝑟𝑛. 𝑡𝑟𝑒𝑒 𝑖𝑚𝑝𝑜𝑟𝑡 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑇𝑟𝑒𝑒𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟  

𝑓𝑟𝑜𝑚 𝑠𝑘𝑙𝑒𝑎𝑟𝑛. 𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 𝑖𝑚𝑝𝑜𝑟𝑡 𝑅𝑎𝑛𝑑𝑜𝑚𝐹𝑜𝑟𝑒𝑠𝑡𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟  

𝑓𝑟𝑜𝑚 𝑠𝑘𝑙𝑒𝑎𝑟𝑛. 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑖𝑚𝑝𝑜𝑟𝑡 𝐾𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟  

𝑓𝑟𝑜𝑚 𝑠𝑘𝑙𝑒𝑎𝑟𝑛. 𝑠𝑣𝑚 𝑖𝑚𝑝𝑜𝑟𝑡 𝑆𝑉𝐶 
 
Secondly, an array initializing the models was implemented:  

 

models =  [  LogisticRegression(),  
MultinomialNB(),DecisionTreeClassifier(),RandomForestClassifier(),KNeighborsClassifier(),S 

VC() ]  

 
Thirdly, a variable called best_model is initialized to None, and best_accuracy is set to 0.0 

initially. A loop is used to calculate the accuracy for each model, compare it with the current 

best_accuracy value and if the new accuracy is higher, it updates best_accuracy and assign the 

corresponding model to best_model. Once the loop completes, the results are printed out showing 
the name of the best model along with its accuracy.  

 

By using this method of model selection one can identify the model that achieved the highest 
accuracy on the dataset. The code below indicates how this was done:  

 

best_model = None 

best_accuracy = 0.0  
 

for model in models:  



International Journal of Computer Science & Information Technology (IJCSIT) Vol 15, No 4, August 2023 

22 

model.fit(X_train_transformed, y_train)     y_pred = model.predict(X_test_transformed)     
accuracy = accuracy_score(y_test, y_pred)  

print(f"{model.__class__.__name__} accuracy: {accuracy}")  

 

if accuracy >best_accuracy:         best_accuracy = accuracy  
best_model = model  

 

print (f"\nThe best model is: {best_model.__class__.__name__} with an accuracy of 
{best_accuracy}")  

 

4.5. Model Training and Evaluation 

 

The results of the above model selection indicated that the best model for the dataset used was the 

MultinomialNB which is the Naive Bayes classifier for multinomial models. Below are the results 
of the model selection:  

 

 
 

Figure 4. Results of the model selection  

 

The above figure indicates that the Naïve Bayes classifier was best suited for the dataset with an 

accuracy of 97 %.  
 

Given this high accuracy rate, the MultinomialNB could then be set as the main model to train 

with the training data. This was done by initializing the model variable to MultinomialNB; 𝑚𝑜𝑑𝑒𝑙
 = 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙𝑁(). Once the model was set, model needed to be fitted to the training data 

i.e., fitting the model to the input features X_train_transformed and the corresponding target 

labels y_train.;  

 

𝑚𝑜𝑑𝑒𝑙. 𝑓𝑖𝑡(𝑋_𝑡𝑟𝑎𝑖𝑛_𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑, 𝑦_𝑡𝑟𝑎𝑖𝑛) 
 

In addition, once the model was fitted, it allowed for an evaluation to be conducted by making 
predictions on the test data using the trained model. This is carried out by taking the input features  

X_test_transformed and returns the predicted labels for the corresponding test samples;  

 

 𝑚𝑜𝑑𝑒𝑙_𝑝𝑟𝑒𝑑𝑖𝑐𝑡 = 𝑚𝑜𝑑𝑒𝑙. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑋_𝑡𝑒𝑠𝑡_𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑) 
 

