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ABSTRACT 
 

In the software industry, two software engineering development best practices coexist: open-source and 

closed-source software. The former has a shared code that anyone can contribute, whereas the latter has a 

proprietary code that only the owner can access. Software reliability is crucial in the industry when a new 

product or update is released. Applying meta-heuristic optimization algorithms for closed-source software 

reliability prediction has produced significant and accurate results. Now, open-source software dominates 

the landscape of cloud-based systems. Therefore, providing results on open- source software reliability - as 

a quality indicator - would greatly help solve the open-source software reliability growth- modelling 

problem. The reliability is predicted by estimating the parameters of the software reliability models. As 

software reliability models are inherently nonlinear, traditional approaches make estimating the 

appropriate parameters difficult and ineffective. Consequently, software reliability models necessitate a 

high- quality parameter estimation technique. These objectives dictate the exploration of potential 
applications of meta- heuristic swarm intelligence optimization algorithms for optimizing the parameter 

estimation of nonhomogeneous Poisson process-based open-source software reliability modelling. The 

optimization algorithms are firefly, social spider, artificial bee colony, grey wolf, particle swarm, moth 

flame, and whale. The applicability and performance evaluation of the optimization modelling approach is 

demonstrated through two real open-source software reliability datasets. The results are promising. 
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1. INTRODUCTION 
 

The open-source software (abbreviated as OSS) and closed-source software are two best practices 

in the software industry. OSS is publicly available and allows modification without cost, whereas 
proprietary software is privately owned and developed by a closed team. The usage of OSS is 

growing rapidly, owing to its economic feasibility and security. Eighty to ninety percent of 

commercial applications contain OSS components [1]. The industry is transitioning from a closed 
source to a concurrently distributed environment in the OSS era. OSS is available all around us, 

and we use it and work with it daily. Operating systems (FreeBSD, Linux, and Solaris), database 

middleware technologies such as MySQL, Apache Web server, and even web browsers such as 
Mozilla Firefox are among them [2]. Developing reliable OSS products of increasing size and 

complexity is challenging. Mathematical modelling based on stochastic/statistical theories helps 

to represent and explain the OSS debugging phenomenon and quantitatively evaluate its 

reliability. Software-reliability models based on the non-homogeneous Poisson process 
(abbreviated as NHPP) have proven to be effective tools in practical software reliability 

engineering. They aid in describing the debugging process by providing trends, such as reliability 

growth and defect content [3-7].  

https://airccse.org/journal/ijcsit2023_curr.html
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Nature has, in many ways, inspired many researchers and is an essential source of inspiration. 
Accordingly, the majority of new algorithms are nature-inspired. Bioinspired, chemistry-, and 

physics-based algorithms are examples of nature-inspired optimization algorithms. Bio-inspired 

computing optimization algorithms, which are based on ideas and inspiration from biological 

evolution, are driving the development of new and robust competing techniques. Swarm 
intelligence- and evolutionary-based algorithms are examples of bioinspired algorithms [8, 9].  

 

In nearly every science, engineering, and industry field, swarm-intelligence-based algorithms 
have been widely employed in real-world applications to solve nonlinear design problems [10]. 

One such application is parameter optimization. Optimization involves determining the best 

values of variables by minimizing or maximizing an objective function under specific 
constraints[11]. This involves identifying the parameters, creating an objective function, setting 

constraints, and employing an appropriate optimizer. A good swarm intelligence optimization 

algorithm, should continuously push search agents toward the global optimum and explore and 

exploit the defined search space [12]. 
 

Numerous NHPP-based software reliability models have been developed to estimate the 

reliability of OSS [13-18]. These models view debugging as a counting process characterized by 
their mean value functions (abbreviated as MVFs). Once the MVF is determined, the software 

reliability can be estimated. The model parameters are commonly estimated using maximum-

likelihood estimation (abbreviated as MLE) or least-squares estimation (abbreviated as LSE). The 
optimization of these parameters is crucial. Although these two techniques are suitable for linear 

problems, most software reliability models are nonlinear. Therefore, they are inappropriate for 

estimating the parameters of the software reliability model because they are inadequate for 

solving local optimization problems [19, 20].  
 

