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ABSTRACT 

Game AI is a very active area of study in recent times. These advancements appear to coincide with 

advancements in processing power of both computers and gaming consoles, allowing for deploying more 

computationally intensive algorithm. This paper samples a small selection of papers from two periods, the 

late 2000s to early 2010s and the beginnings of the 2020s to current time in order to demonstrate this 

transition toward higher level of AI development. 
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1. INTRODUCTION 

Game AI has been a part of video games since the beginning, controlling the behavior of the 

opposition to the player. However, it can be argued that the early stages of game AI does not 

reflect any degree of intelligence, but rather a mechanism that ensures both the player and the 

computer act within the rules of the game. At most such systems only determine the behavior of 

the computer using simple heuristic functions. As advancements in both hardware and software 

are made, the types of games along with their game AI systems gradually become more complex. 

It is not until around the turn of the century where the beginning of true AI with machine learning 

techniques being introduced to both academic research and commercial development. While it is 

a given that commercial developments are focused on specific games, academic research is 

divided between specific games and general game playing. In fact, general game playing 

competitions are held regularly where participants submit a singular program that aims to play a 

large variety of games. This paper will review a small sample of papers focusing on both game-

specific AI as well as general game playing AI. The papers are also drawn from two time periods 

to demonstrate the perpetuating advancement in the complexity of the algorithm. 

2. GAME-TREE SEARCH WITH ADAPTATION IN STOCHASTIC IMPERFECT-

INFORMATION GAMES 

The algorithms presented in this section are a summary of a series of papers by Billings et al.: 

Lokibot [1], Loki [2], Poki [3, 4], PsOpti [5], and finally Vexbot [6]. The algorithms use poker, 

specifically limited Texas Hold’em poker, as the testing ground for developing an artificial 

intelligence program capable of competing with human players in an imperfect knowledge setting 

with multiple adversarial agents. 

Lokibot, presented in Billings et al. [1], only focuses on the information known to the program, 

specifically, the cards in the program’s hand and the community cards that is available to all the 
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players. Given that the program gives no considerations to the play style of the opponents, the 

program’s own play style is rendered static and easily exploitable by an experienced player. 

Loki, presented in Billings et al. [2], maintains a record of the opponent’s decision making and 

the strength and potential of the opponent’s hand when the decisions are made, then estimates the 

strength and potential of the opponent’s current hand based on the decisions made by the player 

during the current game and adjusts its own decision making based on that estimation. 

Poki, an algorithm presented by Billings et al. [3, 4], adds to the overall approach by introducing 

two additional features, previous actions and previous amounts to call. These features were 

identified by applying an artificial neural network over records of games played previously as the 

authors noted at the time that "the technique itself cannot be incorporated into a real-time system" 

due to the limits of the processing powers of machines at the time the research was conducted. 

PsOpti presented in Billings et al. [5], makes use of the concept of Nash Equilibrium to determine 

the best strategy. The result, often called the minimax solution for its attempt to minimize the 

maximal loss, is a very defensive approach to the problem which, if applied by itself, offers the 

player no incentive to deviate from such a strategy. Beyond that point, Nash Equilibrium assumes 

the existence of the "rational" opposition player, which plays the same strategy and not mistakenly 

plays a move that returns a lesser payout. As the author points out himself, such an assumption 

"is definitely not the case in real poker, where the opponents are highly fallible." In addition, the 

program has an additional weakness in that it "is only an approximation of an equilibrium strategy, 

and it will not be feasible to compute a true Nash equilibrium solution for Texas Hold’em in the 

foreseeable future" makes the static strategy even more dangerous against a human player able to 

probe and test for specific weaknesses in his/her opponent’s game. 

Vexbot presented in Billings et al. [6] is an adjustment made from PsOpti, which replaces the 

supposedly optimal approach of finding minimax solutions with two variations to the Expectimax 

search, named miximax and miximix. In standard game theory, strategies usually revolve around 

three approaches: minimax, maximin, and maximax. A minimax strategy is one in which the goal 

is to minimize the maximal loss. This is as opposed to the maximin strategy which seeks to 

maximize the minimal gain. A maximax strategy, or greedy strategy, seeks to maximize the 

maximal gain. The three strategies return a singular action as the preferred action once the strategy 

resolves itself, but an Expectimax strategy, which seeks to maximizes the expected gain of a state 

from a pool of actions, considers all actions as possible for the given turn. From the Expectimax 

strategies, a miximax strategy does not preclude any option that is available to the opponent but 

