
International Journal of Computer Science & Information Technology (IJCSIT) Vol 15, No 6, December 2023

https://doi.org/10.5121/ijcsit.2023.15602 13

MODELLING OPEN-SOURCE SOFTWARE

RELIABILITY INCORPORATING SWARM

INTELLIGENCE-BASED TECHNIQUES

Omar Shatnawi

Department of Computer Science, Al al-Bayt University, Mafraq, Jordan

ABSTRACT

In the software industry, two software engineering development best practices coexist: open-source and

closed-source software. The former has a shared code that anyone can contribute, whereas the latter has a

proprietary code that only the owner can access. Software reliability is crucial in the industry when a new

product or update is released. Applying meta-heuristic optimization algorithms for closed-source software

reliability prediction has produced significant and accurate results. Now, open-source software dominates

the landscape of cloud-based systems. Therefore, providing results on open- source software reliability - as

a quality indicator - would greatly help solve the open-source software reliability growth- modelling

problem. The reliability is predicted by estimating the parameters of the software reliability models. As

software reliability models are inherently nonlinear, traditional approaches make estimating the

appropriate parameters difficult and ineffective. Consequently, software reliability models necessitate a

high- quality parameter estimation technique. These objectives dictate the exploration of potential
applications of meta- heuristic swarm intelligence optimization algorithms for optimizing the parameter

estimation of nonhomogeneous Poisson process-based open-source software reliability modelling. The

optimization algorithms are firefly, social spider, artificial bee colony, grey wolf, particle swarm, moth

flame, and whale. The applicability and performance evaluation of the optimization modelling approach is

demonstrated through two real open-source software reliability datasets. The results are promising.

KEYWORDS

Swarm Intelligence, Open Source Software, Software Reliability Engineering.

1. INTRODUCTION

The open-source software (abbreviated as OSS) and closed-source software are two best practices

in the software industry. OSS is publicly available and allows modification without cost, whereas
proprietary software is privately owned and developed by a closed team. The usage of OSS is

growing rapidly, owing to its economic feasibility and security. Eighty to ninety percent of

commercial applications contain OSS components [1]. The industry is transitioning from a closed
source to a concurrently distributed environment in the OSS era. OSS is available all around us,

and we use it and work with it daily. Operating systems (FreeBSD, Linux, and Solaris), database

middleware technologies such as MySQL, Apache Web server, and even web browsers such as
Mozilla Firefox are among them [2]. Developing reliable OSS products of increasing size and

complexity is challenging. Mathematical modelling based on stochastic/statistical theories helps

to represent and explain the OSS debugging phenomenon and quantitatively evaluate its

reliability. Software-reliability models based on the non-homogeneous Poisson process
(abbreviated as NHPP) have proven to be effective tools in practical software reliability

engineering. They aid in describing the debugging process by providing trends, such as reliability

growth and defect content [3-7].

https://airccse.org/journal/ijcsit2023_curr.html
https://doi.org/10.5121/ijcsit.2023.15602

International Journal of Computer Science & Information Technology (IJCSIT) Vol 15, No 6, December 2023

14

Nature has, in many ways, inspired many researchers and is an essential source of inspiration.
Accordingly, the majority of new algorithms are nature-inspired. Bioinspired, chemistry-, and

physics-based algorithms are examples of nature-inspired optimization algorithms. Bio-inspired

computing optimization algorithms, which are based on ideas and inspiration from biological

evolution, are driving the development of new and robust competing techniques. Swarm
intelligence- and evolutionary-based algorithms are examples of bioinspired algorithms [8, 9].

In nearly every science, engineering, and industry field, swarm-intelligence-based algorithms
have been widely employed in real-world applications to solve nonlinear design problems [10].

One such application is parameter optimization. Optimization involves determining the best

values of variables by minimizing or maximizing an objective function under specific
constraints[11]. This involves identifying the parameters, creating an objective function, setting

constraints, and employing an appropriate optimizer. A good swarm intelligence optimization

algorithm, should continuously push search agents toward the global optimum and explore and

exploit the defined search space [12].

Numerous NHPP-based software reliability models have been developed to estimate the

reliability of OSS [13-18]. These models view debugging as a counting process characterized by
their mean value functions (abbreviated as MVFs). Once the MVF is determined, the software

reliability can be estimated. The model parameters are commonly estimated using maximum-

likelihood estimation (abbreviated as MLE) or least-squares estimation (abbreviated as LSE). The
optimization of these parameters is crucial. Although these two techniques are suitable for linear

problems, most software reliability models are nonlinear. Therefore, they are inappropriate for

estimating the parameters of the software reliability model because they are inadequate for

solving local optimization problems [19, 20].