The nature-inspired approach is one of the approaches to overcome these limitations for 

parameter estimation of NHPP-based software reliability models [21-24]. However, most efforts 
have been made to model the debugging phenomena of close-source software. Therefore, this 

study explores the application of swarm intelligence-based algorithms, that is, the optimization 

modelling approach, to optimize the parameter estimation of an eminent NHPP-based software 

reliability model, namely, Goel-Okumoto model [3], which has been extended to develop 
software reliability models as a basic framework.  

 

To the best of our knowledge, this study is the first to investigate the application of swarm 
intelligence-based algorithms to address the OSS reliability growth modelling optimization 

problem. The remainder of this paper is organized as follows. First, we briefly introduce swarm 

intelligence-based algorithms and an eminent NHPP-based software reliability model, namely, 
the Goel-Okumoto model. We then provide a criterion for validating and evaluating the 

optimization modelling approach. Subsequently, we validate and compare the optimization 

modelling approach with traditional approaches based on their descriptive performance. We then 

employed a k-fold cross-validation procedure to validate the predictive capability of the 
optimization modelling approach. Finally, the concluding remarks are presented. 

 

2. SWARM INTELLIGENCE COMPUTING OPTIMIZATION ALGORITHMS  
 
A swarm is a group of decentralized agents working together to achieve specific objectives. 

Swarm intelligence is a vital concept in artificial intelligence, which utilizes simple agents with 

minimal rules for emergent global behavior. Inspired by natural social swarms, swarm 

intelligence-based algorithms can model their behavior and provide robust, efficient, and 
economical solutions to optimization problems. These nature-inspired algorithms enable agents to 

find food sources and explore optimal routes despite their limited intelligence and skills [25]. 
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Wang and Beni (1989) introduced swarm intelligence for cellular robotic systems [26]. The 
notion was first used in artificial intelligence research before it was applied to biological systems. 

In recent years, significant efforts have been made to adapt swarm intelligence-based techniques 

to various engineering problems. They typically share information among numerous agents, and 

multiple agents can be easily parallelized, making large-scale optimization more feasible from an 
implementation perspective [8]. Most swarm intelligence-based algorithms have a similar 

structure although they are defined in various forms. Overall, swarm intelligence leverages the 

principles of decentralized, self-organized, and emergent behavior to solve complex problems 
and efficiently perform tasks in a distributed manner. 

 

Milon as (1993) defines the swarm intelligence paradigm as comprising five important concepts 
[27]. The first concept is proximity, which implies that the swarm should be capable of 

performing the necessary space/time computations. The second concept is quality, which implies 

that a swarm should be capable of adapting to environmental quality parameters. The third 

concept is the diverse response, which states that a swarm should not operate in overly restricted 
channels. The fourth concept is stability, which says that a swarm’s behavior should not change 

as the environment changes. The fifth concept is adaptability, which means that a swarm should 

be able to alter the behaviour of the mote when the computational cost is justified. A typical flow 
chart of the swarm intelligence optimization techniques is depicted in Figure 1 to better 

understand how an optimization algorithm works. Initially, the population and related parameters 

should be initialized. Subsequently, the population’s fitness values are computed in each 
iteration, and if the global best solution meets the termination criteria, swarm intelligence outputs 

the results [25, 28].  

 

 
 

Figure 1. A typical flowchart of swarm intelligence computing optimization algorithms. 

 

Numerous swarm intelligence-based algorithms have appeared over the last 30 years, inspired by 
animals and mammals, insects, birds, and fish and sea creatures that serve as inspiration [24, 29].  
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In this study, we employ the following algorithms for optimizing the parameter estimation of 
NHPP-based open-source software reliability modelling:  

 

 Kennedy and Eberhart (1995) proposed Particle Swarm Optimization (abbreviated as PSO), 

which included a fundamental mechanism to replicate bird hunting behaviors [30]. It uses 

only the objective function and has few hyperparameters, focusing on finding optimal 
solutions in the solution spaces.  

