
PLAYER STRATEGY MODELING IN CLASSIC ROLE-
PLAYING GAME BATTLE ENVIRONMENTS

Cheuk Man Chan1 and Robert Haralick2

1Computer Science Department, CUNY Graduate Center, New York, USA

2Distinguished Professor Emeritus, Computer Science Department, CUNY Graduate

Center, New York, USA

ABSTRACT

Modern game developers have acknowledged the necessity of a system which adjusts the gameplay

experience for gamers. Part of this system of adjustments is called dynamic difficulty adjustment which, as

its name suggests, adjusts the difficulty of the game depending on information collected during gameplay.

There are many approaches to accomplish this task, amongst which are to change the behavior of the

computer-controlled characters according to the player’s patterns of behavior detected from a survey of

past actions. This paper introduces a method to collect and process information regarding player action

selections to produce an estimated model of the player’s strategy. The estimated player’s model is then

used to determine the computer characters’ strategy to keep the game not too easy and not too hard.

KEYWORDS

Classification, Naïve Bayes, Data Decay, Feature Reduction

1. INTRODUCTION

People have been deriving enjoyment from games since its invention, and in recent decades the

main source of such entertainment lies with video games. The popularity of video games comes

from the combination of the interactivity aspect inherent in all games with the audio-visual

excitement of television programs or cinematic movies. However, as with most things in life,

repeated exposure of the same stimulant usually results in a reduction in its effectiveness in

eliciting the anticipated psychological joyous response.

To that end, various attempts to adjust the game play experience has been tried to remedy the

situation. One approach, called dynamic difficulty adjustment (DDA), can be used to

continuously and subtly alter the behavior of the game to provide a constantly shifting experience

for the player. In order to accomplish this task, the game engine typically must identify the

player’s pattern of behavior in order to make the appropriate adjustment befitting the situation.

This paper presents a method using the naive Bayes’ methodology to estimate the behavior of the

player-controlled characters in a role-playing game (RPG) environment derived from records of

previous actions by the player-controlled characters along with the state of the game when the

actions were performed.

The remainder of this paper will be organized as follows. Section 2 will provide a more detailed

description of the problem as well as some of the approaches that have been developed to tackle

the issue. Section 3 will describe what information is collected in order to estimate the player’s

decision model. Section 4 will present how the collected high-dimension data is compressed and

stored. Section 5 will present the full algorithm that is the core to this paper. Section 6 will present

potential future expansion on the work in this paper. Section 7 will present the conclusion

summarizing the topics presented in this paper.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 16, No 3, June 2024

DOI: 10.5121/ijcsit.2024.16309 103

mailto:cheukmanchan531@gmail.com
mailto:cheukmanchan531@gmail.com
https://example.comhttps://doi.org/10.5121/ijcsit.2024.16309
https://doi.org/10.5121/ijcsit.2024.16309
https://airccse.org/journal/ijcsit2024_curr.html

2. BACKGROUND

Many papers discussing the idea of DDA revolves around the concept of flow by

Csikszentmihalyi presented in various settings like [1, 2, 3]. In its base form, the idea of flow is

the ability for the person to derive enjoyment from the task he/she is performing. A key part

defining the requirement for such is the coupling of the ability of the person performing the task

with the difficulty of the task. If the task is too difficult, the person performing the task will feel

frustrated or defeated. If the task is too easy, the person performing the task will feel bored and

uninterested.

Under the assumption that as the person repeatedly performs the same task, the person’s ability

to perform said task will increase. To account for this, video games create static increase in

difficulty as the game progress. However, each person has their own individual starting point in

terms of his/her skill level and each person’s ability increases at a different rate. To address this

issue, game designers seek to dynamically alter the difficulty of the task based on direct and

indirect feedback from the player. These personalized dynamic changes are called dynamic

difficulty adjustments.

Initially, much of the research surrounding game artificial intelligence revolves around optimizing

the performance of the AI against the player. This in part is the consequence of the limitation on

the processing power of the machine. However, as hardware development has advanced, so too

has the software development in terms of various approaches toward accomplishing DDA.

The most basic approach is adjusting the difficulty of the game in accordance with the actual

physical reaction by the players. Papers like [4], [5], and [6] document methods to establish DDA

based on measurements from physical devices such as electroencephalograms (EEG) attached to

the player. However, approaches like these are unlikely to be viable in the commercial realm

because actual players are likely to be uncomfortable with such an invasion to their privacy.

Chen in [7] proposes a player-controlled difficulty adjustment system that is constructed during

the design stages of the game. The idea behind this system is that the game designer will create

multiple pathways, each requiring a different set of skills, toward a single goal and the player will

decide which pathway he/she wishes to challenge. This approach has a hidden pitfall in that the

decision is left entirely to the player who does not always have the best understanding of his/her

own capabilities. This approach is also dependent on a form of a honor system where the player

willingly selects a path that provides a greater challenge instead of taking the easiest path every

time.

Most games involve a certain repeating task that is at the heart of the game experience. Papers

like [8], [9], [10], and [11] utilize a case-based reasoning approach where the system first gathers

information regarding the general play style from a broad population, partitions such styles into

various groupings, then develops the appropriate level of response to each play style group. The

adjustment phase then seeks to establish the model for the current player and match the model to

the established groups. If the player model changes as the game progresses, then the DDA system

will attempt to match the new model to the groups and alter the behavior of the game if the new

model moves to a different group than the one identified by the system previously.

As stated, with the advent in hardware development, the machines are capable of processing more

complex systems. Papers like [12], [13], and [14] employ the idea of an evolutionary algorithm

where the initial "population" is randomly created and the best performing amongst those

"individuals" are preserved for the next generation and the others are altered slightly in a form of

"mutation" before the process repeats for the next iteration. The idea behind this approach is that

each subsequent generation will at worst remain equally viable due to the retained segment of the

population with the possibility of improvement from the mutated portion of the population.

Meanwhile, papers like [15] and [16] utilize the method called deep reinforcement learning which

can, in its base form, be considered a trial-and-error approach where previously observed actions

International Journal of Computer Science & Information Technology (IJCSIT) Vol 16, No 3, June 2024

104

with good results are encouraged while previous actions with bad results are suppressed. Studies

involving games utilizing these techniques are primarily focused on the optimization of the

algorithm, or the performance of the game AI, without providing much considering into matching

the performance of the AI against the opponent, be it a human player or another game AI.

Regarding the use of DDA systems in commercial games, given the proprietary nature of such

technology, there are few public reports documenting the structure of these systems. Therefore,

mentions of DDA usage in commercial games typically come from magazine articles and press

releases. One company, Electronic Arts, did secure a patent detailing the development of their

DDA system [17]. This approach is dependent on gathering a large collection of play data from

its consumers. The data is then used to construct a profile of the player to be matched to other

similar profiles within the database. Based on the profile matching, the system then attempts to

adjust the difficulty setting in accordance with the profile cluster. However, according to [18] and

[19], Electronic Arts currently has no plans to apply the system to any of their games.

As part of the DDA system, there is a measurement of the players’ response toward the various

tasks within the game. That measurement will then serve as the basis for adjusting the game

mechanics to adapt the difficulty of the game to the players’ skill level. One means of such an

adjustment is to adjust the environment where the player-controlled character is currently located

as is presented in [20]. Another approach is to adjust the behavior of the computer-controlled

characters in accordance with the expected behavior of the player-controlled characters. These

two forms of DDA are mentioned in various magazine articles like [21], [22], and [23] with

regards to commercial games.

Given that all action by any of the active characters (as opposed to an "inactive" character which

does not directly impact the course of the game) has an associated gain for either the player or the

game AI, if the player decision model can be established, then the expected gain of the player’s

turn can be computed and DDA can be performed by matching the expected gain of the computer

controlled characters full set of available action choices to the expected gain of the player’s

response.

To that end, this paper will present a method of estimating the player decision making process

using the naive Bayes’ approach. The choice of naive Bayes’ will allow the algorithm to simplify

and compress the full high dimensional data space into a simple collection of two-dimensional

tables. As data is added through time, the algorithm will make use of a data decaying technique

to add bias to the most recent information. This step is added to the algorithm to address the

potential changes to the player’s behavior through both changes to the player-controlled

characters and the game’s natural environmental changes through progression of the story line.

In addition, during the application of the naive Bayes’ approach, an additional step to remove

variables that do not provide significant amounts of information is introduced to reduce potential

errors in the estimated results. The full description of the algorithm will be presented in

subsequent sections.

3. DATA INPUT

Given that the algorithm is based on observations of previous player decisions, a mechanism to

capture the information is necessary. Normally, the agents controlling the computer characters

are embedded within the game program itself and thus have access to information regarding the

player’s characters. However, the player does not have access to the same information

regarding the computer characters. To address the difference, this algorithm only makes use of

information regarding the computer characters and the publicly available information displayed

on the screen that both the player and the computer would have access to.