instead applies a distribution over all possible actions by the opponent then the algorithm selects 

the action that returns the highest expected gain based on those distributions in future states. A 

miximix strategy is similar to the miximax in that all of the opponent’s available actions are 

considered but instead of only selecting one, the presumed optimal action, the algorithm uses a 

probabilistic distribution to select an action. In the game tree search in the Texas Hold’em poker 

environment, the nodes representing opponent decisions are no longer modeled as selecting the 

child with the best return descending from each type of action the opponent may select, which in 

this case is from the set of check/call, bet/raise, fold, but a probability distribution of each action 

being selected based on the situation of the game and the opposing player strategy. Given that 

there are only three possible actions, the program can either elect to choose the action with the 

best possible return, resulting in the miximax solution, or apply a mixed strategy of its own, 

resulting in the miximix solution. 

In the Vexbot program, there are three players modeled in the game tree: the two players involved 

in the game, and a neutral player whose responsibility is to reveal the public cards. Therefore, this 

results in four different types of nodes in the search tree: chance nodes, which represents the 

dealer’s action, opponent decision nodes, which models the opponent’s possible actions, player 

decision nodes, which models the player’s possible actions, and leaf nodes, which represents the 

end of the current game. Each of these nodes possesses an expected value function calculating its 

International Journal of Computer Science & Information Technology (IJCSIT) Vol 16, No 4, August 2024

22



effect on the game. Equation 1 represents the expected value function for chance nodes. The goal 

of the formula is to calculate the effect that the public board cards being revealed has on the 

expected value on the rest of the game. 𝑃𝑟(𝐶𝑖) is the probability that public card 𝑖 is revealed by 

the dealer amongst the possible n collections while 𝐸𝑉(𝐶𝑖) is the expected value of the subtree 

descending from the revelation of the public card 𝑖. 

E(C)  =  ∑ Pr(Ci) × E(Ci)1≤i≤n    ( 1 ) 

Equation 2 represents the expected value function for opponent decision nodes, like the chance 

node calculation, 𝑃𝑟(𝑂𝑖) is the probability that event 𝑖 ∈ {𝑓(𝑜𝑙𝑑), 𝑐(𝑎𝑙𝑙), 𝑟(𝑎𝑖𝑠𝑒)} will be 

selected by the opponent and 𝐸𝑉(𝑂𝑖) is the expected value of the subtree descending from each 

of those types of action. 

E(O)  =  ∑ Pr(Oi) × E(Oi)i∈{f,c,r}    ( 2 ) 

While O represents actions by the opponent, 𝑈 represents actions by the player. Combined with 

the three possible actions, 𝑈𝑓 is defined as the player opting to fold in the given turn, 𝑈𝑐 is defined 

as the player opting to call, and 𝑈𝑟 is defined as the player opting to raise. With these definitions, 

the expected gain of the player 𝑈, 𝐸(𝑈), is given as the following: 

E(U)  =  max(E(Uf), E(Uc), E(Ur))   ( 3 ) 

Equation 3 represents the player/program decision node for the miximax strategy where the 

expected value of the node is the maximal amongst the expected value of the subtree descending 

from each type of action. For a miximix strategy, a formula like Equation 1 and Equation 2 is 

used instead. 

Equation 4 represents the expected value formula of the leaf node 𝐿. 𝑃𝑤𝑖𝑛 is the probability of 

winning the hand (0 if player folds, 1 if opponent folds), 𝐿$𝑝𝑜𝑡 is the current size of the pot, and 

𝐿$𝑐𝑜𝑠𝑡 is the amount the player paid into the pot. 

E(L) = (Pwin × L$pot) − L$cost   ( 4 ) 

While (𝑃𝑤𝑖𝑛 × 𝐿$𝑝𝑜𝑡) is typically the expected gain function on its own, the expected gain 

function 𝐸(𝐿) also takes into consideration the cost for the player to reach this terminal state in 

𝐿$𝑐𝑜𝑠𝑡. The expected values from leaf nodes propagates back up the tree through the other three 

types of nodes to the point where the program is expected to decide based on the strategy 

employed. 

To effectively model the opponent’s behavior, a hierarchical structure with different levels of 

abstraction of behavior is constructed. The motivation behind this approach is the sheer amount 

of potential combination of cards, even when hands with similar strength are grouped together. 

