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ABSTRACT 
 
The percentage of unpredictable renewable power in the power grid will dramatically rise as a result of the 

present trend in energy , development. The power system's stability could be impacted by this. Therefore, 

one of the major technologies for the development of green energy is the battery-based Energy Storage 

System (ESS) with quick reaction control capabilities. In this thesis, a method for determining the best ESS 

capacity is suggested. It is based on estimates of the lithium iron phosphate battery's lifetime for various 

converter topologies. Two goal functions are taken into consideration in order to get the best capacity and 

prevent overinvestment. 

 
The first goal is to determine the minimal capacity necessary to satisfy the charge and discharge demands 
of various ESS implementations, and the secondary purpose is to determine the ideal capacity that 

necessitates the least amount of capital expenditure and operational expense. The ESS capacity estimation 

takes into account applications in Photovoltaic output smoothing & base load power plant dispatching 

augmentation. 

 
In the case that the overall average effective depth of discharge under the minimum required capacity of 

the energy storage system is very shallow, it will severely limit the range of battery life that can be 

extended by increasing the rated capacity. This may lead to the optimal capacity being the minimum 

required capacity, or the optimal capacity and The minimum required capacity requires the same number 
of battery changes. The deeper the overall average effective discharge depth caused by the minimum 

required capacity of the energy storage system is, the more effectively the total investment cost can be 

reduced by increasing the rated capacity. 
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1. INTRODUCTION 

 

1.1. Background 
 
Due to the current energy development trend and the influence of government energy policies, the 

development of renewable energy sources (RESs) has received more and more attention, and its 

proportion in the power grid has gradually increased. With the increase in the proportion of 
renewable energy and the intermittent and uncontrollable nature of renewable energy, the existing 

power grid may not be able to handle the instantaneous power changes of large-scale renewable 

energy in the future, which will affect the stability of the power system. Energy Storage Systems 
(ESS) is one of the effective methods to solve this problem. It can stabilize the power generation 

of renewable energy through charging and discharging scheduling, and reduce the impact of 

renewable energy on the stability of the power system. 
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According to the different forms of energy storage, energy storage systems can be roughly 
divided into six categories - including Mechanical, Electrochemical, Chemical, Electromagnetic, 

Thermal and Hybrid. Among these energy storage technologies, since electrochemical energy 

storage is not easily restricted by the geographical environment, the current energy storage system 

is mainly developed in this respect, including lead- acid batteries, nickel-cadmium battery, 
Nickel-Metal Hydride battery, Lithium-Ion battery, Sodium-Sulfur battery, Flow battery, etc 

(Akatsuka, Hara, Kita & Ito, 2010; Obara, Morizane & Morel, 2013). Compared with other types 

of batteries, lithium-ion batteries have the advantages of high energy density, stable discharge 
characteristics, long cycle life, and low environmental pollution, so they have gradually become 

the mainstream of the market. In lithium-ion battery technology, lithium-iron batteries are more 

advantageous for the application of energy storage systems due to their high- current charge-
discharge characteristics and long cycle life (Wen, 2006). Lithium iron batteries use lithium iron 

phosphate as the cathode material of the battery, and the structure of this material is relatively 

stable in chemical reactions, relatively safe, and rich in raw materials. Therefore, the price of the 

battery is expected to be reduced, the market competitiveness is high, and the environment Low 
pollution (Li, Daniel, & Wood, 2011). However, the current energy storage system using lithium 

iron batteries as the electrical energy unit has the advantages of high energy density, low self- 

discharge, and fast reaction speed, but it is relatively expensive. Therefore, the construction of the 
energy storage system is planned In order to avoid over-investment and reduce investment costs, 

it is necessary to construct an effective investment capacity planning procedure. 

 

1.2. Research Rationale 
 

Renewable energy has been widely recognized as one of the most effective solutions to the 
increasingly important problems of oil depletion, carbon emissions and increased energy demand. 

However, despite its environmental advantages and sustainability, renewable energy is still There 

are two main problems. First of all, it is well known that the power generation of renewable 
energy depends largely on local climatic conditions, and the accompanying undispatchable 

intermittency and randomness will bring instability to the power system. Second, because of the 

size of renewable energy power generation Depending on weather factors, its power generation 

characteristics will increase with the penetration rate (Penetration), which will make it more 
difficult for the existing traditional power system to adapt. Taking solar photovoltaics as an 

example, the power generation starts to increase with time in the morning, reaches the peak of 

power generation at noon, and then continues to decline until evening, causing the load curve to 
fluctuate violently, forming the so-called duck curve. 