Let 𝑃𝑃 = (𝑝1, … , 𝑝𝐺) be the list of player-controlled characters and 𝐸𝑃 = (𝑒1, … , 𝑒𝐻) be the list

of computer-controlled characters involved in the battle. Let ⌢ be the concatenation function for

International Journal of Computer Science & Information Technology (IJCSIT) Vol 16, No 3, June 2024

105

lists and 𝐶𝑃 = 𝑃𝑃 ⌢ EP = (𝑐1, … , 𝑐𝐺+𝐻) be the list of all characters involved in the battle. Let

𝐻𝐸(𝑐) = (ℎ𝑒𝑐1, … , ℎ𝑒𝑐𝐽) be the list of all health/energy statistics (shortened to stats from this

point on) of each of the characters in 𝐶𝑃 where ℎ𝑒𝑐𝑗 ∈ [0.0,1.0] with 𝑗 ∈ {1,… , J}. Note that

typically ℎ𝑒𝑐1 is the health/energy stat that determines if character c is defeated, and this algorithm

will make the same assumption (Character c is defeated if hec1 = 0). Let 𝑆𝐸(𝑐) = (𝑠𝑒𝑐1, … , 𝑠𝑒𝑐𝐾)
be the list of all status effects, or conditions that grant boons or disadvantages, to character 𝑐
where 𝑠𝑒𝑐𝑘 ∈ {0,1} with 𝑘 ∈ {1,… , K} and 𝑠𝑒𝑐𝑘 = 0 if the status effect denoted by 𝑠𝑒𝑐𝑘 is inactive

for character 𝑐 and 𝑠𝑒𝑐𝑘 = 1 if the status effect is active. As stated before, the only information

used for this algorithm are those that pertain only to the computer-controlled characters or those

that are visible on the display. Health, energy, and status effect information stored in these lists

are all contained in the second category and are thus available to both the player and the agents

controlling the computer characters.

The observable state is the collection of all health/energy statistics for all characters along with

all status effect applied to all characters. To represent the observable state, we first need to have

the combined numeric (health/energy) state of each of the characters and the combined binary

(status effect) state of each of the characters. Let the combined state of all the characters’

health/energy stats be denoted by

𝑥 =⌢𝑔=1
𝐺+𝐻 𝐻𝐸(𝑐𝑔) = (ℎ𝑒𝑐11, … , ℎ𝑒𝑐1𝐽 , ℎ𝑒𝑐21, … , ℎ𝑒𝑐2𝐽, … , ℎ𝑒𝑐𝐺+𝐻1, … , ℎ𝑒𝑐𝐺+𝐻𝐽) (1)

with the combined state of all the characters’ status effect conditions be denoted by

𝑦 = ⌢𝑔=1
𝐺+𝐻 𝑆𝐸(𝑐𝑔) = (𝑠𝑒𝑐11, … , 𝑠𝑒𝑐1𝐾 , 𝑠𝑒𝑐21, … , 𝑠𝑒𝑐2𝐾 , … , 𝑠𝑒𝑐𝐺+𝐻1, … , 𝑠𝑒𝑐𝐺+𝐻𝐾) (2)

The state of the battle can then be denoted by 𝑠 = (𝑥, 𝑦).

In a typical RPG game, there are tens if not hundreds of different actions available to the

characters. It would be impractical to consider each individual action as its own entity. Instead,

our algorithm establishes action classes to group similar actions into a single collection and any

computations and estimations are based on these action classes rather than each individual actions.

Let the set of all action classes in the game be denoted by 𝐶 = [𝑄] = {1,… , Q}, and 𝑑 = (𝑠, 𝑞),
𝑞 ∈ 𝐶 be a single observation of the state-action pair during a player character’s turn. Given the

varying skill sets of each individual character in a RPG, it would be impossible to derive any form

of meaningful information regarding the player’s strategy if the observations of all player-

controlled characters are placed in a single list. Therefore, each player-controlled character will

have its own list of observations. Let the entire record of all observed state-action pairs by player

character 𝑝 from turn = 1 to turn = 𝑇 be denoted by 𝑑𝑝 = (𝑑𝑝1, … , 𝑑𝑝𝑇), 𝑇 ∈ ℤ
+.

With the extended game play for typical RPGs, it is impossible both in terms of storage and

processing time to consider each action as an independent entity. The information must be stored

in a compressed form that is still meaningful and representative of the decision-making process

of the player. The data structure and compression method will be presented in Section 4.

4. DATA COMPRESSION AND STORAGE STRUCTURE

In order to compress the list of all observed data D, there are two levels of computationally infinite

range that need to be addressed: the health/energy record is a real number and lies in the closed

interval [0.0,1.0], thus the number of possible values is uncountably infinite; and the size of the

observation record can theoretically extend to a large 𝑇 beyond the amount of memory available.

Recall from the previous section that the observed state 𝑠 = (𝑥, 𝑦) consists of a list 𝑥 of

continuously valued variables denoting the health and energy level of all the characters, and a list

𝑦 of discretely values variables containing information regarding the status effect conditions of

all the characters. In order to compress the data, the continuous variables must be converted to

discrete variables through a quantization process.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 16, No 3, June 2024

106

Recall from Section 3 that there is a total of 𝐺 player-controlled characters and 𝐻 computer-

controlled characters. For each of those characters, the number of all observable health/energy

statistics is 𝐽. The combined size of the numeric portion of the state, 𝑥 as defined in Equation 1,

is (𝐺 + 𝐻) ∗ 𝐽. Similarly, the combined size of the symbolic portion of the state, 𝑦, is (𝐺 + 𝐻) ∗
𝐾. To simplify the following equation definitions, let the size of the list 𝑥 be 𝑁 = |𝑥| = (𝐺 +
𝐻) ∗ 𝐽 and the size of the list 𝑦 be 𝑀 = |𝑦| = (𝐺 + 𝐻) ∗ 𝐾. Let the finite range set [𝑃] = {1,… , P}
denote the quantization set for the continuous variables in the tuple 𝑥. Define quantization

function quantize: [0.0,1.0]N → [P]N, which reduces each continuous variable in a given state

from the interval [0.0,1.0] to a finite range set {1,… , P}.

Define tensors 𝐴𝑁×𝑃×𝑄 and 𝐵𝑀×2×𝑄. Tensor 𝐴 contains the relationship between the

health/energy statistics of the characters involved in the battle (defined over the 𝑁 rows), the

quantized value of each of those statistic (defined over the 𝑃 columns), and the class of actions

chosen under those conditions (defined over the 𝑄 planes). Similarly, tensor 𝐵 will contain the

relationship between the status effect conditions of the characters (defined over the 𝑀 rows), if

those status effects are activated (defined over the 2 columns), and the action class chosen under

those conditions (defined over the 𝑄 planes). Initialize the two matrices as zero matrices such that

𝐴𝑖𝑗𝑘
0 = 0, 𝑖 ∈ [𝑁], 𝑗 ∈ [𝑃], 𝑘 ∈ [𝑄] and 𝐵𝑖𝑗𝑘

0 = 0, 𝑖 ∈ [𝑀], 𝑗 ∈ [2], 𝑘 ∈ [𝑄]. The two matrices will

reduce the potentially infinite number of observations to a limited size as defined.

Given observation 𝑑𝑡 = (𝑠𝑡 , 𝑞𝑡) where 𝑠𝑡 = (𝑥𝑡, 𝑦𝑡) is the state of the battle at time 𝑡 and 𝑞𝑡 be

the class of the action selected by the player at time 𝑡, update the two tensors with the following

functions:

𝑈𝑝𝑑𝑎𝑡𝑒𝐴(𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒(𝑥
𝑡), 𝑞𝑡): 𝐴𝑖𝑗𝑘

𝑡+1 = 𝐴𝑖𝑗𝑘
𝑡 + 1, 𝑖 ∈ 1,… ,𝑁, 𝑗 = 𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒(𝑥𝑡)𝑖, 𝑘 = 𝑞

𝑡 (3)

𝑈𝑝𝑑𝑎𝑡𝑒𝐵(𝑦
𝑡, 𝑞𝑡): 𝐵𝑖𝑗𝑘

𝑡+1 = 𝐵𝑖𝑗𝑘
𝑡 + 1, 𝑖 ∈ 1,… ,𝑀, 𝑗 = 𝑦𝑖

𝑡 , 𝑘 = 𝑞𝑡 (4)

4.1. Data Decay

Unlike most classification problems where the underlying population is static, the player’s

decision-making process evolves over time. To account for such changes, the older information

is gradually rendered obsolete, though not eliminated, by the application of the decay factor.

While the two tensors as constructed is sufficient in storing the entire collection of observations

in a compressed state, there is no differentiation between newer information and older

information. To address this issue an additional term, call the decay factor is required to implicitly

introduce the time element into the compressed data collection.

Definition 1 (Decay Factor). The decay factor δ is the percentage of the weight assigned to a

particular piece of information during the current time unit compared to the weight assigned to

the same piece of information during the immediate previous time unit. A δ of 1.0 is the same as

no data aging (decay).

The idea of decay factor or rate of decay has a wide range of application. The most well-known

example is that of half-life in fissure materials. A simple definition of half-life from Encyclopedia

Britannica is "the interval of time required for one-half of the atomic nuclei of a radioactive

sample to decay (change spontaneously into other nuclear species by emitting particles and

energy)."