This introduces the problem where certain groupings will not be observed when the situation 

demands it. The author suggests that the lowest level of abstraction is the actual betting pattern 

according to the strength of the hand, or the hand rank, of the opponent. Given that the number of 

times in which a player may make a raise call is limited during each betting phase, the author 

suggests that the next levels of abstraction should simply reflect the number of times the two 

players make such a decision regardless of who initiated the raise sequence. Once the different 

decision tree abstractions are constructed, a weight is given to each tree and the final opponent 

modeling decision comes from a combination of the trees dependent on the weight assigned. In 

addition, given that players tend to adjust their strategy during game play, older information is 

not as valuable as recent information. Therefore, a history decay factor is added to allow for a 

higher contribution by the more recent events to the calculation. Although the rate in which a 

human player may alter his/her strategy varies, the decay factor is a static value. If the strategy 

has not changed, adjusting the weight of older information does not alter the result of the 
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computation. If the strategy has changed, then the decay factor has accomplished its goal of 

reducing the weight of older and currently inaccurate information. 

3. SIMULATION-BASED APPROACH TO GENERAL GAME PLAYING 

The technique described by Finnsson and Björnsson [7] is applied to programs submitted for the 

annual AAAI General Game Playing competition. The goal of the competition is to create AI 

agents that can play a wide range of games based upon rules presented at run time by the 

competition. The rules are written in a specific language, called Game Description Language 

(GDL), which can be found in [8]. 

This approach was first proposed by Finnsson in [9] and subsequently expanded upon by Finnsson 

and Björnsson in [7, 10, 11]. In the annual general game playing competition held at the AAAI 

conference, CADIA-player was victorious in the years 2007, 2008, and 2012 

(http://ggp.stanford.edu/iggpc/winners.php). It is important to note that unlike other papers 

discussed in this section, the games involved in the competition are perfect information games, 

or games where the entire state of the game is known to all involved players. Whereas games that 

are the focus of this dissertation involve imperfect information games, where the only knowledge 

the player possesses are those belonging to the characters the players control as well as the result 

of the interactions between those characters and the game world. 

Given that the programmers do not have any information regarding the rules and goals of the 

games involved in each competition until the start of the games, the AI agents must be capable of 

extracting such information based upon the data provided when the competition begins. Usual 

techniques used by the more successful agents in the competition, as described by Finnsson and 

Björnsson in [7], involves applying a very small set of generic features in a game tree search 

algorithm with automatically learned heuristic evaluation function for pruning the branches and 

limiting the branching factor to lower the amount of processing time necessary. However, due to 

the wide variety of games that can potentially be presented to the agents, this technique runs the 

risk of utilizing features that will not reflect the key aspects of the game, resulting in very poor 

performance in the specific game. 

The solution proposed by the author is to apply the idea of the Upper Confidence-bounds applied 

to Tree presented in [12] (UCT for the remainder of the paper) in conjunction with Monte Carlo 

simulation to evaluate payouts. The algorithm simulates the complete games repeatedly and 

collects information regarding the payout for different actions at each state and at the end of the 

deliberation period select the action with the best average expected gain. The agent using this 

technique, named CadiaPlayer by the author, will be able to avoid the use of the evaluation 

function for feature selection by examining all legal actions and thus the issue stated above will 

not affect the performance of this agent. 

At each step in a Monte Carlo simulation, a number of trials are conducted with randomly selected 

actions. The results of the trials are collected, and the action selected at that step is the one with 

the highest level of average return value. The UCT algorithm introduces an extra term, named the 

UCT bonus, to balance the cost of examining untried paths (exploration) and the effect of 

exploring the same previously successful moves repeatedly (exploitation). 

Let 𝐴(𝑠) be the set of all possible actions in the state 𝑠, 𝑄(𝑠, 𝑎) is the average return value of 

action 𝑎 in state 𝑠. The first part of the equation is in essence the Monte Carlo simulation action 

selection function. The additional term is the UCT bonus as stated above. 𝑁(𝑠) is the number of 

times in which the state 𝑠 is visited while 𝑁(𝑠, 𝑎) is the number of times in which action 𝑎 is 

selected at state 𝑠. The action selection algorithm is given by the following formula: 

𝑎∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎∈𝐴(𝑠) (𝑄(𝑠, 𝑎) + 𝐶√
𝑙𝑛 𝑁(𝑠)

𝑁(𝑠,𝑎)
)   ( 5 ) 
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Performing action 𝑎 at state 𝑠 will increase both the numerator and the denominator of the UCT 

bonus. However, since the numerator includes a natural log, the rate of increase is lower than that 

of the denominator. In other words, performing action 𝑎 at state 𝑠 will decrease the UCT bonus 

for action 𝑎 in the next instance state 𝑠 occurs. Performing action 𝑎 will also have the effect of 

increasing the UCT bonus value for all other possible actions at state 𝑠 since the denominator will 

remain the same for those actions, but the numerator is increased with the appearance of state 𝑠. 