 

 
 

Figure 1 - Duck Curve 
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In order to reduce the impact of renewable energy on grid stability, a controllable energy storage 
system is regarded as one of the effective ways to improve the problem of renewable energy 

generation. However, although battery energy storage system has many advantages, its expensive 

Economic issues caused by price remain a major hurdle to overcome before widespread adoption. 

Therefore, it is necessary to determine the capacity of the battery energy storage system through 
planning, and many studies have proposed different planning methods. 

 

Many studies have proposed methods for capacity planning of battery energy storage systems that 
cooperate with renewable energy power generation, with the main purpose of improving 

economic benefits. In the overall planning, the battery energy storage system is regarded as a 

pure energy storage object, only considering However, during the operation of the energy storage 
system, there are many factors that will lead to shutdown. Although the battery is indeed the most 

unstable factor in the system, in the circuit architecture, in order to make the battery and the grid 

perform power conversion, it needs to be In the power electronic converter, the power electronic 

switch is another main component that causes the failure. Under the premise of having a complete 
battery management system (BMS), the battery energy storage system will be affected by the 

aging of the battery and the power electronic components. downtime due to malfunction. 

 

1.3. Aims & Ojbectives 
 

This study proposes a set of optimal energy storage system capacity planning procedures, 
considering the minimum required capacity to be built under a given energy storage system charge 

and discharge power profile, and the calculation considering battery life and different Under the 

converter structure, the optimal capacity of the energy storage system meets the lowest 
investment cost. 

 

The key objectives of this research are as follow: 
 

1. To Compute the minimum rated capacity required for the energy storage system under the 

Under Stochastic Renewable Generation 

2. To Compute the optimal rated capacity under the Under Stochastic Renewable Generation that 

meets the minimum investment cost 

 

1.4. Expected Contribution 
 

The contribution of this paper is to propose a set of optimal device capacity planning procedures 
for battery energy storage systems, and plan the optimal capacity and converter architecture for a 

given energy storage system power curve. Usually, the battery energy storage system is regarded 

as a pure energy storage object in the application planning. However, in the internal circuit 

structure of the battery energy storage system, the battery and power electronic switching 
components are not ideal and will not be damaged. The aging of the battery may lead to the failure 

of normal storage or When the electric energy is released, the switching element may fail to lose 

its function. Therefore, the planning procedure proposed in this study takes into account the 
failure factors of the internal elements during the actual operation, and takes the investment cost 

into consideration. thereby enhancing rationality. Finally, by simulating the planning of battery 

energy storage systems with different charging and discharging types, the selection of battery 
energy storage system device capacity in different applications of the power system is discussed. 

The battery life estimation model used in this paper only considers the effect of battery cycle 

aging, and is suitable for application planning of energy storage systems that require frequent 

charging and discharging, such as load tracking, frequency regulation, stable renewable energy 
output, etc. If it is only used for emergency power supply Energy storage equipment (which has 

been idle for a long time) is not applicable to the planning procedures proposed in this study. 
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2. METHODOLOGY 
 

2.1. Optimum Energy Storage System Planning Procedure 
 

The optimal energy storage system planning procedure proposed in this paper is like following 
table. 

 
 

Step 1 

 

The input power curve of the energy storage system to be planned must be data of a 

whole year. The smaller the time interval of each data, the more accurate the battery 

charge and discharge process can be restored, and the more accurate the estimated 
battery life. The input data used in this study is by every minute. 

 

Step 2 
 

Calculate the required minimum battery energy storage system device capacity (rated 

capacity, rated power). 

 

Step 3 
Substitute the power curve of the energy storage system and the battery cycle life data 

into the battery life estimation model. The battery life estimation model includes 
calculating the total electric energy round-trip rate (Energy Throughput) and the average 

effective depth of discharge (Average Active Depth of Discharge), the total 

 electric energy The round-trip rate is the sum of all charged and released energy in the 

power curve, and the concept of the average effective depth of discharge will be 

explained in the later section. 