This decay is exponential. In other words, after one half-life, there should be 1 2⁄ of the original

material remaining and after two half-life there should be (1 2⁄)2 = 1 4⁄ of the original material

remaining. Nuclear decay is also continuous and not discrete. In other words, the amount of

original material decreases continuously at a constant rate such that after one half-life, only half

of the original material remains. This allows for the computation of values in between half-life.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 16, No 3, June 2024

107

For example, after 1 2⁄ a half-life has passed, there should be (1 2⁄)1 2⁄ of the original material

remaining.

Given that a radioactive sample with overwhelming probability did not form exactly 𝑥 half-life’s

ago where 𝑥 is a positive integer, the process of dating a piece of radioactive material, carbon

dating for example, depends on the fact that radioactive decay is a continuous process. With

advancements in computer storage and processing power, the idea of continuous decay is then

applied to other areas of study in data analysis. Two of the more prominent areas are

business/finance and medicine with examples in [24], [25], and [26].

4.2. Estimation Process

In the context of this paper, the models for projecting player behavior are created using the Bayes

theorem 𝑝(𝐴|𝐵) = 𝑝(𝐵|𝐴)𝑝(𝐴) 𝑝(𝐵)⁄ where 𝑝(𝐴) is the prior probability in the data sample and

𝑝(𝐵) is the observed probability in the data sample. The method in which the projection is updated

with the introduction of new information is called Bayesian inference.

Traditional Bayesian inference depends on a key assumption: that the data being observed is

drawn from the same pool as previously observed data. However, by the examples shown later in

this subsection, that is not necessarily the case in real world situations.

In traditional role-playing games, the environment in which the data is observed is constantly

changing. This change can be due to several factors: a player abruptly changing his/her strategy,

perhaps for no apparent reason; a player moving to a new area in the game world which contains

a different set of enemy characters; a player character gaining a level which changes the

performance of that character in battle; or a player character learning a new skill which is

previously unobserved by the computer. Any of these changes can render all prior information,

which includes the prior distribution 𝑝(𝐴) and the likelihood 𝑝(𝐵|𝐴), completely irrelevant to the

current situation.

To address this situation, the decision is made to decay the older observed data with each new

observation. While this would require a re-computation of all parts of the Bayes theorem with

each new entry, this additional computation will provide a more accurate reflection of the current

state of the game. If the population from which observations are made did not change, the

additional scalar multiplication will not change the resulting likelihood value. If the population

did change, then the newest information will be given greater weight than prior information drawn

from a different population than the one currently active, which is a more desirable outcome for

the accuracy of the projection.

In terms of the selection of the decay factor, the value should be a number within the open interval

(0.5, 1). The exclusion of the value 1, or no change to the weight of the data, is already mentioned.

All values greater than 1 will result in older information being given greater weight than the newer

information, which is counter to the purpose of using the decay factor. The elimination of values

0.5 or smaller is based on Zeno’s paradox, or the fact that ∑ (1 2⁄)𝑛 < 1∞
𝑛=1 . Therefore, if such a

value is chosen as the decay factor, every single new entry to the table will dominate all the

observed previous information.

With the modification through the addition of the decay factor, the counting table will display a

bias toward the newest information, but as stated before, the underlying population is dynamic

and older information is less reliable than the newest observations. The bias toward the most

recent entries should give a better overall representation of the actual current decision-making

process of the player as compared to a static, unbiased collection.

The adjusted update function is given as follows:

International Journal of Computer Science & Information Technology (IJCSIT) Vol 16, No 3, June 2024

108

𝑈𝑝𝑑𝑎𝑡𝑒𝐴(𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒(𝑥
𝑡), 𝑞𝑡): ∀𝑖∈[𝑁],𝑗∈[𝑃],𝑘∈[𝑄]𝐴𝑖𝑗𝑘

𝑡+1 =

{
𝛿 ∗ 𝐴𝑖𝑗𝑘

𝑡 + 1 𝑖𝑓 𝑖 = 𝑎, 𝑗 = 𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒(𝑥𝑡)𝑎, 𝑘 = 𝑞
𝑡

𝛿 ∗ 𝐴𝑖𝑗𝑘
𝑡 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5)

𝑈𝑝𝑑𝑎𝑡𝑒𝐵(𝑦
𝑡, 𝑞𝑡): ∀𝑖∈[𝑀],𝑗∈[2],𝑘∈[𝑄]𝐵𝑖𝑗𝑘

𝑡+1 = {
𝛿 ∗ 𝐵𝑖𝑗𝑘

𝑡 + 1 𝑖𝑓 𝑖 = 𝑎, 𝑗 = 𝑦𝑎
𝑡 , 𝑘 = 𝑞𝑡

𝛿 ∗ 𝐵𝑖𝑗𝑘
𝑡 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (6)

5. CLASSIFICATION

The algorithm presented in this paper seeks to solve one simple question: given the current state,

what is the probability distribution of possible player character actions over all action classes? As

stated before, this probability distribution is estimated by the application of the Bayes’ Theorem

on the two matrices introduced in Section 4.

Recall that a given state 𝑠𝑡 at time 𝑡 is defined as the pair (𝑋𝑡 , 𝑌𝑡), where 𝑋𝑡 = (𝑥1
𝑡 , … , 𝑥𝑁

𝑡) with

𝑥𝑖
𝑡 ∈ {1,… , P} and 𝑖 ∈ {1,… , N} as the numerical portion of the state and 𝑌𝑡 = (𝑦1

𝑡, … , 𝑦𝑀
𝑡) with

𝑦𝑗
𝑡 ∈ {0,1} and 𝑗 ∈ {1.… ,M} as the boolean portion of the state. Let 𝑐𝑡 be the action class selected

by the character at time t with 𝑐𝑡 ∈ {1,… , Q}.

Bayes’ Theorem states that 𝑝(𝐴|𝐵) = 𝑝(𝐵|𝐴)𝑝(𝐴) 𝑝(𝐵)⁄ . Given that we are dealing with

probabilities using the data structures defined above, we will first define the exact terminologies.

Because we are working with probability, there are two different types of variables: random

variables which carry information pertaining to the possible outcomes regarding a certain event,

and normal variables which contain a specific event.

For the purpose of this paper, random variables are denoted with bold-type lower case letters (e.g.

𝒙), and normal variables are denoted with regular lower-case letters (e.g. 𝑥). Specifically, the

following notation specifies the probability that a random variable 𝒙 has a value of 𝑥: 𝑝(𝒙 = 𝑥).

Expanding upon this idea, tuples of random variables are denoted with bold-type capital letters

(e.g. 𝑿 = (𝒙𝟏, … , 𝒙𝑵)) and tuples of normal variables are denoted with regular capital letters (e.g.

𝑋 = (𝑥1, … , 𝑥𝑁)). The following specifies the probability that random variable tuple 𝑿 has the

values defined in normal variable tuple 𝑋: 𝑝(𝑿 = 𝑋) = 𝑝(𝒙𝟏 = 𝑥1, … , 𝒙𝑵 = 𝑥𝑁).

To shorten the size of the probability function, we move the random variable outside the

parenthesis as the subscript to the probability function: 𝑝𝒙(𝑥) = 𝑝(𝒙 = 𝑥). To extend this idea to

conditional probability function, the shortened form will appear in the following format:

𝑝𝒙|𝒚(𝑥|𝑦) = 𝑝(𝒙 = 𝑥|𝒚 = 𝑦), and 𝑝𝒙|𝒀(𝑥|𝑌) = 𝑝(𝒙 = 𝑥|𝒚𝟏 = 𝑦1, … , 𝒚𝑴 = 𝑦𝑀).

Since the goal of this part of the process is to discover the probability that a particular class of

action 𝑐 will be selected by the player given the current state 𝑠𝑡 = (𝑋𝑡 , 𝑌𝑡), the overall theorem

should be written as follows:

𝑝𝒄|𝒔(𝑐|𝑠
𝑡) =

𝑝𝒔|𝒄(𝑠
𝑡
|𝑐)𝑝𝒄(𝑐)

𝑝𝒔(𝑠
𝑡)

=
𝑝𝑿𝒀|𝒄(𝑋

𝑡𝑌𝑡|𝑐)𝑝𝒄(𝑐)

𝑝𝑿𝒀(𝑋
𝑡𝑌𝑡)

 (7)

We make the conditional independence assumption that 𝑋𝑡 and 𝑌𝑡 are conditionally independent

given 𝑐. This results in the formula becoming

𝑝𝒄|𝒔(𝑐|𝑠
𝑡) =

𝑝𝑿|𝒄(𝑋
𝑡
|𝑐)𝑝𝒀|𝒄(𝑌

𝑡
|𝑐)𝑝𝒄(𝑐)

𝑝𝑿𝒀(𝑋
𝑡𝑌𝑡)

 (8)

We make a further conditional independence assumption that each individual term in 𝑋𝑡 =
(𝑥1
𝑡 , … , 𝑥𝑁