The nature-inspired approach is one of the approaches to overcome these limitations for

parameter estimation of NHPP-based software reliability models [21-24]. However, most efforts
have been made to model the debugging phenomena of close-source software. Therefore, this

study explores the application of swarm intelligence-based algorithms, that is, the optimization

modelling approach, to optimize the parameter estimation of an eminent NHPP-based software

reliability model, namely, Goel-Okumoto model [3], which has been extended to develop
software reliability models as a basic framework.

To the best of our knowledge, this study is the first to investigate the application of swarm
intelligence-based algorithms to address the OSS reliability growth modelling optimization

problem. The remainder of this paper is organized as follows. First, we briefly introduce swarm

intelligence-based algorithms and an eminent NHPP-based software reliability model, namely,
the Goel-Okumoto model. We then provide a criterion for validating and evaluating the

optimization modelling approach. Subsequently, we validate and compare the optimization

modelling approach with traditional approaches based on their descriptive performance. We then

employed a k-fold cross-validation procedure to validate the predictive capability of the
optimization modelling approach. Finally, the concluding remarks are presented.

2. SWARM INTELLIGENCE COMPUTING OPTIMIZATION ALGORITHMS

A swarm is a group of decentralized agents working together to achieve specific objectives.

Swarm intelligence is a vital concept in artificial intelligence, which utilizes simple agents with

minimal rules for emergent global behavior. Inspired by natural social swarms, swarm

intelligence-based algorithms can model their behavior and provide robust, efficient, and
economical solutions to optimization problems. These nature-inspired algorithms enable agents to

find food sources and explore optimal routes despite their limited intelligence and skills [25].

International Journal of Computer Science & Information Technology (IJCSIT) Vol 15, No 6, December 2023

15

Wang and Beni (1989) introduced swarm intelligence for cellular robotic systems [26]. The
notion was first used in artificial intelligence research before it was applied to biological systems.

In recent years, significant efforts have been made to adapt swarm intelligence-based techniques

to various engineering problems. They typically share information among numerous agents, and

multiple agents can be easily parallelized, making large-scale optimization more feasible from an
implementation perspective [8]. Most swarm intelligence-based algorithms have a similar

structure although they are defined in various forms. Overall, swarm intelligence leverages the

principles of decentralized, self-organized, and emergent behavior to solve complex problems
and efficiently perform tasks in a distributed manner.

Milon as (1993) defines the swarm intelligence paradigm as comprising five important concepts
[27]. The first concept is proximity, which implies that the swarm should be capable of

performing the necessary space/time computations. The second concept is quality, which implies

that a swarm should be capable of adapting to environmental quality parameters. The third

concept is the diverse response, which states that a swarm should not operate in overly restricted
channels. The fourth concept is stability, which says that a swarm’s behavior should not change

as the environment changes. The fifth concept is adaptability, which means that a swarm should

be able to alter the behaviour of the mote when the computational cost is justified. A typical flow
chart of the swarm intelligence optimization techniques is depicted in Figure 1 to better

understand how an optimization algorithm works. Initially, the population and related parameters

should be initialized. Subsequently, the population’s fitness values are computed in each
iteration, and if the global best solution meets the termination criteria, swarm intelligence outputs

the results [25, 28].

Figure 1. A typical flowchart of swarm intelligence computing optimization algorithms.

Numerous swarm intelligence-based algorithms have appeared over the last 30 years, inspired by
animals and mammals, insects, birds, and fish and sea creatures that serve as inspiration [24, 29].

International Journal of Computer Science & Information Technology (IJCSIT) Vol 15, No 6, December 2023

16

In this study, we employ the following algorithms for optimizing the parameter estimation of
NHPP-based open-source software reliability modelling:

 Kennedy and Eberhart (1995) proposed Particle Swarm Optimization (abbreviated as PSO),

which included a fundamental mechanism to replicate bird hunting behaviors [30]. It uses

only the objective function and has few hyperparameters, focusing on finding optimal
solutions in the solution spaces.

 Karaboga (2005) proposed the Artificial Bee Colony (abbreviated as ABC) by mimicking bee

colonies’ honey-gathering behaviors [31]. This involves three types of bees: employee bees
collecting food from a specific source, onlooker bees patrolling the area, and scout bees

searching for new locations. Food sources are defined as positions in the search space, with

the quality of a food source determined by the fitness value of the objective function.

 Yang (2008) proposed the Firefly Algorithm (abbreviated as FA) by manipulating the

behavior of fireflies [32]. It is unisex, with attractiveness being proportional to brightness. As

the distance increases, less bright fireflies move towards brighter ones, whereas brighter ones

move randomly. The landscape of the objective function determines firefly brightness.

 Mirjalili et al. (2014) introduced Grey Wolf Optimization (abbreviated as GWO), which

stems from the modelling of grey wolf group predation behaviors and achieves optimization

via the process of wolf pack tracking, surrounding, following, and attacking prey [33]. It
seeks the optimal solution only when the best feasible solution falls within the optimal

solution territory.