 

Step 4 
 
Substitute the battery life estimation model and converter-related parameters (cost, 

efficiency and failure rate) into the total investment cost calculation, and calculate the 

optimal rated capacity and converter structure by performing the optimization of the 
total investment cost. The total investment cost includes energy storage system 

construction cost, maintenance cost and battery replacement cost. Among them, the 

construction cost is the cost of the battery and converter equipment, which depends on 

the rated capacity and rated power; the maintenance cost is the cost of the energy 
storage system due to the failure of the converter and needs to be shut down for 

maintenance; the battery replacement cost is the cost of the energy storage system. 

During the planned operation period of the system, the battery needs to be replaced due 
to its service life, and the cost incurred. 

 

2.2. Energy Storage System Minimum Demand Device Capacity Calculation 
 

In order to ensure that the energy storage system can operate according to the given power curve, 

the minimum rated power and rated capacity that can meet the application requirements must be 
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calculated in the planning stage, so as to avoid the power state exceeding the reasonable range 
(0~100%) during operation. In order to make the energy storage system operate normally, the 

converter power rating must be selected to be able to withstand the maximum power value during 

the operation period, as shown in the following figures, ignoring the system power loss. 

 

 
 

Figure 1 - Energy flow of the energy storage system 

 

 
 

Figure 2 - Energy response of the energy storage system 

 

2.3. Battery Life Estimation Model 

 

Generally speaking, the lower the energy storage capacity, the lower the investment cost. 
However, considering the phenomenon of battery cycle aging (Cyclic ageing), the lower the 

energy storage capacity, the deeper the Depth of Discharge (DoD). , which in turn reduces battery 

life, which may result in battery replacements, or more frequent replacements, during the planned 
operation of the energy storage system. Increasing the capacity of the energy storage system will 

lead to an increase in the construction cost, but it is also possible to prolong the battery life and 

reduce the number of battery replacements, so as to achieve the effect of reducing the total 
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investment cost. The following introduces the battery terminal life estimation method based on 
the zero- crossing method. 

 

This study uses a battery life estimation method based on the overall depth of discharge and 

electric energy round-trip rate, and considers the effect of cycle aging caused by the depth of 
discharge of lithium iron batteries. The data corresponding to relevant battery parameters such as 

depth of discharge and cycle times need to be provided by the battery manufacturer. . Although 

this method is non-empirical, manufacturer-dependent battery data is empirical in nature. The 
depth of discharge is defined as the percentage of capacity released by the battery to its rated 

capacity during battery use: 

 

 
 

In which = the current of discharge; ,  are the final and initial time respectively. 

 

2.4. Battery Data 
 
Battery manufacturers can often provide data on cycle life versus depth of discharge. Cycle life is 

defined as the number of charge-discharge cycles before the battery enters the End of Life (EoL), 

where the end of life is defined as 70% of the battery remaining Initial rated capacity. 
 

 
 
Figure 3 - Polynomial approximation curve of cycle life of lithium iron battery based on depth of discharge 

 

2.5. Battery Life Estimation Based on Zero Crossing Method 
 
This study uses a battery life estimation method based on the overall depth of discharge and the 

electric energy round trip rate. The Average Active Depth of Discharge and the total electric 

energy round trip rate are obtained from the simulation, and then the average active depth of 
discharge is substituted into the battery depth of discharge Estimated battery cycle life. 
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The battery life calculation: 
 

 
 

In which,  is the One-year total electric energy round-trip rate;  = Battery rated 

capacity;  = cycle life. 

 
The effective depth of discharge refers to the depth of discharge of the battery during operation, 

excluding the depth of discharge caused by self-discharge. The average effective depth of 

discharge takes into account the influence of all the micro-cycles (Micro-cycles) that constitute 

the entire battery cycle. Defined as a small cycle of variable duration that exists between two 
consecutive current zero-crossings, typically  much shorter than a full charge-discharge cycle. 

 

 

 
Figure 4 - Schematic diagram of battery current microcirculation waveform 

 

2.6. Calculation of Cost and Failure Rate of Power Electronic Converter 
 

Power electronic converters consist of several components, including passive components such as 

inductors and capacitors, and power semiconductor components such as switching switches such 

as insulated gate bipolar transistors (Insulated Gate Bipolar Transistor, IGBT). According to the 
reliability-based block diagram ( Reliability Block Diagram, RBD) method for estimating 

reliability. In a series system without fault-tolerant function, the overall failure rate is the sum of 

individual component failure rates, and the overall failure rate of the converter is calculated as 
follows: 
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In which  is the failure rate of the ith component and  is the Total number of components. 