With the model having predicted a numerical value, additional steps needed to be taken to fully 

evaluate the model. These steps included using common evaluation methods called confusion 
matrix, classification report and lastly the accuracy score. According to [10] accuracy is a metric  

measuring how many cases the model classified correctly divided by the full number of cases;   

 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑎𝑠𝑒𝑠 

 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 15, No 4, August 2023 

23 

Furthermore, [10], states that if all predictions are correct, the accuracy score is 1.0, and 0 if all 
cases are predicted incorrectly.While accuracy alone is normally a reliable metric of performance, 

it may hide a lopsided number of false-positives or false-negatives. This isn't a problem if there's 

a balanced number of false-positives and false-negatives, but this isn't something we can ascertain 

using accuracy alone, which leads us to the following two evaluation methods [10]. The two-
evaluation mentioned by Theobald, are confusion matrix and classification report. The two 

evaluation methods were imported via:  

 

𝑓𝑟𝑜𝑚 𝑠𝑘𝑙𝑒𝑎𝑟𝑛. 𝑚𝑒𝑡𝑟𝑖𝑐𝑠 𝑖𝑚𝑝𝑜𝑟𝑡 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑟𝑒𝑝𝑜𝑟𝑡, 𝑐𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛_𝑚𝑎𝑡𝑟𝑖𝑥 
 

With the above classes imported the trained model was evaluated by calling the following code: 

 
𝑝𝑟𝑖𝑛𝑡(𝑐𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛_𝑚𝑎𝑡𝑟𝑖𝑥(𝑦_𝑡𝑒𝑠𝑡, 𝑚𝑜𝑑𝑒𝑙_𝑝𝑟𝑒𝑑𝑖𝑐𝑡)) 

 

Producing the following outcome:  
 

 
 

Figure 5. Confusion matrix outcome  

 
The confusion_matrix function from sklearn.metrics is used to compute the confusion matrix, 

which is a tabular representation of the predicted labels versus the true labels. It helps in 

evaluating the performance of a classification model by showing the counts of true positives, true 
negatives, false positives, and false negatives.  

 

𝑝𝑟𝑖𝑛𝑡(𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑟𝑒𝑝𝑜𝑟𝑡(𝑦_𝑡𝑒𝑠𝑡, 𝑚𝑜𝑑𝑒𝑙_𝑝𝑟𝑒𝑑𝑖𝑐𝑡)) 
 
Producing the following outcome:  

 

 
 

Figure 6. Classification report outcome where 0 = Benign and 1 = Malicious 

 

While the classification report function is used to generate a text report showing various 
classification metrics such as precision, recall, F1-score, and support. It provides a comprehensive 

summary of the model's performance for each class in the classification problem.  

 

4.6. Comparative Analysis  
 

The outcome of the confusion matrix reveals that the model correctly classified 911 instances as 
negative (TN) and 309 instances as positive (TP). However, it misclassified 37 instances as 

negative (FN). In the classification report instance, few notable observations were made, these are 

precision, recall, f1-score and support. Precision measures the proportion of correctly predicted 
positive instances out of the total instances predicted as positive. For class 0, the precision is 0.96, 

indicating that 96% of the instances predicted as class 0 were correctly classified. For class 1, the 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 15, No 4, August 2023 

24 

precision is 1.00, indicating that all instances predicted as class 1 were correctly classified. Recall, 
also known as sensitivity or true positive rate, measures the proportion of correctly predicted 

positive instances out of the total actual positive instances. For class 0, the recall is 1.00, meaning 

that all instances of class 0 in the dataset were correctly identified. For class 1, the recall is 0.89, 

indicating that 89% of the instances of class 1 were correctly identified. The F1-score is the 
harmonic mean of precision and recall, providing a balanced measure of a model's performance. 