If an action 𝑎 has not been selected previously, the algorithm defaults to selecting such an action 

for the next step of the simulation in order to create a point of reference. The aggressiveness in 

which the algorithm attempts to pursue suboptimal paths depends on the tuning variable 𝐶. The 

UCT term permits the algorithm to explore suboptimal steps in search of potentially better pay 

off in the future. 

In addition to the function for determining next action in cases in which the average consequence 

of action 𝑎 is known, as stated before, the algorithm defaults to selecting a previously unexplored 

action if such exists at a particular state. However, if there are multiple such actions available, an 

additional function based on the Boltzmann distribution first developed in the area of 

thermodynamics is used to determine which of the unexplored actions to test first. Given 𝑃(𝑎) is 

the probability of action a being chosen, 𝑄ℎ(𝑎) is the average return of action a regardless of the 

state in which it is played, and 𝜏 is the tuning variable, the equation is given as the following: 

𝑃(𝑎) =
𝑒𝑄ℎ(𝑎) 𝜏⁄

∑ 𝑒𝑄ℎ(𝑏) 𝜏⁄𝑛
𝑏=1

   ( 6 ) 

A 𝜏 value approaching 0 will reduce the distribution to a maximax, or greedy, function while a 

high 𝜏 value will reduce the gap between the probabilities for the various options. The idea behind 

this function based on the observations from previous actions is that if an action is preferred in 

one state, it is likely to be preferred in another state even if the state-action pair has not been tested 

before in that specific state. 

The variance between the different versions of CadiaPlayer lies in the process in which the 

simulation is conducted. Part of exploring previously unobserved state-action pairs involves 

comparing previously observed results from list of potential actions regardless of the state 

associated with those actions. In other words, the history of observed consequences of previous 

actions factors into the decision-making process at the current state. Finnsson and Björnsson [9, 

7] introduce the technique named Move-Average Sampling Technique (MAST), which compiles 

the action score as the average of all occurrences of the given actions. This average is given as 

𝑄ℎ(𝑎) value in the previous equation. Finnsson and Björnsson [10] introduce the additional step 

named Rapid Action Value Estimation (RAVE), which maintains a separate record of values 

𝑄𝑅𝐴𝑉𝐸(𝑠, 𝑎) in addition to the 𝑄(𝑠, 𝑎) values, with the RAVE term being a state-action score 

value observed further down the tree. These RAVE terms are then used in combination with the 

observed 𝑄(𝑠, 𝑎) values during the Monte Carlo process in instances where the state-action pair 
(𝑠, 𝑎) is seen. This is accomplished by changing the 𝑄(𝑠, 𝑎) term in the action selection function 

to 𝛽(𝑠) × 𝑄𝑅𝐴𝑉𝐸(𝑠, 𝑎) + (1 − 𝛽(𝑠)) × 𝑄(𝑠, 𝑎) where 𝛽(𝑠) = √
𝑘

3×𝑁(𝑠)×𝑘
 with 𝑁(𝑠) being the 

number of times state 𝑠 is seen. 

Based on this additional step, the denominator in the 𝛽(𝑠) term increases each time state 𝑠 is 

observed and thus the weight of the RAVE term decreases each time state 𝑠 is observed. This 

adjustment is based on the assumption that due to sample size, the value of 𝑄(𝑠, 𝑎) is unreliable 

at the beginning of the Monte Carlo process, but the reliability increases as the number of 

observations increases. Lastly, Finnsson and Björnsson [11] introduce Features-to-Action 

Sampling Technique (FAST). The previous techniques give no consideration to the type of game 

being played or the rules of the game. FAST introduces two new features called piece type and 

cell location. The features maintain a list of values for each object where actions can be applied 

(piece type) as well as the result of the action (cell location). These values can be described as 
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contribution these piece types and cell locations made toward the accomplishing the goal of the 

game. This feature allows CadiaPlayer to select actions which provides greater contributes to the 

goals of the game with greater probability. 