 

 Karaboga (2005) proposed the Artificial Bee Colony (abbreviated as ABC) by mimicking bee 

colonies’ honey-gathering behaviors [31]. This involves three types of bees: employee bees 
collecting food from a specific source, onlooker bees patrolling the area, and scout bees 

searching for new locations. Food sources are defined as positions in the search space, with 

the quality of a food source determined by the fitness value of the objective function. 
  

 Yang (2008) proposed the Firefly Algorithm (abbreviated as FA) by manipulating the 

behavior of fireflies [32]. It is unisex, with attractiveness being proportional to brightness. As 

the distance increases, less bright fireflies move towards brighter ones, whereas brighter ones 

move randomly. The landscape of the objective function determines firefly brightness.  
 

 Mirjalili et al. (2014) introduced Grey Wolf Optimization (abbreviated as GWO), which 

stems from the modelling of grey wolf group predation behaviors and achieves optimization 

via the process of wolf pack tracking, surrounding, following, and attacking prey [33]. It 
seeks the optimal solution only when the best feasible solution falls within the optimal 

solution territory.  

 

 Cuevas and Cienfuegos (2014) created Social Spider Optimization (abbreviated as SSO) by 
modelling social spider activities such as reciprocal predation, information exchange, 

reproduction, and progeny generations [34]. It modes a communal spider web, with every 

solution defining a spider and a weight determined by its fitness value. It mimics cooperative 

behavior in the colonies. 
 

 Mirjalili (2015) proposed Moth-Flame Optimization (abbreviated as MFO), which was 

inspired by the transverse direction of moths toward the light source and is a realistic solution 

to tackling global optimization issues [35]. It uses a transverse navigation mechanism that 
relies on moonlight for night flights. 

 

 Mirjalili and Lewis (2016) proposed the Whale Optimization Algorithm (abbreviated as 

WOA) for handling complicated optimization problems based on humpback whales’ bubble-
net hunting maneuver strategy [36]. It mimics humpback whale hunting behavior. 

 

In the next section, we employ the aforementioned swarm intelligence-based algorithms for 

optimizing the parameter estimation of the Goel-Okumoto model. Owing to its simplicity, the 
model is still in use.  

The NHPP treats the defect debugging process, that is, models the debugged defects time 𝑡 as a 

pure-birth counting process (𝑁𝑡 , 𝑡 ≥ 0) with intensity function 𝜆𝑡, for all 𝑡 ≥ 0, subject to [4, 7, 
37]:  

 

 𝑁𝑡=0 = 0 with a probability of 1. 

 (𝑁𝑡 , 𝑡 ≥ 0) exhibited independent increments. 

 The probability that a defect debugs during (𝑡, 𝑡 + ∆𝑡) is 𝜆𝑡∆𝑡 + 0(∆𝑡). 

 The probability that more than one defect will debug during (𝑡, 𝑡 + ∆𝑡) is 0. 
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Accordingly, the NHPP-based software-reliability model, that is, the probability 𝑁𝑡is a given 

integer 𝐾(≥ 0)can 𝑁𝑡be represented as follows: 

   𝑃𝑟⟦𝑁𝑡 = 𝑘⟧ =
(𝑚𝑡)𝑘

𝑘!
∙ exp (−𝑚𝑡) (1) 

 

here 𝑁𝑡be the expected value number of defects whose mean value function (abbreviated as 

MVF) is known as 𝑚𝑡. 

 
Goel and Okumoto [3] developed the first NHPP model to represent the defect debugging 

phenomenon, which is a very simple form of 𝑚𝑡, based on the assumptions listed below: 

 The software defect debugging phenomenon follows anNHPP with 𝑚𝑡. 

 A software system is subject to failure owing to defects present in the system. 

 Upon failure, the defect causing that failure is instantaneously debugged, and no other 

defects are introduced during the process. 

 The expected number of defects debugged in (𝑡, 𝑡 + ∆𝑡) is proportional to the number of 

defects that remain to be debugged. 