 

In the overall structure of the battery energy storage system, the power electronic switch is 
considered to be the weakest link in the circuit. Therefore, in the calculation of the failure rate in 

this study, the inductance and capacitance are ignored, and only power semiconductor 

components are considered. The components used in this study are referenced The failure rate 
data comes from the US military standard (MIL-HDBK- 217F). The failure rate is assumed to be 

a constant value. However, the IGBT failure rate is not directly provided in this document. The 

alternative method is to use a metal oxide semiconductor field effect transistor (Metal- Oxide-

Semiconductor Field-Effect Transistor, MOSFET) in series with bipolar junction transistors 
(Bipolar Junction Transistor, BJT) means: 

 

 

 

The component failure rate is calculated by multiplying the base failure rate by several conditional 

factors. Conditional factors include temperature factor, application factor, rated power factor, 
Voltage Stress Factor, Quality Factor, and Environmental Factor. This study does not consider 

the influence of the operating temperature of the energy storage system, and the element 

temperature factor is assumed to be 1. The power is assumed to be 1MW. 
 

The converter architectures considered in this study include the second-order converter (2L) and 

the third-order active neutral-point clamped converter (3L) mentioned in Section 2.3. The number 
of switches used in the circuit is 6 and 18. 

 

 
 

Figure 5 - second-order converter (2L) 
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Figure 6 - third-order active neutral-point clamped converter (3L) 

 

The equipment cost of the converter mainly depends on the DC-link capacitor and power 
electronic switches. This study assumes that the equipment cost of the second- order converter is 

75% of that of the third-order converter. 

 

2.7. Energy Storage System Investment Cost 
 

In order to compare the investment cost impact caused by the construction of different battery 
capacities and converter architectures. The energy storage system investment costs considered in 

this study include construction costs (Upfront Costs), maintenance costs and battery replacement 

costs. 
 

 

 

The construction cost is the initial investment cost of the battery energy storage system, including 
the cost of batteries and converter equipment. 

 

 

 

 
 

(in which  = Energy storage system rated capacity;  = converter cost ; Energy storage 

system rated power; Converter Efficiency) 

 

The maintenance cost is the average annual cost of the energy storage system due to the failure of 
the internal components of the converter. Hence it is the cost of shutting down for maintenance. 

This depends on the failure rate of the converter, equipment cost and rated power, and is 

expressed as a net present value (Net Present Value, NPV) According to the method, the annual 
equipment maintenance cost is discounted into the value on the first date of investment according 

to the assumed annual discount rate. t represents the operating period of the first few years in the 
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overall operating life. 
 

 

 

(in which System operating life;  = interest rate for discounting) 

 
Battery replacement cost means that after a period of battery operation, it is estimated that a new 

battery needs to be replaced when the EoL is reached to facilitate the normal operation of the 

energy storage system. The battery life estimate can be calculated by battery life calculation 

(suggested in the section 3.2). At a fixed rated capacity, lower converter efficiency will cause the 
battery to output more power, which will lead to an increase in the overall depth of discharge and 

a decrease in cycle life. Considering that the battery price will decrease year by year with the 

development of battery technology, the calculation of battery replacement cost is included in the 
technology cost depreciation function. Since it is difficult to predict the accurate trend of 

technology cost decline, this study assumes that the system will The depreciation rate decreases 

linearly (as shown in the following figure). And use the net present value method to discount the 

cost of each battery replacement into the value at the beginning of the investment. k represents 
the number of battery replacements in the total number of battery replacements: 

 

 

 

(in which R = The total number of battery replacements required over the years of operation, by 

definition,  ; = Battery cost at the kth replacement. By definition it is the multiple of 

the depreciation factor and the battery cost) 

 

 

 
Figure 7 - Battery technology cost depreciation factors under different cost depreciation rates 
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For the optimization of the total investment cost, the variables to be solved include the rated 

battery capacity of the energy storage system (𝐸𝑛𝑜𝑚) and a dummy variable (𝑥) used to represent 

the choice of converter architecture. In fact, when investing in battery energy storage systems, the 

rated capacity cannot be increased or decreased arbitrarily. It will have a fixed unit as the 

adjustable degree of rated capacity. The fixed unit assumed in this study is 1kWh. 
 