For class 0, the F1-score is 0.98, indicating a high balance between precision and recall. For class 

1, the F1-score is 0.94, also indicating a good balance between precision and recall. Support refers 
to the number of instances in each class. In this case, class 0 has a support of 911 instances, while 

class 1 has a support of 346 instances. Accuracy measures the overall correctness of the model's 

predictions, considering both true positives and true negatives. In this case, the accuracy is 0.97, 
indicating that the model achieved an accuracy of 97% on the entire dataset. The macro average 

calculates the average of precision, recall, and F1score across all classes, without considering 

class imbalance. In this case, the macro average precision is 0.98, recall is 0.95, and F1-score is 

0.96. Lastly, the weighted average calculates the average of precision, recall, and F1-score across 
all classes, considering class imbalance. The weight is proportional to the number of instances in 

each class. In this case, the weighted average precision, recall, and F1-score are all 0.97.  

 

4.7. Results and Conclusions  
 

Overall Performance:  
 

The model achieves an accuracy of 0.97, indicating that it correctly classifies 97% of the instances 

in the dataset. This demonstrates the model's effectiveness in distinguishing between the two 
classes (0 = Benign and 1 = Malicious). The high precision and recall values for both classes 

indicate a strong ability to correctly identify instances of both positive and negative classes. The 

F1-scores for both classes also suggest a good balance between precision and recall.  
 

With the model achieving an accuracy f1-score of 97%, it was then tested on random benign and 

malicious queries to evaluate its prediction abilities given the high f1-score.  

 

 
 

Figure 7. Results of model being used on malicious query 

  



International Journal of Computer Science & Information Technology (IJCSIT) Vol 15, No 4, August 2023 

25 

 
 

Figure 8. Results of model being used on benign query 

 

5. CONCLUSION  
 

The results from the confusion matrix and classification report indicate that the classification 

model performs well in detecting and classifying instances of SQL injection attacks. The model 
shows high accuracy, precision, recall, and F1-scores for both the negative (class 0) and positive 

(class 1) classes. However, there were a few instances misclassified as negative, leading to false 

negatives. These results highlight the model's effectiveness in identifying potential SQL injection 

attacks and its ability to contribute to the prevention and security of web applications and 
databases.  

 

6. RECOMMENDATIONS  
 
Further analysis and fine-tuning of the model may be required to reduce the occurrence of false 

negatives and optimize its performance even further. Additionally, the model's performance 

should be validated on larger and more diverse datasets to ensure its robustness and 
generalizability in real-world scenarios.  

 

REFERENCES  
 
[1] Lu, D., Fei, J., & Liu, L. (2023). A semantic learning-based SQL injection attack detection 

technology. Electronics, 12(6), 1-22.  https://doi.org/10.3390/electronics12061344 

[2] Yunmar, R. A. (2018). Hybrid intrusion detection system using fuzzy logic inference engine for 

SQL injection attack. Kursor, 9(3), 83-93.  https://doi.org/10.28961/kursor.v9i3.147 

[3] Triloka, J., &Sutedi, H. (2022). Detection of SQL Injection Attack Using Machine Learning Based 

on Natural Language Processing. International Journal of Artificial Intelligence Research, 6(2).  

[4] Demilie, W. B., &Deriba, F. G. (2022). Detection and prevention of SQLI attacks and developing 

compressive framework using machine learning and hybrid techniques. Journal of Big Data, 9(1), 1-

30. https://doi.org/10.1186/s40537-022-00678-0  

[5] Daniyal, A., Maha, A., &Suaad, A. (2022, 09). Detection of SQL Injection Attack Using Machine 
Learning Techniques: A Systematic Literature Review. Journal of Cybersecurity and Privacy, 2, 

764-777.   

[6] Vähäkainu, P., &Lehto, M. (2019). Artificial intelligence in the cyber security environment. In 

Proceedings of the 14th International Conference on CyberWarfare and Security (pp. 431-440). 

Stellenbosch: ICCWS 2019.  



International Journal of Computer Science & Information Technology (IJCSIT) Vol 15, No 4, August 2023 

26 

[7] Satapathy, S., Govardhan, A., Raju, K., & Mandal, J. (2015). SQL Injection Detection and 

Correction Using Machine Learning Techniques. Advances in Intelligent Systems and Computing, 

435–442.  