Accordingly, the defect intensity, 𝜆𝑡, at time 𝑡, that is, the Goel-Okumoto model, can be 
summarized in the following differential equation: 

 

    𝜆𝑡 =
𝜕𝑚𝑡

𝜕𝑡
= 𝑏 ∙ (𝑎 − 𝑚𝑡)              (2) 

 

here, 𝑚𝑡 is the cumulative number of defects debugged at a certain time 𝑡, 𝑎 is the defect-

content, and 𝑏 is the proportionality constant that represents the defect debugged rate per defect. 

Solving Eq. (2) with the initial-condition 𝑚𝑡=0 = 0, yields its MVF which shows an exponential-

growth curve given by 

 

𝑚𝑡 = 𝑎 ∙ (1 − exp(−𝑏 ∙ 𝑡))                (3) 
 

3. EXPERIMENTAL EVALUATION 

 

a. Experimental Setup and Evaluation Metrics 
 

Software-reliability trend analysis is used to assess the progress of the OSS debugging process. 

As a result, before employing the modelling approach, it is plausible to decide whether the OSS 
reliability dataset exhibits software reliability growth. For this reason, two trend test techniques 

of usual practice, the Laplace factor and arithmetic average [5, 6, 37, 38], are utilized and given  

   𝐿𝑎𝑝𝑙𝑎𝑐𝑒 𝐹𝑎𝑐𝑡𝑜𝑟 =
∑ (𝑖−1)𝑘

𝑖=1 𝑡𝑖−
𝑘−1

2
∑ 𝑡𝑖

𝑘
𝑖=1

√𝑘2−1

12
∑ 𝑡𝑖

𝑘
𝑖=1

   (4) 

𝐴𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 =
1

𝑘
∑ 𝑡𝑖

𝑘
𝑖=1    (5) 

here, 𝑘 is the number of defects and 𝑡𝑖 is the time of occurrence of failure 𝑖(𝑖 = 1, … , 𝑘). 

For the Laplace factor (arithmetic average), negative (decreasing) values promoted reliability 

growth. 
 

We chose Apache project-based open-source experimental software reliability datasets for our 

analysis because they are used mainly in defect prediction studies [39-41]. The first dataset 
(Apache 2.0.36) and the second dataset (Apache 2.0.39) were tested and debugged over 103 

(164) days, and in the end, 50 (58) defects were detected by the debugging team. Table 1 

tabulated the open-source datasets in terms of data points (𝑡𝑖 , 𝑦𝑖), (𝑖 = 0, 1, 2, … , 103 (164)) 

where 𝑦𝑖  where is the cumulative number of defects debugged by 𝑡𝑖(0 < 𝑡1 < 𝑡2 < ⋯ <
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𝑡103(𝑡164)). To avoid repetition, certain defect data are not shown. For example, because no 
defects are detected on the sixth day, no defect data is shown on this day for the first dataset. 

 

To measure the performance of the optimization modelling approach, its ability to fit past data 

(descriptive-performance) and predict future behaveior adequately from present/past data 
(predictive-capability) are examined [4, 37, 42-47]. There are several vital goodness-of-fit 

statistics for regression analysis. Our analysis examines the same goodness-of-fit test measure, 

namely, the sum of squared error (abbreviated as SSE) across traditional regression procedures 
(e.g., MLE) and swarms’ intelligence-based algorithms inspired by animals (e.g., GWO), insects 

(e.g., ABC, SSO, FA, and MOF), birds (e.g., PSO and CS), and sea creatures (e.g., WOA) to 

optimize parameter estimation for the Goel-Okumoto model, thus allowing a fair comparison. 
Assessing numeric measures of goodness-of-fit, SSE, using 

 

𝑆𝑆𝐸 = ∑ (𝑚𝑡𝑖
̂ − 𝑦𝑖)

𝑓
𝑖=1   (6) 

 

SSE assesses the dispersion between estimated values 𝑚𝑡𝑖
̂  and the actual data 𝑦𝑖 of the dependent 

variable. The lower the value of SSE, the better the approach fit. 

 
Table 1. Datasets used for experimentation. 

 

 
 

For the predictive performance comparison, we study the 𝑘-fold cross-validation technique, 

which splits the dataset into 𝑘  groups to validate the optimization modelling approach on one 

group while training it on the remaining 𝑘 − 1 groups to obtain a satisfactory generalization 

ability, all of which 𝑘 times. As a result, we explore two widely used k values when 𝑘 = 2 and 

𝑘 = 10 [48]. 