𝑡) is conditionally independent given c and that each individual term in 𝑌𝑡 =
(𝑦1
𝑡 , … , 𝑦𝑀

𝑡) is conditionally independent given 𝑐. Also, each individual term in 𝑋𝑡 is conditionally

International Journal of Computer Science & Information Technology (IJCSIT) Vol 16, No 3, June 2024

109

independent of each term in 𝑌𝑡 given 𝑐. The three independence assumptions combined states

that every term in 𝑠𝑡 = (𝑥1
𝑡 , … , 𝑥𝑁

𝑡 , 𝑦1
𝑡 , … , 𝑦𝑀

𝑡) are conditionally independent of each other term

given c. With this conditional independence assumption, Equation 8 becomes the following:

𝑝𝒄|𝒔(𝑐|𝑠
𝑡) =

[∏ 𝑝𝒙𝒏|𝒄(𝑥𝑛
𝑡
|𝑐)𝑁

𝑛=1][∏ 𝑝𝒚𝒎|𝒄(𝑦𝑚
𝑡
|𝑐)𝑀

𝑚=1]𝑝𝒄(𝑐)

𝑝𝑿𝒀(𝑋
𝑡𝑌𝑡)

 (9)

Given that a conditional independence and a marginal independence are incompatible with each

other, we cannot partition the denominator in the same manner as the numerator. However, given

that the Bayes Theorem computes a probability, the sum of the individual probabilities must add

up to 1, Equation 9 can be rewritten as the following:

𝑝𝒄|𝒔(𝑐|𝑠
𝑡) =

[∏ 𝑝𝒙𝒏|𝒄(𝑥𝑛
𝑡
|𝑐)𝑁

𝑛=1][∏ 𝑝𝒚𝒎|𝒄(𝑦𝑚
𝑡
|𝑐)𝑀

𝑚=1]𝑝𝒄(𝑐)

∑ [∏ 𝑝𝒙𝒏|𝒄′(𝑥𝑛
𝑡
|𝑐′)𝑁

𝑛=1][∏ 𝑝𝒚𝒎|𝒄′(𝑦𝑚
𝑡
|𝑐′)𝑀

𝑚=1]𝑝𝒄′(𝑐′)𝑐′∈𝐶

 (10)

The proof of this can be seen in the following:

Proposition 1. 𝑝𝒄|𝒔(𝑐|𝑠
𝑡) =

[∏ 𝑝𝒙𝒏|𝒄(𝑥𝑛
𝑡
|𝑐)𝑁

𝑛=1][∏ 𝑝𝒚𝒎|𝒄(𝑦𝑚
𝑡
|𝑐)𝑀

𝑚=1]𝑝𝒄(𝑐)

∑ [∏ 𝑝𝒙𝒏|𝒄′(𝑥𝑛
𝑡
|𝑐′)𝑁

𝑛=1][∏ 𝑝𝒚𝒎|𝒄′(𝑦𝑚
𝑡
|𝑐′)𝑀

𝑚=1]𝑝𝒄′(𝑐′)𝑐′∈𝐶

Proof.

1. 𝑝𝒄|𝑿𝒀(𝑐|𝑋
𝑡𝑌𝑡) =

[∏ 𝑝𝒙𝒏|𝒄(𝑥𝑛
𝑡
|𝑐)𝑁

𝑛=1][∏ 𝑝𝒚𝒎|𝒄(𝑦𝑚
𝑡
|𝑐)𝑀

𝑚=1]𝑝𝒄(𝑐)

𝑝𝑿𝒀(𝑋
𝑡𝑌𝑡)

2. ∑ 𝑝𝒄|𝑿𝒀(𝑐|𝑋
𝑡𝑌𝑡)𝑐∈𝐶 = ∑

[∏ 𝑝𝒙𝒏|𝒄(𝑥𝑛
𝑡
|𝑐)𝑁

𝑛=1][∏ 𝑝𝒚𝒎|𝒄(𝑦𝑚
𝑡
|𝑐)𝑀

𝑚=1]𝑝𝒄(𝑐)

𝑝𝑿𝒀(𝑋
𝑡𝑌𝑡)𝑐∈𝐶

3. 1 =
∑ [∏ 𝑝𝒙𝒏|𝒄(𝑥𝑛

𝑡
|𝑐)𝑁

𝑛=1][∏ 𝑝𝒚𝒎|𝒄(𝑦𝑚
𝑡
|𝑐)𝑀

𝑚=1]𝑝𝒄(𝑐)𝑐∈𝐶

𝑝𝑿𝒀(𝑋
𝑡𝑌𝑡)

4. 𝑝𝑿𝒀(𝑋
𝑡𝑌𝑡) = ∑ [∏ 𝑝𝒙𝒏|𝒄(𝑥𝑛

𝑡 |𝑐)𝑁
𝑛=1][∏ 𝑝𝒚𝒎|𝒄(𝑦𝑚

𝑡 |𝑐)𝑀
𝑚=1]𝑝𝒄(𝑐)𝑐∈𝐶

5. 𝑝𝒄|𝑿𝒀(𝑐|𝑋
𝑡𝑌𝑡) =

[∏ 𝑝𝒙𝒏|𝒄(𝑥𝑛
𝑡
|𝑐)𝑁

𝑛=1][∏ 𝑝𝒚𝒎|𝒄(𝑦𝑚
𝑡
|𝑐)𝑀

𝑚=1]𝑝𝒄(𝑐)

∑ [∏ 𝑝𝒙𝒏|𝒄′(𝑥𝑛
𝑡
|𝑐′)𝑁

𝑛=1][∏ 𝑝𝒚𝒎|𝒄′(𝑦𝑚
𝑡
|𝑐′)𝑀

𝑚=1]𝑝𝒄′(𝑐′)𝑐′∈𝐶

6. 𝑝𝒄|𝒔(𝑐|𝑠
𝑡) =

[∏ 𝑝𝒙𝒏|𝒄(𝑥𝑛
𝑡
|𝑐)𝑁

𝑛=1][∏ 𝑝𝒚𝒎|𝒄(𝑦𝑚
𝑡
|𝑐)𝑀

𝑚=1]𝑝𝒄(𝑐)

∑ [∏ 𝑝𝒙𝒏|𝒄′(𝑥𝑛
𝑡
|𝑐′)𝑁

𝑛=1][∏ 𝑝𝒚𝒎|𝒄′(𝑦𝑚
𝑡
|𝑐′)𝑀

𝑚=1]𝑝𝒄′(𝑐′)𝑐′∈𝐶

Therefore, to compute the conditional probability for the class of action c given the current state

𝑠𝑡, 𝑝𝒄|𝒔(𝑐|𝑠
𝑡), one needs to find the two components of the Bayes Theorem equation: 𝑝𝒔|𝒄(𝑠

𝑡|𝑐)

= [∏ 𝑝𝒙𝒏|𝒄(𝑥𝑛
𝑡 |𝑐)𝑁

𝑛=1][∏ 𝑝𝒚𝒎|𝒄(𝑦𝑚
𝑡 |𝑐)𝑀

𝑚=1], and 𝑝𝒄(𝑐) for all 𝑐 ∈ 𝐶.

The reason this algorithm makes the above conditional independence assumption is because of

the issue of space limitation. If no conditional independence assumptions were made, then the

relationship among the variables from the list (𝑥1, … , 𝑥𝑁 , 𝑦1, … , 𝑦𝑀 , 𝑐) must be established. In

order to compute these relationships, a structure must be created to store all possible combination

of values for all the variables.

Given that every variable in the list (𝑥1, … , 𝑥𝑁) has a range of {1,… , 𝑃} and every variable in the

list (𝑦1, … , 𝑦𝑀) has a range of {0,1}, and variable 𝑐 has a range of {1, … , 𝑄}, the size of the

structure is 𝑃𝑁 × 2𝑀 × 𝑄. For most real-world game, it would be impossible to create such a

structure to store all the relationships among all variables and there would not be any real-world

games that would produce enough data to estimate all the related probabilities.

Therefore, the conditional independence assumption is made, and the structures created in Section

4 are used to establish the relationship between each individual variables in (𝑥1, … , 𝑥𝑁 , 𝑦1, … , 𝑦𝑀)

International Journal of Computer Science & Information Technology (IJCSIT) Vol 16, No 3, June 2024

110

with class assignment variable c becomes sufficient to compute the conditional probability based

on Bayes theorem with the conditional independence assumption given c.

As a matter of note, the maximum likelihood estimate for the probability of an event is determined

as the number of desired events divided by the number of total events. Therefore, in order to

compute any probability values in this algorithm, we must first determine the total number of

observations stored in the data structure. Recall that while the two structures 𝐴 and 𝐵 are defined

as tensors, that are three dimensional matrices, they function as collections of two-dimensional

tables. That effect can be seen in the two update functions Equation 5 and Equation 6 where the

increments are applied to each table related to a single variable within the observable game state.