 Cuevas and Cienfuegos (2014) created Social Spider Optimization (abbreviated as SSO) by
modelling social spider activities such as reciprocal predation, information exchange,

reproduction, and progeny generations [34]. It modes a communal spider web, with every

solution defining a spider and a weight determined by its fitness value. It mimics cooperative

behavior in the colonies.

 Mirjalili (2015) proposed Moth-Flame Optimization (abbreviated as MFO), which was

inspired by the transverse direction of moths toward the light source and is a realistic solution

to tackling global optimization issues [35]. It uses a transverse navigation mechanism that
relies on moonlight for night flights.

 Mirjalili and Lewis (2016) proposed the Whale Optimization Algorithm (abbreviated as

WOA) for handling complicated optimization problems based on humpback whales’ bubble-
net hunting maneuver strategy [36]. It mimics humpback whale hunting behavior.

In the next section, we employ the aforementioned swarm intelligence-based algorithms for

optimizing the parameter estimation of the Goel-Okumoto model. Owing to its simplicity, the
model is still in use.

The NHPP treats the defect debugging process, that is, models the debugged defects time 𝑡 as a

pure-birth counting process (𝑁𝑡 , 𝑡 ≥ 0) with intensity function 𝜆𝑡, for all 𝑡 ≥ 0, subject to [4, 7,
37]:

 𝑁𝑡=0 = 0 with a probability of 1.

 (𝑁𝑡 , 𝑡 ≥ 0) exhibited independent increments.

 The probability that a defect debugs during (𝑡, 𝑡 + ∆𝑡) is 𝜆𝑡∆𝑡 + 0(∆𝑡).

 The probability that more than one defect will debug during (𝑡, 𝑡 + ∆𝑡) is 0.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 15, No 6, December 2023

17

Accordingly, the NHPP-based software-reliability model, that is, the probability 𝑁𝑡is a given

integer 𝐾(≥ 0)can 𝑁𝑡be represented as follows:

 𝑃𝑟⟦𝑁𝑡 = 𝑘⟧ =
(𝑚𝑡)𝑘

𝑘!
∙ exp (−𝑚𝑡) (1)

here 𝑁𝑡be the expected value number of defects whose mean value function (abbreviated as

MVF) is known as 𝑚𝑡.

Goel and Okumoto [3] developed the first NHPP model to represent the defect debugging

phenomenon, which is a very simple form of 𝑚𝑡, based on the assumptions listed below:

 The software defect debugging phenomenon follows anNHPP with 𝑚𝑡.

 A software system is subject to failure owing to defects present in the system.

 Upon failure, the defect causing that failure is instantaneously debugged, and no other

defects are introduced during the process.

 The expected number of defects debugged in (𝑡, 𝑡 + ∆𝑡) is proportional to the number of

defects that remain to be debugged.

Accordingly, the defect intensity, 𝜆𝑡, at time 𝑡, that is, the Goel-Okumoto model, can be
summarized in the following differential equation:

 𝜆𝑡 =
𝜕𝑚𝑡

𝜕𝑡
= 𝑏 ∙ (𝑎 − 𝑚𝑡) (2)

here, 𝑚𝑡 is the cumulative number of defects debugged at a certain time 𝑡, 𝑎 is the defect-

content, and 𝑏 is the proportionality constant that represents the defect debugged rate per defect.

Solving Eq. (2) with the initial-condition 𝑚𝑡=0 = 0, yields its MVF which shows an exponential-

growth curve given by

𝑚𝑡 = 𝑎 ∙ (1 − exp(−𝑏 ∙ 𝑡)) (3)

3. EXPERIMENTAL EVALUATION

a. Experimental Setup and Evaluation Metrics

Software-reliability trend analysis is used to assess the progress of the OSS debugging process.

As a result, before employing the modelling approach, it is plausible to decide whether the OSS
reliability dataset exhibits software reliability growth. For this reason, two trend test techniques

of usual practice, the Laplace factor and arithmetic average [5, 6, 37, 38], are utilized and given

 𝐿𝑎𝑝𝑙𝑎𝑐𝑒 𝐹𝑎𝑐𝑡𝑜𝑟 =
∑ (𝑖−1)𝑘

𝑖=1 𝑡𝑖−
𝑘−1

2
∑ 𝑡𝑖

𝑘
𝑖=1

√𝑘2−1

12
∑ 𝑡𝑖

𝑘
𝑖=1

 (4)

𝐴𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 =
1

𝑘
∑ 𝑡𝑖

𝑘
𝑖=1 (5)

here, 𝑘 is the number of defects and 𝑡𝑖 is the time of occurrence of failure 𝑖(𝑖 = 1, … , 𝑘).

For the Laplace factor (arithmetic average), negative (decreasing) values promoted reliability

growth.