 

All the experiments are conducted using a computer with a 12th Gen Intel(R) Core(TM) i7 − 

1255U CPU running at 1.70 GHz with 16.0 GB of RAM and a 64−bit Windows 11Pro 
architectural, x64−based microprocessor. Their source code is implemented using MATLAB for 

the seven swarm intelligence-based optimization techniques (R2021a).  
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For a fair comparison, the parameter settings of all algorithms in terms of the population size, 
number of iterations, and limits of the input variables within which the optimizer is allowed to 

search are the same. However, the statistical package for social sciences (abbreviated SPSS) 

based on the linear regression method, has been used in traditional techniques. 

 

3.2. EXPERIMENTAL RESULTS AND COMPARISONS 
 
Both trend tests are used to determine whether the given OSS reliability dataset promotes 

reliability-growth. If it does, we estimate the parameters of the Goel-Okumoto model using both 

traditional and swarm intelligence approaches. The goodness-of-fit test is then applied. Based on 
the findings, we conduct a comparative evaluation of the two modelling approaches under 

consideration. Finally, we perform a test to determine the superior approach’s predictive validity.  

 

3.2.1. First Dataset / Apache 2.0.36 
 

Figures 2 and 3 show the first dataset/Apache 2.0.36 relevant results for the Laplace factor and 

arithmetic average trend tests, respectively. Except for the first two days, the values are negative 
(decreasing), indicating increased reliability. Initially, their values indicate decreased reliability, 

which is generally expected. Then, after the second day of commencement, their values increased 

indicating reliability growth, which is usually welcomed after reliability decreases. As a result, 

the first dataset/Apache 2.0.36 is appropriate for software-reliability modelling. 
 

  
 
Figure 2. Results of the dataset's Laplace factor 

test. 

 

 
Figure 3. Results of the dataset's arithmetic 

average test. 

Table 2 summarizes the estimated values of the undetermined parameters and the goodness-of-fit 

test results for the two approaches based on the Goel-Okumoto model. It is clear that all other 

algorithms have reasonably comparable performance comparison results. The comparison results 
show that all seven swarm intelligence computing optimization algorithms (FA, SSO, ABC, 

GWO, PSO, MFO, and WOA) outperformed the other traditional estimation techniques (MLE). 
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Table 2. Parameter-estimation and comparison criterion. 
 

Techniques 

Parameter 

Estimation 

Comparison 

Criterion 

𝒂 𝒃 𝑺𝑺𝑬 

MLE 52.3160 0.0393371 917.8284 

FA 52.2411 0.0394581 915.4488 

SSO 52.2434 0.0394348 915.4543 

ABC 52.2432 0.0394575 915.4484 

GWO 52.2674 0.0394414 915.4726 

PSO 52.2437 0.0394572 915.4484 

MFO 52.2437 0.0394570 915.4484 

WOA 52.2444 0.0394549 915.4484 

 

Figure 4 shows the convergence curves of the seven swarm intelligence computing optimization 
algorithms based on the Goel-Okumoto model for the first dataset/Apache 2.0.36. The 

convergence curve for an algorithm shows the best obtained SSE values for 100 iterations. 

However, the total number of iterations was chosen to be 100, and most of the time, the best 
solution remained the same after 50 iterations. The fitting results of the noncumulative and 

cumulative first dataset/Apache 2.0.36 for the seven swarm intelligence computing optimization 

algorithms based on the Goel-Okumoto model are shown in Figures 5 and 6. It is clear that they 
fit the first dataset/Apache 2.0.36 reasonably well.  

 

 
 

Figure 4. Convergence curve of all algorithms. 
 

The swarm intelligence algorithms were evaluated using k−fold cross-validation, with k = 10 and 

k = 2. For each algorithm, the Goel-Okumotomodel parameters were optimized to maximize the 

overall performance in each case. The metric chosen for the analysis is SSE over the 
training/testing first dataset/Apache 2.0.36. Tables 3 and 4 give both 10− and 2−fold cross-

validation results, respectively. It is clear that all algorithms have reasonably comparable 

performance comparison results for the first dataset/Apache 2.0.36. Based on the first 
dataset/Apache 2.0.36 analyses and approach comparisons, the optimization modelling. 