[8] Halfond, W. G. J., &Orso, A. (2005). AMNESIA: Analysis and monitoring for NEutralizing SQL-

injection attacks. In ASE ‘05: Proceedings of the 20th IEEE/ACM international conference on 
automated software engineering (pp. 174-183).  https://doi.org/10.1145/1101908.1101935   

[9] Zhang, W., Yueqin, L., Xiaofeng, L., Shao, M., Mi, Y., Zhang, H., &Zhi, G. (2022). Deep neural 

network-based SQL injection detection method. Security and  Communication Networks, 2022, 1-9. 

https://doi.org/10.1155/2022/4836289  

[10] Theobald, O. (2019). Machine Learning with python. In O. Theobald. Scatterplot Press.  

 

AUTHORS  
 

Valerianus Hashiyana is a Senior Lecturer at Department of Computing, Mathematical & 

Statistical Sciences under Faculty of Agriculture, Engineering and Natural Sciences,  

University of Namibia. His areas of Research are Cybersecurity, Networking & Security, 

AI, IOT, E-Health, Next generation Computing and Educational Technologies.                                                                                                

 

Tel: +264 812830277, Email: vhashiyana@unam.na / vhashiyana@gmail.com.  

 

Taapopi John Angula is currently a final year masters of information technology student 
his research work was based on the development of a structured query language injection 

prevention system for the banking sector in Namibia.   

 


	Abstract
	1. Introduction
	2. Objectives
	3. Background and Related Work
	4. Methodology
	4.1. Research Design
	4.2. Dataset Selection
	4.3. Preprocessing and Feature Extraction
	𝑖𝑚𝑝𝑜𝑟𝑡 𝑝𝑎𝑛𝑑𝑎𝑠 𝑎𝑠 𝑝𝑑  # 𝐼𝑚𝑝𝑜𝑟𝑡 𝑡ℎ𝑒 𝑝𝑎𝑛𝑑𝑎𝑠 𝑙𝑖𝑏𝑟𝑎𝑟𝑦 𝑓𝑜𝑟 𝑑𝑎𝑡𝑎 𝑚𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠

	4.4. Model Selection
	𝑚𝑜𝑑𝑒𝑙. 𝑓𝑖𝑡(𝑋_𝑡𝑟𝑎𝑖𝑛_𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑, 𝑦_𝑡𝑟𝑎𝑖𝑛)
	𝑚𝑜𝑑𝑒𝑙_𝑝𝑟𝑒𝑑𝑖𝑐𝑡 = 𝑚𝑜𝑑𝑒𝑙. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑋_𝑡𝑒𝑠𝑡_𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑)
	𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
	𝑓𝑟𝑜𝑚 𝑠𝑘𝑙𝑒𝑎𝑟𝑛. 𝑚𝑒𝑡𝑟𝑖𝑐𝑠 𝑖𝑚𝑝𝑜𝑟𝑡 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑟𝑒𝑝𝑜𝑟𝑡, 𝑐𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛_𝑚𝑎𝑡𝑟𝑖𝑥
	𝑝𝑟𝑖𝑛𝑡(𝑐𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛_𝑚𝑎𝑡𝑟𝑖𝑥(𝑦_𝑡𝑒𝑠𝑡, 𝑚𝑜𝑑𝑒𝑙_𝑝𝑟𝑒𝑑𝑖𝑐𝑡))
	𝑝𝑟𝑖𝑛𝑡(𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑟𝑒𝑝𝑜𝑟𝑡(𝑦_𝑡𝑒𝑠𝑡, 𝑚𝑜𝑑𝑒𝑙_𝑝𝑟𝑒𝑑𝑖𝑐𝑡))

	4.6. Comparative Analysis
	4.7. Results and Conclusions
	5. Conclusion
	6. Recommendations
	References