We chose Apache project-based open-source experimental software reliability datasets for our

analysis because they are used mainly in defect prediction studies [39-41]. The first dataset
(Apache 2.0.36) and the second dataset (Apache 2.0.39) were tested and debugged over 103

(164) days, and in the end, 50 (58) defects were detected by the debugging team. Table 1

tabulated the open-source datasets in terms of data points (𝑡𝑖 , 𝑦𝑖), (𝑖 = 0, 1, 2, … , 103 (164))

where 𝑦𝑖 where is the cumulative number of defects debugged by 𝑡𝑖(0 < 𝑡1 < 𝑡2 < ⋯ <

International Journal of Computer Science & Information Technology (IJCSIT) Vol 15, No 6, December 2023

18

𝑡103(𝑡164)). To avoid repetition, certain defect data are not shown. For example, because no
defects are detected on the sixth day, no defect data is shown on this day for the first dataset.

To measure the performance of the optimization modelling approach, its ability to fit past data

(descriptive-performance) and predict future behaveior adequately from present/past data
(predictive-capability) are examined [4, 37, 42-47]. There are several vital goodness-of-fit

statistics for regression analysis. Our analysis examines the same goodness-of-fit test measure,

namely, the sum of squared error (abbreviated as SSE) across traditional regression procedures
(e.g., MLE) and swarms’ intelligence-based algorithms inspired by animals (e.g., GWO), insects

(e.g., ABC, SSO, FA, and MOF), birds (e.g., PSO and CS), and sea creatures (e.g., WOA) to

optimize parameter estimation for the Goel-Okumoto model, thus allowing a fair comparison.
Assessing numeric measures of goodness-of-fit, SSE, using

𝑆𝑆𝐸 = ∑ (𝑚𝑡𝑖
̂ − 𝑦𝑖)

𝑓
𝑖=1 (6)

SSE assesses the dispersion between estimated values 𝑚𝑡𝑖
̂ and the actual data 𝑦𝑖 of the dependent

variable. The lower the value of SSE, the better the approach fit.

Table 1. Datasets used for experimentation.

For the predictive performance comparison, we study the 𝑘-fold cross-validation technique,

which splits the dataset into 𝑘 groups to validate the optimization modelling approach on one

group while training it on the remaining 𝑘 − 1 groups to obtain a satisfactory generalization

ability, all of which 𝑘 times. As a result, we explore two widely used k values when 𝑘 = 2 and

𝑘 = 10 [48].

All the experiments are conducted using a computer with a 12th Gen Intel(R) Core(TM) i7 −

1255U CPU running at 1.70 GHz with 16.0 GB of RAM and a 64−bit Windows 11Pro
architectural, x64−based microprocessor. Their source code is implemented using MATLAB for

the seven swarm intelligence-based optimization techniques (R2021a).

International Journal of Computer Science & Information Technology (IJCSIT) Vol 15, No 6, December 2023

19

For a fair comparison, the parameter settings of all algorithms in terms of the population size,
number of iterations, and limits of the input variables within which the optimizer is allowed to

search are the same. However, the statistical package for social sciences (abbreviated SPSS)

based on the linear regression method, has been used in traditional techniques.

3.2. EXPERIMENTAL RESULTS AND COMPARISONS

Both trend tests are used to determine whether the given OSS reliability dataset promotes

reliability-growth. If it does, we estimate the parameters of the Goel-Okumoto model using both

traditional and swarm intelligence approaches. The goodness-of-fit test is then applied. Based on
the findings, we conduct a comparative evaluation of the two modelling approaches under

consideration. Finally, we perform a test to determine the superior approach’s predictive validity.

3.2.1. First Dataset / Apache 2.0.36

Figures 2 and 3 show the first dataset/Apache 2.0.36 relevant results for the Laplace factor and

arithmetic average trend tests, respectively. Except for the first two days, the values are negative
(decreasing), indicating increased reliability. Initially, their values indicate decreased reliability,

which is generally expected. Then, after the second day of commencement, their values increased

indicating reliability growth, which is usually welcomed after reliability decreases. As a result,

the first dataset/Apache 2.0.36 is appropriate for software-reliability modelling.

Figure 2. Results of the dataset's Laplace factor

test.

Figure 3. Results of the dataset's arithmetic

average test.

Table 2 summarizes the estimated values of the undetermined parameters and the goodness-of-fit

test results for the two approaches based on the Goel-Okumoto model. It is clear that all other

algorithms have reasonably comparable performance comparison results. The comparison results
show that all seven swarm intelligence computing optimization algorithms (FA, SSO, ABC,

GWO, PSO, MFO, and WOA) outperformed the other traditional estimation techniques (MLE).

International Journal of Computer Science & Information Technology (IJCSIT) Vol 15, No 6, December 2023

20

Table 2. Parameter-estimation and comparison criterion.