 

Approach demonstrates strong descriptive and predictive power. From these results, we may 
conclude that the optimization modelling approach is a more useful model for software reliability 

measurement. 
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Figure 5. Results of the modelling approach's fitting 

of the noncumulative dataset. 

 

 

 
Figure 6. Results of the modelling approach's 

fitting of the cumulative dataset 
 

Table 3. Results of 10-fold cross-validation experiment. 

 

Technique

s 

Parameter Estimation 10-fold cross-validation 

𝒂 𝒃 𝑺𝑺𝑬𝑻𝒓𝒂𝒊𝒏𝒊𝒏𝒈  𝑺𝑺𝑬𝑻𝒆𝒔𝒕𝒊𝒏𝒈 

FA 52.1900 0.039659 911.0025 915.6235 

SSO 51.7752 0.040744 915.7660 922.1435 

ABC 52.2047 0.039641 911.0060 915.6160 

GWO 52.1967 0.039602 911.0246 915.5330 

PSO 52.1936 0.039653 911.0021 915.6181 

MFO 52.1936 0.039653 911.0021 915.6183 

WOA 52.1948 0.039650 911.0022 915.6132 

 
Table 4. Results of 2-fold cross-validation experiment. 

 

Technique

s 

Parameter Estimation 2-fold cross-validation 

𝒂 𝒃 𝑺𝑺𝑬𝑻𝒓𝒂𝒊𝒏𝒊𝒏𝒈  𝑺𝑺𝑬𝑻𝒆𝒔𝒕𝒊𝒏𝒈 

FA 52.9780 0.038265 869.9547 928.2589 

SSO 54.0406 0.036387 888.3470 985.7705 

ABC 52.9929 0.038240 869.9620 928.7651 

GWO 52.9460 0.038273 869.9798 926.9860 

PSO 52.9720 0.038261 869.9517 927.9870 

MFO 52.9724 0.038261 869.9517 927.9997 

WOA 52.9769 0.038250 869.9521 928.1372 

 

3.2.2. Second Dataset / Apache 2.0.39 
 

Figures 7 and 8 show the second dataset/Apache 2.0.39 relevant results for the Laplace factor and 

arithmetic average trend tests, respectively. Except for the first five days, the values are negative 
(decreasing), indicating increased reliability. Initially, their values indicate decreased reliability, 

which is considered normal. Then, after the fifth day of commencement, their values increased 

indicating reliability growth, which is usually welcomed after reliability decreases. As a result, 

the second dataset/Apache 2.0.39 is appropriate for software-reliability modelling. 
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Figure 7. Results of the dataset's Laplace factor 

test. 

 
Figure 8. Results of the dataset's arithmetic 

average test. 

 

Table 5 summarizes the estimated values of the undetermined parameters and the goodness-of-fit 

test results for the two approaches based on the Goel-Okumoto model. It is clear that, except for 
SSO, all other algorithms have reasonably comparable performance comparison results. The 

comparison results show that all seven swarm intelligence computing optimization algorithms 

(FA, SSO, ABC, GWO, PSO, MFO, and WOA) outperformed the other traditional estimation 

techniques (MLE). 
 

Table 5. Parameter-estimation and comparison criterion. 

 

Techniques 

Parameter 

Estimation 

Comparison 

Criterion 

𝒂 𝒃 𝑺𝑺𝑬 

MLE 58.3830 0.0367070 429.4830 

FA 58.3715 0.0366210 389.8408 

SSO 58.0075 0.0374998 400.0120 

ABC 58.3701 0.0366121 389.8390 

GWO 58.3988 0.0366241 389.9644 

PSO 58.3703 0.0366116 389.8390 

MFO 58.3704 0.0366117 389.8390 

WOA 58.3702 0.0366122 389.8390 

 

Figure 9 shows the convergence curves of the seven swarm intelligence computing optimization 

algorithms based on the Goel-Okumoto model for the second dataset/Apache 2.0.39. The 
convergence curve for an algorithm shows the best obtained SSE values for 100 iterations. 