Since each of the 𝑁 𝑃 × 𝑄 tables in tensor 𝐴 and each of the 𝑀 2 × 𝑄 tables in tensor 𝐵 are

incremented by exactly 𝛿𝑇−1 with each observation, every size 𝑃 × 𝑄 table in tensor A and every

size 2 × 𝑄 table in tensor 𝐵 have the exact same total sum. Therefore, in order to further expedite

the computation process, all calculation related to the sum of the table is done using the 𝐴0
𝑡 table

instead of computing the sum of each individual table in tensor 𝐴 and 𝐵.

5.1. Feature Reduction

Recall that the classification algorithm is operating under the conditional independence

assumption where the conditional probability of each individual variable in the observation is

conditionally independent of each other given the class. However, given the number of variables

in the observations, it is entirely possible that there are variables that do not contribute to the

classification algorithm. We define such terms as having no influence or being redundant.

Mathematically, the definition of a variable v having no influence on the result d is given as the

following:

𝑝𝒅|𝒗(𝑑|𝑣) = 𝑝𝒅(𝑑) (11)

Based on the given definition, we can also conclude that if 𝑣 has no influence on 𝑑, then 𝑑 also

has no influence on 𝑣: 𝑝𝒗|𝒅(𝑣|𝑑) = 𝑝𝒗(𝑣). The proof can be seen in the following:

Proposition 2. 𝑝𝒅|𝒗(𝑑|𝑣) = 𝑝𝒅(𝑑) → 𝑝𝒗|𝒅(𝑣|𝑑) = 𝑝𝒗(𝑣)

Proof.

1. 𝑝𝒅|𝒗(𝑑|𝑣) = 𝑝𝒅(𝑑)

2.
𝑝𝒅𝒗(𝑑,𝑣)

𝑝𝒗(𝑣)
= 𝑝𝒅(𝑑)

3. 𝑝𝒅𝒗(𝑑, 𝑣) = 𝑝𝒅(𝑑)𝑝𝒗(𝑣)

4.
𝑝𝒅𝒗(𝑑,𝑣)

𝑝𝒅(𝑑)
= 𝑝𝒗(𝑣)

5. 𝑝𝒗|𝒅(𝑣|𝑑) = 𝑝𝒗(𝑣)

As part of this proof, it can also be seen that if 𝑣 has no influence on 𝑑, it can be concluded that

𝑣 is independent of 𝑑. This is often written as 𝑣╨𝑑.

Given that there are variables that have no influence, there are also variables with minor or small

influence and variables with major or great influence. No influence is defined by the fact that the

conditional probability 𝑝(𝑎|𝑏) does not change regardless of the value of variable 𝑏. A variable

𝑏 is said to have minor influence on consequence 𝑎 if, by some measurement of deviation, the

value of 𝑝(𝑎|𝑏) shows a very minor deviation as the value of 𝑏 changes. A variable 𝑏 is said to

have a major influence on consequence 𝑎 if, by the same measurement of deviation, the value of

𝑝(𝑎|𝑏) shows a major deviation as the value of 𝑏 changes.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 16, No 3, June 2024

111

Given these definitions, if any of the variables have no influence on the result, in theory, the

conditional probability of that variable given each individual class action in the result is the same.

In this case, that variable can be safely eliminated from the computation of the conditional

probability of the action class given the entirety of the observation. The mathematical proof can

be seen in the following:

Let the tuple of random variables 𝑽 = (𝒗𝟏, … , 𝒗𝑵) be the condition, with 𝒗𝒊 = 𝑣𝑖. Let 𝒅 takes

values from the set {1,… , K}, and 𝑑 is the expected value of 𝒅. The naive Bayes’ approach makes

the following conditional independence assumption:

𝑝𝒅|𝑽(𝑑|𝑣1, … , 𝑣𝑁) =
[∏ 𝑝𝒗𝒊|𝒅(𝑣𝑖|𝑑)
𝑁
𝑖=1]𝑝𝒅(𝑑)

𝑝𝑽(𝑣1,…,𝑣𝑁)
 (12)

The proof in Proposition 1 shows that the naive Bayes’ approach can be written as follows:

𝑝𝒅|𝑽(𝑑|𝑣1, … , 𝑣𝑁) =
[∏ 𝑝𝒗𝒊|𝒅(𝑣𝑖|𝑑)
𝑁
𝑖=1]𝑝𝒅(𝑑)

∑ [∏ 𝑝𝒗𝒊|𝒅(𝑣𝑖|𝑘)
𝑁
𝑖=1]𝑝𝒅(𝑘)

𝐾
𝑘=1

 (13)

Therefore, if there is some 𝑎 ∈ {1,… ,𝑁} such that 𝒗𝒂, … , 𝒗𝑵 have no influence on 𝑑, then for

those variables, regardless of the conditional, the probability remains the same, which is the

probability of the variables. Therefore, the naive Bayes’ approach can be rewritten as the

following:

𝑝𝒅|𝑽(𝑑|𝑣1, … , 𝑣𝑁) =
[∏ 𝑝𝒗𝒊|𝒅(𝑣𝑖|𝑑)
𝑎
𝑖=1][∏ 𝑝𝒗𝒋(𝑣𝑗)

𝑁
𝑗=𝑎+1]𝑝𝒅(𝑑)

∑ [∏ 𝑝𝒗𝒊|𝒅(𝑣𝑖|𝑘)
𝑎
𝑖=1][∏ 𝑝𝒗𝒋(𝑣𝑗)

𝑁
𝑗=𝑎+1]𝑝𝒅(𝑘)

𝐾
𝑘=1

 (14)

Given that [∏ 𝑝𝒗𝒋(vj)
𝑁
𝑗=𝑎+1] is in both the numerator and the denominator of the equation, it can

be removed from the equation, so the end-product is the following:

𝑝𝒅|𝑽(𝑑|𝑣1, … , 𝑣𝑁) =
[∏ 𝑝𝒗𝒊|𝒅(𝑣𝑖|𝑑)
𝑎
𝑖=1]𝑝𝒅(𝑑)

∑ [∏ 𝑝𝒗𝒊|𝒅(𝑣𝑖|𝑘)
𝑎
𝑖=1]𝑝𝒅(𝑘)

𝐾
𝑘=1

 (15)

If we look at how the algorithm operates, a much less stringent requirement is required. Note that

the input into the algorithm is provided in the form of the state 𝑠𝑡. In other words, the specific

condition for the conditional probability is given. Therefore, to remove specific variables from

the naive Bayes’ approach in this algorithm, rather than requiring full independence between a

given input variable and the action class, the system only requires that, given a specific value for

the input variable (for example 𝑥𝑖) in question, the conditional probability of the input variable

given the action class be the same for all action classes 𝑝𝒙𝒊|𝒄(𝑥𝑖|𝑐1) = ⋯ = 𝑝𝒙𝒊|𝒄(𝑥𝑖|𝑐𝑄). So long

as this condition is satisfied, the same term canceling method performed on the naive Bayes’

approach done in the case of full independence between the given variable and action class can

be performed considering how the naive Bayes’ Theorem is applied.

However, while the elimination of variables with no influence on the result can easily be done in

theory based on the definition of no influence that the conditional probability is the same

regardless of the value assigned to 𝑑, it is much more difficult to do when the conditional

probability is a mere estimation of the true probability given the available sample, as sampling

variations will, more likely than not, create a false perception that there is a minor influence even

if that is not the case in the true probability. These slight variations, which preclude the naive

Bayes’ theorem from excluding terms that does not contribute to the computation (i.e.

∏ 𝑝𝒗𝒋(vj)
𝑁
𝑗=𝑎+1 in the equations above), are all sources of errors that create a worse estimation

than what could have been achieved if those terms were removed instead. In addition, given that

International Journal of Computer Science & Information Technology (IJCSIT) Vol 16, No 3, June 2024

112

each of the 𝑝𝒗𝒋(vj) terms in the product is a source of error, the more terms are involved, the

greater the potential for error in the computation of the result.

The performance of the algorithm may be improved if such features that have little to no influence

on the result were to be eliminated from the computation. In order to eliminate such features, we

must first identify properties of those features that separate them from features that have

significant influence on the result. A key property is that features with little to no influence

produce probabilities that are much closer to each other compared to features that have significant

influence. This is due in part to the fact that the gap between these values is the result of sampling

variations, which, given sufficient sample size, is relatively minor compared to the gap from the

actual underlying probability distribution, which should be more significant. Therefore, the

process of eliminating the features with little to no influence will be dependent on how similar

the values of the estimated conditional probabilities drawn from the observed data are to each

other.

Recall that the state 𝑠𝑡 = (𝑋𝑡 , 𝑌𝑡) where 𝑋𝑡 = (𝑥1
𝑡, … , 𝑥𝑁

𝑡) such that 𝑥𝑛
𝑡 ∈ {1,… , P} and 𝑛 ∈

{1,… , N}, 𝑌𝑡 = (𝑦1
𝑡 , … , 𝑦𝑀

𝑡) such that 𝑦𝑚
𝑡 ∈ {0,1} and 𝑚 ∈ {1,… ,M}, and 𝑡 is the current turn

index. The 𝑝𝒙𝒊|𝒄(𝑥𝑖
𝑡|𝑐𝑘) and 𝑝𝒚𝒋|𝒄(𝑦𝑗

𝑡|𝑐𝑘) portion of the naive Bayes’ theorem represents the

estimated conditional probability of the class assignment given the current state derived from the

𝑁 × 𝑃 × 𝑄 tensor 𝐴 and the 𝑀 × 2 × 𝑄 tensor 𝐵 where 𝑄 is the size of the action class set.