Techniques

Parameter

Estimation

Comparison

Criterion

𝒂 𝒃 𝑺𝑺𝑬

MLE 52.3160 0.0393371 917.8284

FA 52.2411 0.0394581 915.4488

SSO 52.2434 0.0394348 915.4543

ABC 52.2432 0.0394575 915.4484

GWO 52.2674 0.0394414 915.4726

PSO 52.2437 0.0394572 915.4484

MFO 52.2437 0.0394570 915.4484

WOA 52.2444 0.0394549 915.4484

Figure 4 shows the convergence curves of the seven swarm intelligence computing optimization
algorithms based on the Goel-Okumoto model for the first dataset/Apache 2.0.36. The

convergence curve for an algorithm shows the best obtained SSE values for 100 iterations.

However, the total number of iterations was chosen to be 100, and most of the time, the best
solution remained the same after 50 iterations. The fitting results of the noncumulative and

cumulative first dataset/Apache 2.0.36 for the seven swarm intelligence computing optimization

algorithms based on the Goel-Okumoto model are shown in Figures 5 and 6. It is clear that they
fit the first dataset/Apache 2.0.36 reasonably well.

Figure 4. Convergence curve of all algorithms.

The swarm intelligence algorithms were evaluated using k−fold cross-validation, with k = 10 and

k = 2. For each algorithm, the Goel-Okumotomodel parameters were optimized to maximize the

overall performance in each case. The metric chosen for the analysis is SSE over the
training/testing first dataset/Apache 2.0.36. Tables 3 and 4 give both 10− and 2−fold cross-

validation results, respectively. It is clear that all algorithms have reasonably comparable

performance comparison results for the first dataset/Apache 2.0.36. Based on the first
dataset/Apache 2.0.36 analyses and approach comparisons, the optimization modelling.

Approach demonstrates strong descriptive and predictive power. From these results, we may
conclude that the optimization modelling approach is a more useful model for software reliability

measurement.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 15, No 6, December 2023

21

Figure 5. Results of the modelling approach's fitting

of the noncumulative dataset.

Figure 6. Results of the modelling approach's

fitting of the cumulative dataset

Table 3. Results of 10-fold cross-validation experiment.

Technique

s

Parameter Estimation 10-fold cross-validation

𝒂 𝒃 𝑺𝑺𝑬𝑻𝒓𝒂𝒊𝒏𝒊𝒏𝒈 𝑺𝑺𝑬𝑻𝒆𝒔𝒕𝒊𝒏𝒈

FA 52.1900 0.039659 911.0025 915.6235

SSO 51.7752 0.040744 915.7660 922.1435

ABC 52.2047 0.039641 911.0060 915.6160

GWO 52.1967 0.039602 911.0246 915.5330

PSO 52.1936 0.039653 911.0021 915.6181

MFO 52.1936 0.039653 911.0021 915.6183

WOA 52.1948 0.039650 911.0022 915.6132

Table 4. Results of 2-fold cross-validation experiment.

Technique

s

Parameter Estimation 2-fold cross-validation

𝒂 𝒃 𝑺𝑺𝑬𝑻𝒓𝒂𝒊𝒏𝒊𝒏𝒈 𝑺𝑺𝑬𝑻𝒆𝒔𝒕𝒊𝒏𝒈

FA 52.9780 0.038265 869.9547 928.2589

SSO 54.0406 0.036387 888.3470 985.7705

ABC 52.9929 0.038240 869.9620 928.7651

GWO 52.9460 0.038273 869.9798 926.9860

PSO 52.9720 0.038261 869.9517 927.9870

MFO 52.9724 0.038261 869.9517 927.9997

WOA 52.9769 0.038250 869.9521 928.1372

3.2.2. Second Dataset / Apache 2.0.39

Figures 7 and 8 show the second dataset/Apache 2.0.39 relevant results for the Laplace factor and

arithmetic average trend tests, respectively. Except for the first five days, the values are negative
(decreasing), indicating increased reliability. Initially, their values indicate decreased reliability,

which is considered normal. Then, after the fifth day of commencement, their values increased

indicating reliability growth, which is usually welcomed after reliability decreases. As a result,

the second dataset/Apache 2.0.39 is appropriate for software-reliability modelling.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 15, No 6, December 2023

22

Figure 7. Results of the dataset's Laplace factor

test.

Figure 8. Results of the dataset's arithmetic

average test.

Table 5 summarizes the estimated values of the undetermined parameters and the goodness-of-fit

test results for the two approaches based on the Goel-Okumoto model. It is clear that, except for
SSO, all other algorithms have reasonably comparable performance comparison results. The

comparison results show that all seven swarm intelligence computing optimization algorithms

(FA, SSO, ABC, GWO, PSO, MFO, and WOA) outperformed the other traditional estimation

techniques (MLE).

Table 5. Parameter-estimation and comparison criterion.