However, the total number of iterations was chosen to be 100, and most of the time, the best 

solution remained the same after 50 iterations. The fitting results of the noncumulative and 

cumulative second dataset/Apache 2.0.39 for the seven swarm intelligence computing 
optimization algorithms based on the Goel-Okumoto model are shown in Figures 10 and 11. It is 

clear that they fit the second dataset/Apache 2.0.39 reasonably well.  

 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 15, No 6, December 2023 

23 

 
 

Figure 9. Convergence curve of all algorithms. 

 
 

The swarm intelligence algorithms were evaluated using k−fold cross-validation, with k = 10 and 
k = 2. For each algorithm, the Goel-Okumoto model parameters were optimized to maximize the 

overall performance in each case. The metric chosen for the analysis is SSE over the 

training/testing second dataset/Apache 2.0.39. Tables 6 and 7 give both 10− and 2−fold cross-
validation results, respectively. It is clear that all algorithms have reasonably comparable 

performance comparison results for the second dataset/Apache 2.0.39.Based on the second 

dataset/Apache 2.0.39 analyses and approach comparisons, the optimization modelling approach 

demonstrates strong descriptive and predictive power. From these results, we may conclude that 
the optimization modelling approach is a more useful model for software reliability measurement. 

 

 
 

 

Figure 10. Results of the modelling approach's 

fitting of the noncumulative dataset. 

 

Figure 11. Results of the modelling approach's 

fitting of the cumulative dataset. 

 
Table 6. Results of 10-fold cross-validation experiment. 

 

Techniques 
Parameter Estimation 10-fold cross-validation 

𝒂 𝒃 𝑺𝑺𝑬𝑻𝒓𝒂𝒊𝒏𝒊𝒏𝒈  𝑺𝑺𝑬𝑻𝒆𝒔𝒕𝒊𝒏𝒈 

FA 58.4189 0.036522 385.1514 389.9998 

SSO 58.2708 0.036584 387.5057 391.2536 

ABC 58.4278 0.036517 385.1443 390.0639 

GWO 58.4558 0.036487 385.2003 390.3446 

PSO 58.4278 0.036518 385.1443 390.0635 

MFO 58.4278 0.036517 385.1443 390.0638 

WOA 58.4281 0.036516 385.1443 390.0662 
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Table 7.Results of 2-fold cross-validation experiment. 

 

Technique

s 

Parameter Estimation 2-fold cross-validation 

𝒂 𝒃 𝑺𝑺𝑬𝑻𝒓𝒂𝒊𝒏𝒊𝒏𝒈  𝑺𝑺𝑬𝑻𝒆𝒔𝒕𝒊𝒏𝒈 

FA 58.2748 0.036492 362.6554 391.9648 

SSO 58.3618 0.036386 363.2166 390.9157 

ABC 58.2703 0.036510 362.6519 391.9148 

GWO 58.2616 0.036472 362.7060 392.6340 

PSO 58.2705 0.036510 362.6520 391.9079 

MFO 58.2703 0.036510 362.6519 391.9144 

WOA 58.2704 0.036510 362.6520 391.9148 

 

4. CONCLUSIONS 
 
Software-reliability predictions are subject to much research, and various models and techniques 

exist. Scalable computing and artificial intelligence advance swarm intelligence, utilizing natural 

social organism behavior. This paper explores employing swarm intelligence-based algorithms to 
help solve the OSS reliability growth-modelling problem. The optimization modelling approach 

has been employed to optimize the parameter estimation of an eminent NHPP-based software 

reliability model, namely the Goel-Okumoto model.  

 
Experimental results and comparisons reveal that employing swarm intelligence-based algorithms 

brings the results closer to the actual OSS debugging scenario. Therefore, these algorithms are 

robust and effective at resolving parameter optimization issues for software reliability modelling. 
The extension of the optimization modelling approach to address more realistic scenarios, such as 

the concept of change-point problem and imperfect-debugging phenomenon during the OSS 

debugging process, is an uphill task that inspires future studies. 
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