 

 
Further breaking down: 

 

 
 

3. RESULT AND DATA ANALYSIS 
 

This thesis uses Matlab as the simulation software. Taking one minute of renewable energy 
information from the island system and a whole year of solar power generation data and load data 

as the input data of the planning program, four application cases are simulated for planning. 

 

3.1. Data Input 
 

This study uses two sets of renewable energy data collected from Hong Kong outlying islands 
system every minute for a whole year. They are solar power generation data and load data 

showing the duck curve phenomenon. It is used to simulate the power curve of the energy storage 

system under application. The power curve of the energy storage system generated after the 
simulation is used as the input data of the planning program. 
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Figure 8 - Single-day solar power generation curve 

 

 
 

Figure 9 - One-day duck curve 

 

3.2. Simulation Result 
 
The simulation analysis of the application case of the energy storage system in this study is 

divided into two parts: (1) smoothing the solar power generation curve (2) matching the load 

demand of the base load dispatching power supply to the duck curve phenomenon. The two parts 
analyze two cases respectively. The smooth solar power generation curve is divided into two 

cases of small smoothing and large smoothing. The base load power generation scheduling 

according to the load demand of the base load dispatching power supply to the duck curve 
phenomenon is respectively calculated by each The load average is taken every four hours. The 

load average is taken every 24 hours. The simulation parameters used in all cases are assumed as 

shown in the table, and the investment cost of the minimum required capacity of the energy 

storage system is calculated under the second-order converter architecture. 
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Simulation Parameters 

 

Value 

 

 

 

25 years 

 

 

 

5000 ( per kWh) 

 

 

 

1.13229 

 

 

 

100 (per kW) 

 

 

 

300 (per kW) 

 

 

 

95.2% 

 

 

 

96.7% 

 

 

 

5 % 

 

 

 

15 % 

 
Table 1 – Parameters for the Simulation 

 

4. CONCLUSION 
 
This paper proposes a set of optimal energy storage system planning procedures based on battery 

life estimation, with the goal of obtaining the optimal energy storage system device capacity that 

minimizes costs and avoids excessive investment. The planning process includes the calculation 

of the minimum required device capacity of the energy storage system, the battery life estimation 
model, consideration of the efficiency, cost and failure rate of the power electronic converter, and 

the optimization of the investment cost of the energy storage system. The battery life estimation 

depends on the battery data provided by the manufacturer, and includes the selection of different 
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converter architectures, in order to obtain the most appropriate capacity construction and converter 
architecture. 

 

In this study, the optimal capacity planning is carried out for a given energy storage system power 

curve, considering factors including battery cycle life attenuation due to depth of discharge, power 
electronic converter efficiency, internal switch failure rate, and battery technology cost 

Depreciation rate, but there are still some undiscussed topics that can be used as future research 

directions: 
 

(1) This research ignores changes in the battery's State of Health (SoH) during the simulation 

phase. Changes in SoH will affect the actual depth of discharge in each cycle of the battery. In 
the future, the dynamic capacity decay model can be used to correct the battery life 

assessment method. to be closer to the actual operating conditions. 

(2) This research ignores the influence of temperature on the cycle life. Because there are many 
factors that cause temperature changes in the actual energy storage system operation, it is 

difficult to estimate the temperature state by simulation. In the future, if the real For the 

operation data of the energy storage system, a battery life estimation model considering 
temperature can be used. 

(3) This research currently only considers two power electronic converter architectures. In the 

future, other converters with unique advantages can be added, and other converter factors can 
be considered and included in the planning process. 

(4) In this research, the converter efficiency is assumed to be a constant value in the simulation. 

In fact, when the switching frequency of the converter is fixed, the power loss varies at 
different power levels. During the operation of the energy storage system, the converter The 

working power level will change frequently. In the future, the dynamic power loss can be 

calculated to make the conversion efficiency closer to the actual use condition. 

(5) This research assumes that the depreciation rate of the technical cost of the battery decreases 

linearly, but in fact, the extent of the decline in the technical cost of the battery every year is 

affected by many factors. One-year depreciation rate for technology costs. 
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