Techniques

Parameter

Estimation

Comparison

Criterion

𝒂 𝒃 𝑺𝑺𝑬

MLE 58.3830 0.0367070 429.4830

FA 58.3715 0.0366210 389.8408

SSO 58.0075 0.0374998 400.0120

ABC 58.3701 0.0366121 389.8390

GWO 58.3988 0.0366241 389.9644

PSO 58.3703 0.0366116 389.8390

MFO 58.3704 0.0366117 389.8390

WOA 58.3702 0.0366122 389.8390

Figure 9 shows the convergence curves of the seven swarm intelligence computing optimization

algorithms based on the Goel-Okumoto model for the second dataset/Apache 2.0.39. The
convergence curve for an algorithm shows the best obtained SSE values for 100 iterations.

However, the total number of iterations was chosen to be 100, and most of the time, the best

solution remained the same after 50 iterations. The fitting results of the noncumulative and

cumulative second dataset/Apache 2.0.39 for the seven swarm intelligence computing
optimization algorithms based on the Goel-Okumoto model are shown in Figures 10 and 11. It is

clear that they fit the second dataset/Apache 2.0.39 reasonably well.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 15, No 6, December 2023

23

Figure 9. Convergence curve of all algorithms.

The swarm intelligence algorithms were evaluated using k−fold cross-validation, with k = 10 and
k = 2. For each algorithm, the Goel-Okumoto model parameters were optimized to maximize the

overall performance in each case. The metric chosen for the analysis is SSE over the

training/testing second dataset/Apache 2.0.39. Tables 6 and 7 give both 10− and 2−fold cross-
validation results, respectively. It is clear that all algorithms have reasonably comparable

performance comparison results for the second dataset/Apache 2.0.39.Based on the second

dataset/Apache 2.0.39 analyses and approach comparisons, the optimization modelling approach

demonstrates strong descriptive and predictive power. From these results, we may conclude that
the optimization modelling approach is a more useful model for software reliability measurement.

Figure 10. Results of the modelling approach's

fitting of the noncumulative dataset.

Figure 11. Results of the modelling approach's

fitting of the cumulative dataset.

Table 6. Results of 10-fold cross-validation experiment.

Techniques
Parameter Estimation 10-fold cross-validation

𝒂 𝒃 𝑺𝑺𝑬𝑻𝒓𝒂𝒊𝒏𝒊𝒏𝒈 𝑺𝑺𝑬𝑻𝒆𝒔𝒕𝒊𝒏𝒈

FA 58.4189 0.036522 385.1514 389.9998

SSO 58.2708 0.036584 387.5057 391.2536

ABC 58.4278 0.036517 385.1443 390.0639

GWO 58.4558 0.036487 385.2003 390.3446

PSO 58.4278 0.036518 385.1443 390.0635

MFO 58.4278 0.036517 385.1443 390.0638

WOA 58.4281 0.036516 385.1443 390.0662

International Journal of Computer Science & Information Technology (IJCSIT) Vol 15, No 6, December 2023

24

Table 7.Results of 2-fold cross-validation experiment.

Technique

s

Parameter Estimation 2-fold cross-validation

𝒂 𝒃 𝑺𝑺𝑬𝑻𝒓𝒂𝒊𝒏𝒊𝒏𝒈 𝑺𝑺𝑬𝑻𝒆𝒔𝒕𝒊𝒏𝒈

FA 58.2748 0.036492 362.6554 391.9648

SSO 58.3618 0.036386 363.2166 390.9157

ABC 58.2703 0.036510 362.6519 391.9148

GWO 58.2616 0.036472 362.7060 392.6340

PSO 58.2705 0.036510 362.6520 391.9079

MFO 58.2703 0.036510 362.6519 391.9144

WOA 58.2704 0.036510 362.6520 391.9148

4. CONCLUSIONS

Software-reliability predictions are subject to much research, and various models and techniques

exist. Scalable computing and artificial intelligence advance swarm intelligence, utilizing natural

social organism behavior. This paper explores employing swarm intelligence-based algorithms to
help solve the OSS reliability growth-modelling problem. The optimization modelling approach

has been employed to optimize the parameter estimation of an eminent NHPP-based software

reliability model, namely the Goel-Okumoto model.

Experimental results and comparisons reveal that employing swarm intelligence-based algorithms

brings the results closer to the actual OSS debugging scenario. Therefore, these algorithms are

robust and effective at resolving parameter optimization issues for software reliability modelling.
The extension of the optimization modelling approach to address more realistic scenarios, such as

the concept of change-point problem and imperfect-debugging phenomenon during the OSS

debugging process, is an uphill task that inspires future studies.

ACKNOWLEDGEMENTS

The author acknowledges with gratitude the anonymous reviewers for their helpful and

constructive comments

REFERENCES

[1] Frank Nagle and Jenny Hoffman, (2020). The Hidden Vulnerabilities of Open Source Software, 2020.

Retrieved January 23, 2023, from: http://hbswk.hbs.edu/item/the-hidden-vulnerabilities-of-open-

source-software

[2] Shiva Tyagi, Devendra Kumar, and Sachin Kumar. (2019). Open source software: analysis of

available reliability models keeping security in the forefront. International Journal of Information

Technology, pages 1–10.
[3] Amrit L Goel and KazuOkumoto. (1979). Time-dependent error-detection rate model for software

reliability and other performance measures. IEEE transactions on Reliability, 28(3):206–211.