However, as stated before, it may not be the case that all 𝑁 components in 𝑋𝑡 = (𝑥1
𝑡, … , 𝑥𝑁

𝑡) and

all 𝑀 components in 𝑌𝑡 = (𝑦1
𝑡 , … , 𝑦𝑀

𝑡) are useful features for defining the current strategy.

To eliminate potential noisy features, the standard deviation (𝜎) and the one minus entropy (𝐻′)
of each class probability distribution is computed. Given a numeric list 𝑧, the function definition

for the mean (𝜇), standard deviation (𝜎), entropy (𝐻) and one minus entropy (𝐻′) are given in

the following:

𝜇(𝑧) =
∑ 𝑖𝑖∈𝑧

|𝑧|
 (16)

𝜎(𝑧) = √
∑ 𝑖𝑖∈𝑧 −𝜇(𝑧)

|𝑧|
 (17)

𝐻(𝑧) = −∑ 𝑖 𝑙𝑜𝑔2 𝑖𝑖∈𝑧 (18)

𝐻′(𝑧) =
𝐻(𝑧)

𝐻(1 |𝑧|,…,1 |𝑧|⁄⁄)
 (19)

Given state 𝑠𝑡 = (𝑋𝑡 , 𝑌𝑡), compute 𝑁-tuple 𝜎𝐴 = (𝜎𝐴,1, … , 𝜎𝐴,𝑁) with 𝜎𝐴,𝑖 =

𝜎 (𝑝𝒙𝒊|𝒄(𝑥𝑖|𝑐1), … , 𝑝𝒙𝒊|𝒄(𝑥𝑖|𝑐𝑄)), or standard deviation of the conditional probability of 𝑥𝑖
𝑡

derived from tensor 𝐴 and partial state 𝑋𝑡, and 𝑀-tuple 𝜎𝐵 = (𝜎𝐵,1, … , 𝜎𝐵,𝑀) with 𝜎𝐵,𝑗 =

𝜎 (𝑝𝒚𝒋|𝒄(𝑦𝑗|𝑐1), … , 𝑝𝒚𝒋|𝒄(𝑦𝑗|𝑐𝑄)), or the standard deviation of the conditional probability of 𝑦𝑗
𝑡

derived from tensor 𝐵 and partial state 𝑌𝑡. Let 𝜎 = (𝜎𝐴,1, … , 𝜎𝐴,𝑁, 𝜎𝐵,1, … , 𝜎𝐵,𝑀).

Note that in standard deviation, the larger the difference in the given list of probabilities, the larger

the result of the two metrics is. However, entropy’s behavior is completely opposite. In other

words, the more similar the given list of probabilities (or the more similar the list of probability

is to a uniform distribution), the higher the entropy value. In order to maintain a consistent

ordering with the other two metrics, instead of using the standard entropy formula in Equation

18, the one-minus entropy in Equation 19 is used instead.

In addition, given that log 0 = ∞, the direct computation of 𝑥 log 𝑥 is impossible if 𝑥 = 0. By

L’Hôpital’s Rule, lim
𝑥→0

𝑥 log 𝑥 = 0. However, during the actual implementation, the computer

International Journal of Computer Science & Information Technology (IJCSIT) Vol 16, No 3, June 2024

113

program cannot resolve this computation on its own. Therefore, a special case must be constructed

for Equation 18 in the following manner:

𝐻𝑙ℎ(𝑥) = {
𝑥 𝑙𝑜𝑔2 𝑥 𝑥 ≠ 0

0 𝑥 = 0
 (20)

𝐻(𝑧) = −∑ 𝐻𝑙ℎ(𝑖)𝑖∈𝑧 (21)

Note that this definition creates an additional issue during implementation of floating-point

comparison. To handle that issue, we use the relative difference function in Equation 22 is

constructed to conduct floating point comparisons between 𝑎 and 𝑏.

𝑟𝑑(𝑎, 𝑏) =
|𝑎−𝑏|

0.5∗(𝑎+𝑏)
 (22)

The algorithm will consider two values 𝑎 and 𝑏 equal if 𝑟𝑑(𝑎, 𝑏) < 0.000000001.

Beyond the given issue, most theorems and laws related to entropy are dependent on the fact that

the input forms a probability distribution. In other words, using the 𝑧 term used in Equation 21,

∀𝑖∈𝑧0 ≤ 𝑧 ≤ 1 and ∑ 𝑖𝑖∈𝑧 = 1. However, given that the input in this case are the lists 𝜎𝐴,𝑖 =

(𝑝𝒙𝒊|𝒄(𝑥𝑖|𝑐1), … , 𝑝𝒙𝒊|𝒄(𝑥𝑖|𝑐𝑄)) and 𝜎𝐵,𝑗 = (𝑝𝒚𝒋|𝒄(𝑦𝑗|𝑐1), … , 𝑝𝒚𝒋|𝒄(𝑦𝑗|𝑐𝑄)), the input does not add

up to 1 and thus does not form a probability distribution.

The main conflict that this creates is the fact that the one-minus entropy equation defined in

Equation 19 is using the law that the highest entropy is drawn from the uniformed distribution.

However, that is only true if what is compared to that value is also derived from a probability

distribution. If the input into the entropy function is not a probability distribution, it can result in

an entropy value larger than the entropy drawn from the uniform distribution resulting in a

negative one-minus entropy value.

To address this issue, we compute the estimated one-minus entropy value by first normalizing the

input tuple to force the input into a probability distribution, which will guarantee that the

denominator in Equation 19 is at minimum as large as the computed entropy. The edited functions

can be seen in the following:

𝑁𝑜𝑟𝑚(𝑖, 𝑧) = {
0 𝛴𝑗∈𝑧𝑗 = 0

𝑖 𝛴𝑗∈𝑧𝑗⁄ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (23)

𝑁𝑜𝑟𝑚(𝑧) = (𝑁𝑜𝑟𝑚(𝑖, 𝑧))
𝑖∈𝑧

 (24)

𝐻(𝑧) = −∑ 𝐻𝑙ℎ(𝑖)𝑖∈𝑁𝑜𝑟𝑚(𝑧) (25)

Given state 𝑠𝑡 = (𝑋𝑡 , 𝑌𝑡) as the previous metric, compute 𝑁-tuple 𝐻′𝐴 = (𝐻′𝐴,1, … , 𝐻′𝐴,𝑁) with

𝐻′𝐴,𝑖 = 𝐻′ (𝑝𝒙𝒊|𝒄(𝑥𝑖|𝑐1), … , 𝑝𝒙𝒊|𝒄(𝑥𝑖|𝑐𝑄)), and 𝑀-tuple 𝐻′𝐵 = (𝐻′𝐵,1, … , 𝐻′𝐵,𝑀) with 𝐻′𝐵,𝑗 =

𝐻′ (𝑝𝒚𝒋|𝒄(𝑦𝑗|𝑐1), … , 𝑝𝒚𝒋|𝒄(𝑦𝑗|𝑐𝑄)). Let 𝐻′ = (𝐻′𝐴,1, … , 𝐻′𝐴,𝑁 , 𝐻′𝐵,1, … , 𝐻′𝐵,𝑀).

There are two different paths toward accomplishing the task of feature reduction. The first path

makes use of a simple scalar value to control which terms in the defined variance values list (𝜎

or H′) are to be included in the computation of the estimated probability distribution. The second

path makes use of order statistic in order to determine which terms in the defined variance values

list are to be included. Both methods are presented in the following subsections.

5.1.1. Feature Reduction with Scalar Value

International Journal of Computer Science & Information Technology (IJCSIT) Vol 16, No 3, June 2024

114

Let λ be the feature reduction factor, define the (F)eature (R)eduction vector for tensor 𝐴, 𝐹𝑅𝐴 =

(𝐹𝑅𝐴,1, … , 𝐹𝑅𝐴,𝑁) and feature reduction vector for tensor 𝑩, 𝐹𝑅𝐵 = (𝐹𝑅𝐵,1, … , 𝐹𝑅𝐵,𝑀) by the

following:

𝐹𝑅𝐴,𝑖 = {
1 𝜎𝐴,𝑖 ≥ 𝜇(𝜎) ∗ 𝜆

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (26)

𝐹𝑅𝐵,𝑖 = {
1 𝜎𝐵,𝑖 ≥ 𝜇(𝜎) ∗ 𝜆

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (27)

If standard deviation is used as the feature reduction function and

𝐹𝑅𝐴,𝑖 = {
1 𝐻′𝐴,𝑖 ≥ 𝜇(𝐻′) ∗ 𝜆

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (28)

𝐹𝑅𝐵,𝑖 = {
1 𝐻′𝐵,𝑖 ≥ 𝜇(𝐻′) ∗ 𝜆

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (29)

If one-minus entropy is used as the feature reduction function.