[4] PK Kapur, Hoang Pham, Anshu Gupta, PC Jha, et al. (2011). Software reliability assessment with OR

applications, volume 364. Springer.

[5] Omar Shatnawi. (2014). Measuring commercial software operational reliability: an interdisciplinary

modelling approach. EksploatacjaiNiezawodnos´c´, 16(4).

[6] Omar Shatnawi. (2016). An integrated framework for developing discrete-time modelling in software

reliability engineering. Quality and Reliability Engineering International, 32(8):2925–2943.

[7] Shigeru Yamada. (2014). Software reliability modeling: fundamentals and applications, volume 5.

Springer.

http://hbswk.hbs.edu/item/the-hidden-vulnerabilities-of-open-source-software
http://hbswk.hbs.edu/item/the-hidden-vulnerabilities-of-open-source-software

International Journal of Computer Science & Information Technology (IJCSIT) Vol 15, No 6, December 2023

25

[8] IztokFister Jr, Xin-She Yang, IztokFister, Janez Brest, and DusanFister. (2013). A brief ˇ review of

nature-inspired algorithms for optimization. arXiv preprint arXiv:1307.4186.

[9] Pamba, R. V., Sherly, E., & Mohan, K. (2017). Automated information retrieval model using FP

growth based fuzzy particle swarm optimization. Int. J. Comput. Sci. Inf. Technol, 9(1).

[10] Jun Tang, Gang Liu, and Qingtao Pan. (2021). A review on representative swarm intelligence
algorithms for solving optimization problems: Applications and trends. IEEE/CAA Journal of

AutomaticaSinica, 8(10):1627–1643.

[11] Touqeer Ahmed Jumani, Mohd Wazir Mustafa, Ali S Alghamdi, MadihahMdRasid, ArbabAlamgir,

and Ahmed Bilal Awan. (2020). Swarm intelligence-based optimization techniques for dynamic

response and power quality enhancement of ac microgrids: A comprehensive review. IEEE Access,

8:75986–76001.

[12] ShahrzadSaremi, SeyedaliMirjalili, and Andrew Lewis. (2017). Grasshopper optimisation algorithm:

theory and application. Advances in Engineering Software, 105:30–47.

[13] PK Kapur, SaurabhPanwar, Vivek Kumar, and Ompal Singh. (2020). Entropy-based two-dimensional

software reliability growth modeling for open-source software incorporating change-point.

International Journal of Reliability, Quality and Safety Engineering, 27(05):2040009.

[14] IqraSaraf, Javaid Iqbal, Avinash K Shrivastava, and ShozabKhurshid. (2022). Modelling reliability
growth for multi-version open source software considering varied testing and debugging factors.

Quality and Reliability Engineering International, 38(4):1814–1825.

[15] Jinyong Wang. (2021). Open source software reliability model with nonlinear fault detection and

fault introduction. Journal of Software: Evolution and Process, 33(12):e2385.

[16] Jinyong Wang, Ce Zhang, and Jianying Yang. (2022). Software reliability model of open source

software based on the decreasing trend of fault introduction. Plos one, 17(5):e0267171

[17] Shigeru Yamada, Yoshinobu Tamura, et al. (2016). OSS reliability measurement and assessment.

Springer.

[18] Mengmeng Zhu and Hoang Pham. (2018). A multi-release software reliability modeling for open

source software incorporating dependent fault detection process. Annals of Operations Research,

269:773–790.
[19] Taehyoun Kim, Kwangkyu Lee, and JongmoonBaik. (2015). An effective approach to estimating the

parameters of software reliability growth models using a real-valued genetic algorithm. Journal of

Systems and Software, 102:134–144.

[20] Takashi Minohara and Yoshihiro Tohma. (1995). Parameter estimation of hyper-geometric

distribution software reliability growth model by genetic algorithms. In Proceedings of Sixth

International Symposium on Software Reliability EngineeringISSRE’95, pages 324– 329. IEEE.

[21] NajlaAkram Al-Saati and MarrwaAbd-AlKareemAlabajee. (2020). A comparative study on

parameter estimation in software reliability modeling using swarm intelligence. arXiv preprint

arXiv:2003.04770.

[22] AnkurChoudhary, Anurag Singh Baghel, and Om Prakash Sangwan. (2017). Efficient parameter

estimation of software reliability growth models using harmony search. IET Software, 11(6):286–291.

[23] Sheta, A. F., & Abdel-Raouf, A. (2016). Estimating the parameters of software reliability growth
models using the grey wolf optimization algorithm. International Journal of Advanced Computer

Science and Applications, 7(4).

[24] Xin-She Yang. (2020). Nature-inspired computation and swarm intelligence: Algorithms, theory and

applications. Academic Press.