Equation 26 and Equation 28 assign the value 1, or true in boolean terms, if the standard

deviation/one-minus entropy of a given observation 𝑥𝑖
𝑡 is greater than the mean of the standard

deviations/mean of the one-minus entropy of all 𝑥𝑗
𝑡 such that 𝑗 ∈ {1,… ,𝑁} times the feature

reduction factor, and has the value 0, or false in boolean terms, otherwise. Similarly, Equation 27

and Equation 29 assigns the value 1, or true in boolean terms, if the standard deviation/one-minus

entropy of a given observation 𝑦𝑖
𝑡 is greater than the mean of the standard deviations/mean of the

one-minus entropy of all 𝑦𝑗
𝑡 such that 𝑗 ∈ {1,… ,M} times the feature reduction factor, and has the

value 0, or false in boolean terms, otherwise.

5.1.2. Feature Reduction with Order Statistic

Recall that the full list of standard deviation values 𝜎 and one-minus entropy values 𝐻′ has already

been computed when the algorithm has reached this point. Instead of finding the mean as would

be done if a scalar value is used as the feature reduction factor, order statistic requires that the

maximum value and the minimum value of the respective list be found. Once the maximum and

minimum are found, the range between the two values are partitioned into equal interval bins and

each value in the given list is placed in the respective bins.

This approach will only select the conditional probability correlating to the top 𝜆 portion of the

sorted 𝜎 or 𝐻′ list. Rather than sorting the full list, given that the values are placed in the

corresponding equal interval bins, the process will begin by accepting values from the bin with

the highest values. If the number of terms accepted plus the number of terms in the entire next bin

is less than the targeted number, the process will add all the terms in the bin to the accepted list

and continue to the next bin. If the number of terms accepted plus the number of terms in the

entire next bin is equal to the targeted number, the process will add all the terms in the bin to the

accepted list and return the result. If the number of terms accepted plus the number of terms in

the entire next bin is greater than the targeted number, only the term in the next bin is sorted and

the terms will be accepted in order from largest to smallest until the targeted number is reach and

the result is returned. Note that this process works best if the number of variables and thus the

size of either 𝜎 or 𝐻′ is large. If the size of 𝜎 and 𝐻′ are sufficiently small, it may be more efficient

to sort the full list outright and take the top targeted number of terms.

For this approach, the feature reduction factor 𝜆 must be in the range (0.0, 1.0], and it represents

the percentage of the highest values in the list. The open lower end of the range is representative

of the fact that a 𝜆 of 0.0 in this case means the elimination of every term in 𝜎 or 𝐻′ depending

on the method used. The upper bound of 1.0 is representative of the fact that 100% of 𝜎 or 𝐻′ are

included and a value greater than 100% does not make any sense in this situation.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 16, No 3, June 2024

115

The feature reduction function 𝐹𝑅 is then defined as the following:

𝐹𝑅𝐴,𝑖 = {
1 |{𝑠|𝜎𝐴,𝑖 ≤ 𝑠, 𝑠 ∈ 𝜎}| ≤ |𝜎| ∗ 𝜆

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (30)

𝐹𝑅𝐵,𝑖 = {
1 |{𝑠|𝜎𝐵,𝑖 ≤ 𝑠, 𝑠 ∈ 𝜎}| ≤ |𝜎| ∗ 𝜆

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (31)

If standard deviation is used as the feature reduction function and

𝐹𝑅𝐴,𝑖 = {
1 |{𝑠|𝐻′𝐴,𝑖 ≤ 𝑠, 𝑠 ∈ 𝐻′}| ≤ |𝐻′| ∗ 𝜆

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (32)

𝐹𝑅𝐵,𝑖 = {
1 |{𝑠|𝐻′𝐵,𝑖 ≤ 𝑠, 𝑠 ∈ 𝐻′}| ≤ |𝐻′| ∗ 𝜆

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (33)

If one-minus entropy is used as the feature reduction function.

In the each of the equations above, there is a counting function where the left side of the divider

| indicates the number of terms to be counted and the right side indicates the conditions that those

terms need to satisfy. For example, in Equation 30, the function |{s|𝜎A,i ≤ s, s ∈ 𝜎}| means the

number of 𝑠 such that 𝜎A,i is less than or equal to 𝑠, and 𝑠 is in the list 𝜎. In other words, count

the number of terms in 𝜎 that are greater than or equal to 𝜎A,i. When combined with the right side

of the inequality ≤ |𝜎| ∗ 𝜆, the entire condition translates to if the number of terms in 𝜎 that are

greater than or equal to 𝜎A,i is less than or equal to the size of 𝜎 times 𝜆. In other words, the

condition is true if 𝜎A,i is smaller than no more than 𝜆 portion of the entire 𝜎 list, or, 𝜎A,i is in the

top 𝜆 portion of 𝜎.

The same definition can be applied to Equation 32, Equation 31, and Equation 33 with the only

difference being the tensor in which the value is generated from (𝐴 or 𝐵) and the method used for

feature reduction (standard deviation or one-minus entropy).

5.1.3. Estimating Probability Distribution Using Feature Reduction

While the normal instinct is to apply the feature reduction vector as a scalar to the conditional

probability, it is important to note that in the naive Bayes’ approach, the conditional probabilities

are combined with a product (∏) and not a summation (∑). If any term within the product

sequence is 0, then the result of the product will be 0. Therefore, to allow only the conditional

properties that have a sufficiently high level of deviation to be part of the product sequence, an

additional function, using 𝐹𝑅𝐴,𝑖 and 𝐹𝑅𝐵,𝑖 having boolean values instead of scalar values, is

necessary.

The purpose of feature reduction is to extract a probability distribution that has a significant

deviation. To that end, the algorithm defines function 𝐶𝑃𝑆𝐴,𝑖 (for (C)onditional (P)robability

(S)elector) as the modified conditional probabilities drawn from tensor 𝐴 for variable 𝑥𝑖
𝑡 and

𝐶𝑆𝑃𝐵,𝑖 as the modified conditional probabilities drawn from tensor 𝐵 for variable 𝑦𝑖
𝑡. For cases

such that the deviation within the probability distribution for a given variable 𝑥𝑖
𝑡 or 𝑦𝑖

𝑡 is

significantly high (𝐹𝑅𝐴,𝑖 = 1 or 𝐹𝑅𝐵,𝑖 = 1), the function will return the probability distribution

as is for its application within the Bayes Theorem. However, for those distribution where the

deviation is not high enough (𝐹𝑅𝐴,𝑖 = 0 or 𝐹𝑅𝐵,𝑖 = 0), the function returns a size 𝑄 vector of 1s

to remove the influence of the probability distribution on the result of the application of the Bayes

Theorem.

𝐶𝑃𝑆𝐴,𝑖 = {
(𝑝𝒙𝒊|𝒄(𝑥𝑖|𝑐1), … , 𝑝𝒙𝒊|𝒄(𝑥𝑖|𝑐𝑄)) 𝐹𝑅𝐴,𝑖 = 1

(1,… ,1)⏟
𝑄 𝑡𝑖𝑚𝑒𝑠

 𝐹𝑅𝐴,𝑖 = 0
 (34)

International Journal of Computer Science & Information Technology (IJCSIT) Vol 16, No 3, June 2024

116

𝐶𝑃𝑆𝐵,𝑖 = {
(𝑝𝒚𝒋|𝒄(𝑦𝑗|𝑐1), … , 𝑝𝒚𝒋|𝒄(𝑦𝑗|𝑐𝑄)) 𝐹𝑅𝐵,𝑖 = 1

(1,… ,1)⏟
𝑄 𝑡𝑖𝑚𝑒𝑠

 𝐹𝑅𝐵,𝑖 = 0
 (35)

Definition 2 (Feature Reduction Factor). The feature reduction factor 𝜆 is the percentage of either

the mean of the list of standard deviation 𝜇(𝜎) or the mean of the list of one-minus entropy 𝜇(𝐻′)
of the estimated probability distribution generated by each individual variable of the observed

data. If a standard deviation of the estimated probability distribution 𝜎 is less than the product of

the feature reduction factor and the mean standard deviation of the estimated probability

distribution 𝜇(𝜎) or the one-minus entropy of the estimated probability distribution 𝐻′ is less than

the production of the feature reduction factor and the mean one-minus entropy of the estimated

probability distribution 𝜇(𝐻′), then the variable that produced the estimated probability

distribution is considered noise data. Given that standard deviations are always greater than or

equal to 0.0, a 𝜆 of 0.0 is the same as no feature reduction.

The original probability distribution equation, which is the Bayes’ theorem with conditional

independence of the observed state given the observed action class applied, is given as the

following:

𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑡(𝑠𝑡) = (
[∏𝑖=1
𝑁 𝑝𝒙𝒊|𝒄(𝑥𝑖

𝑡
|𝑐𝑘
𝑡
)][∏𝑗=1

𝑀 𝑝𝒚𝒋|𝒄(𝑦𝑗
𝑡
|𝑐𝑘
𝑡
)]𝑝𝑐(𝑐𝑘

𝑡)

∑ [∏𝑖=1
𝑁 𝑝𝒙𝒊|𝒄(𝑥𝑖

𝑡
|𝑐𝑞
𝑡
)][∏𝑗=1

𝑀 𝑝𝒚𝒋|𝒄(𝑦𝑗
𝑡
|𝑐𝑞
𝑡
)]𝑝𝑐(𝑐𝑞

𝑡)
𝑄
𝑞=1

)

𝑘=1

𝑄

 (36)

The final classification function with the feature reduction factor is the following:

𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑡(𝑠𝑡) = (
[∏𝑖=1
𝑁 𝐶𝑃𝑆(𝑨,𝒊)𝒌

][∏𝑗=1
𝑀 𝐶𝑃𝑆(𝑩,𝒋)𝒌

]𝑝𝑐(𝑐𝑘
𝑡)

∑ [∏𝑖=1
𝑁 𝐶𝑃𝑆(𝑨,𝒊)𝒌

][∏𝑗=1
𝑀 𝐶𝑃𝑆(𝑩,𝒋)𝒌

]𝑝𝑐(𝑐𝑘
𝑡)

𝑄
𝑞=1

)
𝑘=1

𝑄

 (37)

6. FUTURE WORKS

In reviewing how the modified Naive Bayes’ approach shown in Equation 37 is formed with the

addition of feature reduction process, the “removed” conditional probabilities are replaced by the

value of 1 as can be seen in Equation 34 and Equation 35. By this method, if every variable is

removed from the computation, then every conditional probability will be replaced by the value

of one and the result of Equation 37 will be reduced to the class probability 𝑝(𝑐). This raises the

question if such a result is appropriate or if the result of such cases be reduced to the default

uniform distribution. Both the logical reasoning behind the two potential approaches and the

approaches’ impact on the overall performance of the algorithm requires further examination.

In addition, the fact that the estimation approach requires the computation of the product of all

the conditional probability of the various variables from the observed state creates the potential

where the estimated probability resolves to 0.0 through the simple means of having a single

variable with a conditional probability of 0.0 for the given class. By extension, if, given all the

variables within the observed state, the resulting estimated probability of every class given the

current state resolves to 0.0, the approach will return an estimation of the default uniform

distribution. Much like the first point, it should be studied if such a result is logically reasonable

or if a different estimation be produced. Furthermore, if a different estimation is to be produced,

what or how the estimation is formed should be further examined.

7. CONCLUSION

This paper introduced a method to estimate a model of the player’s strategy through the use of

the naive Bayes’ approach. As part of this algorithm, the system collects player action selection

information to serve as the basis for producing the estimated models. In order to handle the issues

of shifting player behavior as well as directing the focus of the algorithm only toward pertinent

International Journal of Computer Science & Information Technology (IJCSIT) Vol 16, No 3, June 2024

117

information, the paper also introduces two control variables: decay factor and feature reduction

factor.

The first control variable, decay factor, is applied during the information collection phase of the

algorithm. The decay factor’s effect is most prominent in cases where there is an alteration to the

player’s behavior. However, given that the decay factor places the emphasis on the most recent

information, if there is no change in the player’s behavior, it may result in a less accurate estimate.

The second control variable, feature reduction factor, is used in conjunction with the naive Bayes’

approach to remove features that do not have a major impact on the computation of the conditional

probability. This method takes advantage of the simplicity of the naive Bayes’ approach to,

through a method akin to factoring, remove random variables that do not have a significant

contribution to the overall computation of the conditional probability.

The next step of the work on this algorithm is to test the system in a game environment. Since

this approach is used in conjunction with the battle system toward identifying the player’s likely

next move given a game state, the most reasonable testing ground for this algorithm would be a

simulation of the battle system of a turn-based role-playing game.

REFERENCES

[1] Csikszentmihalyi, M. (1990). Flow: The psychology of optimal experience, Volume 1990.

Harper & Row New York.

[2] Csikszentmihalyi, M. (1997). Finding flow: The psychology of engagement with everyday life.

[3] Csikszentmihalyi, M. (2004). Mihaly Csikszentmihalyi: Flow, the secret to happiness [video

file]. TED Talks in Monterey, California.

[4] Park, S., H. Sim, and W. Lee (2014). Dynamic game difficulty control by using eeg-based

emotion recognition. International Journal of Control and Automation 7(3), 267–272.

[5] Stein, A., Y. Yotam, R. Puzis, G. Shani, and M. Taieb-Maimon (2018). Eeg-triggered dynamic

difficulty adjustment for multiplayer games. Entertainment computing 25, 14–25.

[6] Alves, T., S. Gama, and F. S. Melo (2018). Flow adaptation in serious games for health. In 2018

IEEE 6th International Conference on Serious Games and Applications for Health (SeGAH), pp.

1–8. IEEE.

[7] Chen, J. (2006). Flow in games. a jenova chen mfa thesis. University of Southern California.

[8] Bakkes, S., P. Spronck, and J. Van Den Herik (2008). Rapid adaptation of video game ai. In

2008 IEEE Symposium On Computational Intelligence and Games, pp. 79–86. IEEE.

[9] Bakkes, S., P. Spronck, and J. Van den Herik (2009). Rapid and reliable adaptation of video

game ai. IEEE Transactions on Computational Intelligence and AI in Games 1(2), 93–104.

[10] Bakkes, S., P. Spronck, and J. Van Den Herik (2011). A cbr-inspired approach to rapid and

reliable adaption of video game ai. In Case-Based Reasoning for Computer Games Workshop at

the International Conference on Case-Based Reasoning (ICCBR), pp. 17–26. Citeseer.

[11] Lora-Ariza, D. S., A. A. Sánchez-Ruiz, P. A. González-Calero, and I. Camps-Ortueta (2022).

Measuring control to dynamically induce flow in tetris. IEEE Transactions on Games 14(4),

579–588.

[12] Tang, Z., Y. Zhu, D. Zhao, and S. M. Lucas (2020). Enhanced rolling horizon evolution

algorithm with opponent model learning: Results for the fighting game ai competition. arXiv

preprint arXiv:2003.13949.

[13] Dockhorn, A., M. Kirst, S. Mostaghim, M. Wieczorek, and H. Zille (2022). Evolutionary

algorithm for parameter optimization of context steering agents. IEEE Transactions on Games.

[14] Gaina, R. D., S. Devlin, S. M. Lucas, and D. Perez-Liebana (2021). Rolling horizon evolutionary

algorithms for general video game playing. IEEE Transactions on Games 14(2), 232–242.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 16, No 3, June 2024

118

[15] Nam, S.-G., C.-H. Hsueh, and K. Ikeda (2021). Generation of game stages with quality and

diversity by reinforcement learning in turn-based rpg. IEEE Transactions on Games 14(3), 488–

501.

[16] Oh, I., S. Rho, S. Moon, S. Son, H. Lee, and J. Chung (2021). Creating pro-level ai for a real-

time fighting game using deep reinforcement learning. IEEE Transactions on Games 14(2), 212–

220.

[17] Aghdaie, N., J. Kolen, M. M. Mattar, M. Sardari, S. Xue, K. A.-U. Zaman, and K. A. Moss

(2018, March 20). Dynamic difficulty adjustment. US Patent 9,919,217.

[18] Peppiatt, D. (2021, 04). Ea’s ‘dynamic difficulty’ system wants to predict your behaviour, keep

you playing for longer. https://www.vg247.com/ea-dynamic-difficulty-system. Access: 2023-05-

31.

[19] ElectronicArts (2021). Fair play & dynamic difficulty adjustment. https://www.ea.com/en-

gb/news/fair-play-and-dynamic-difficulty-adjustment. Accessed: 2023-05-31.

[20] Hunicke, R. (2005). The case for dynamic difficulty adjustment in games. In Proceedings of the

2005 ACM SIGCHI International Conference on Advances in computer entertainment

technology, pp. 429–433.

[21] Nunneley-Jackson, S. (2009b, 06). Left 4 dead 2 set in the southern us, has new characters, loads

more. https://www.vg247.com/left-4-dead-2-set-in-the-southern-us-has-new-characters-loads-

more. Access: 2023-05-31.

[22] Nunneley-Jackson, S. (2009a, 04). The darkside chronicles features dynamic difficulty system.

https://www.vg247.com/the-darkside-chronicles-features-dynamic-difficulty-system. Access:

2023-05-31.

[23] Baranowski, J. (2021, 12). Games you didn’t know featured dynamic difficulty.

https://www.svg.com/138490/games-you-didnt-know-featured-dynamic-difficulty/. Access:

2023-05-31.

[24] Li Sheng, L. (2015). What is data decay and how does it affect your business? Tech in Asia.

[25] Sullivan, K. (2020). How data decay can spoil your small business database. Enigma.

[26] Chen, J. H., M. Alagappan, M. K. Goldstein, S. M. Asch, and R. B. Altman (2017). Decaying

relevance of clinical data towards future decisions in data-driven inpatient clinical order sets.

International journal of medical informatics 102, 71–79.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 16, No 3, June 2024

119