[25] Jumani,Touqeer Ahmed, et al. (2020). Swarm intelligence-based optimization techniques for dynamic

response and power quality enhancement of AC microgrids: A comprehensive review. IEEE

Access, 8, 75986-76001.

[26] Jing Wang and Gerardo Beni. (1989). Cellular robotic system with stationary robots and its

application to manufacturing lattices. In Proceedings. IEEE International Symposium on Intelligent

Control 1989, pages 132–137. IEEE.

[27] Mark M Millonas. (1993). Swarms, phase transitions, and collective intelligence. arXiv preprint adap-
org/9306002.

[28] Gabriella Kicska and Attila Kiss. (2021). Comparing swarm intelligence algorithms for dimension

reduction in machine learning. Big Data and Cognitive Computing, 5(3):36.

[29] Pushpendra Singh, Nand K Meena, Jin Yang, and Adam Slowik. (2020). Swarm intelligence

algorithms: A tutorial. Swarm Intelligence Algorithms, pages 1-15.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 15, No 6, December 2023

26

[30] James Kennedy and Russell Eberhart. (1995). Particle swarm optimization. In Proceedings of

ICNN’95-international conference on neural networks, volume 4, pages 1942– 1948. IEEE.

[31] Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization (Vol. 200, pp. 1-

10). Technical report-tr06, ErciyesUniversity, Computer Engineering Department.

[32] Xin-She Yang. (2009). Firefly algorithms for multimodal optimization. In International symposium
on stochastic algorithms, pages 169–178. Springer.

[33] SeyedaliMirjalili, Seyed Mohammad Mirjalili, and Andrew Lewis. (2014). Grey wolf optimizer.

Advances in Engineering Software, 69:46–61.

[34] Erik Cuevas and Miguel Cienfuegos. (2014). A new algorithm inspired in the behavior of the social-

spider for constrained optimization. Expert Systems with Applications, 41(2):412–425.

[35] SeyedaliMirjalili. (2015). Moth-flame optimization algorithm: A novel nature-inspired heuristic

paradigm. Knowledge-Based Systems, 89:228–249.

[36] SeyedaliMirjalili and Andrew Lewis. (2016). The whale optimization algorithm. Advances in

Engineering Software, 95:51–67.

[37] MohdTaib Shatnawi and Omar Shatnawi. (2021). Discrete time-space stochastic mathematical

modelling for quantitative description of software imperfect fault-debugging with change-point.

International Journal of Advanced Computer Science and Applications, 12(6).
[38] KaramaKanoun, Mohamed Kaaniche, and J-P Laprie. (1997). Qualitative and quantitative ˆ reliability

assessment. IEEE Software, 14(2):77–87.

[39] Fan Li, Ze-Long Yi, et al. (2016). A new software reliability growth model: multigeneration faults

and a power-law testing-effort function. Mathematical Problems in Engineering, 2016

[40] Xiang Li, Yan Fu Li, Min Xie, and Szu Hui Ng. (2011). Reliability analysis and optimal version-

updating for open source software. Information and Software Technology, 53(9):929–936.

[41] Bhoopendra Pachauri, Ajay Kumar, and JoydipDhar. (2019). Reliability analysis of open source

software systems considering the effect of previously released version. International Journal of

Computers and Applications, 41(1):31–38.

[42] Kapur, P. K., Aggarwal, A. G., Shatnawi, O., & Kumar, R. (2010). On the development of unified

scheme for discrete software reliability growth modeling. International Journal of Reliability, Quality
and Safety Engineering, 17(03), 245-260.

[43] Shatnawi, O. (2009). Discrete time modelling in software reliability engineering—A unified

approach. Computer Systems Science and Engineering, 24(6), 391.

[44] Kapur, P. K., Gupta, A., Shatnawi, O., &Yadavalli, V. S. S. (2006). Testing effort control using

flexible software reliability growth model with change point. International Journal of Performability

Engineering, 2(3), 245.

[45] Kapur, P. K., Khatri, S. K., Tickoo, A., & Shatnawi, O. (2014). Release time determination

depending on number of test runs using multi attribute utility theory. International Journal of System

Assurance Engineering and Management, 5, 186-194.

[46] Shatnawi, O. (2009). Discrete time NHPP models for software reliability growth phenomenon. Int.

Arab J. Inf. Technol., 6(2), 124-131.

[47] Kapur, P. K., Shatnawi, O., &Yadavalli, V. S. S. (2004). A software fault classification model. South
African Computer Journal, 2004(33):1–9.

[48] ChakkritTantithamthavorn, Shane McIntosh, Ahmed E Hassan, and Kenichi Matsumoto. (2016). An

empirical comparison of model validation techniques for defect prediction models. IEEE

Transactions on Software Engineering, 43(1):1–18.

	Abstract
	Keywords
	Swarm Intelligence, Open Source Software, Software Reliability Engineering.