While the focus for Finnsson and Björnsson in [7, 10, 11] is the UCT with Monte Carlo search, 

since the General Game Playing Competition features both single-player and multiplayer games, 

Finnsson and Björnsson in [9] made note of the fact that CadiaPlayer is mainly designed for an 

adversarial game where there is at least one opponent. To handle situations where the system is 

presented with a single player game, CadiaPlayer makes use of the enhanced iterative-deepening 

A* search. For multiple player games however, in order to model opponent behavior, an UCT 

tree is constructed for each player involved in the game. The collection of UCT trees is then used 

in conjunction in order to project the most valuable next move. Note that the action selected by 

the previous two functions are only used in the Monte Carlo simulation phase, the resulting action 

selection is only dependent on the 𝑄(𝑠, 𝑎) score from the simulation and the UCT bonus term is 

not involved. Although UCT trees are constructed for every agent involved in the game and the 

projection utilizes all the UCT trees, the author makes note of the fact that CadiaPlayer only 

evaluates the effect of the projected strategy on all agents in a two-player game, while the 

algorithm will only consider the strategy’s effectiveness on itself in a multi-player game 

regardless of its consequence on all other agents. 

Beside CadiaPlayer, UCT with Monte Carlo search are also used in other general game playing 

research. In fact, Swiechowski and Tajmajer [13] made note of the fact that Monte Carlo Tree 

Search (MCTS) is the algorithm of choice for every winner of the general game playing 

competition since 2007. The fact that MCTS only requires the full list of the rules of the game to 

operate makes the algorithm not only appealing to those working in the area of general game 

playing, but also the complex game of Go, including the famous Go playing program AlphaGo 

[14]. 

4. OPPONENT MODELING IN REAL-TIME STRATEGY GAMES 

The technique proposed by Schadd et al. [15] is applied to modeling of opponent behavior in real 

time strategy game (RTS game for the remainder of the paper). Specifically, the algorithm is 

tested with an open source RTS game named SPRING. 

The main challenges surrounding opponent modeling in RTS games are twofold. First in most 

RTS systems, most of the map of the battlefield is concealed by the "fog of war". The only area 

visible to the player is only within a certain range of any unit or building constructed. This 

imperfect information setting makes modeling an opponent strategy impossible unless some form 

of contact has been made between the two military forces, either in defense against an invasion 

by the opponent or in spying mission against the opponent’s base. The contact must also be 

initiated early enough for the player to have sufficient time to respond to the strategy. The second 

issue is related to the last sentence in that, given that the game is real time system, whatever 

information gathered must be processed at real time. Therefore, any opponent modeling and 

strategy formation algorithms designed for such task must be able to resolve the computation 

rapidly with limited processing power given that, as referenced in [16], most of the recent games 

dedicate most processing power toward graphics rendering. 

Given that the algorithm, unlike the approach discussed in Section 3, is tested on a specific game, 

predefined game specific knowledge may be added to this technique to improve upon its 

performance. However, this algorithm is general enough that it may be adapted across games of 

this genre with minimal adjustment. The technique proposed in this paper involves two parts. The 

first is a classification problem which seeks to identify which specific strategy employed by the 

opponent. The second is the counter-strategy selection algorithm based upon the model selected 

in the first part. 
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The first part of the algorithm seeks to match the opponent with a particular strategy. As stated 

before, most of the map is covered by the "fog of war" and thus any information about the 

opponent must be gathered when contacts are made. Such contact, as the author stated, can only 

be made during attacks by either side. The amount of time the opposition spends on attacks is 

therefore used as an identifier to classify whether the opponent is utilizing an aggressive strategy 

or a defensive strategy. In addition to the generic overarching classifier, the author also adds a 

second level in a hierarchical classification approach. By observing the specific information 

obtained during an attack, the algorithm also classifies which military unit is the focus of the 

opponent if the opposition utilizes an aggressive strategy and which end-game goal is being 

applied by the opponent if the opposition utilizes a defensive strategy. Since such information, 

either military unit in the first case or construction patterns in the second, can be obtained during 

battle, this approach does not violate the laws of the game and apply information that are 

otherwise unknown to the player. 

Each type of strategy applied by the opponent has its own strengths and weaknesses. The goal of 

the second path is to find a counter strategy which avoids the opponent’s strategy’s strength while 

attacking its weaknesses. In order to select from one of the predefined strategies, we define 𝜋𝑖 as 

the reward received at time 𝑖 and 𝛿 as the discount factor. The following formula is used to 

calculate the expected gain, 𝐸, of each strategy: 

𝐸 = (1 − 𝛿) × ∑ 𝜋𝑖 × 𝛿𝑖−1∞
𝑖=1    ( 7 ) 

The discount factor is added to adjust the weights to favor immediate rewards over future rewards, 

especially since one may adjust his/her own strategy if it is proven to be unsuccessful, rendering 

any future rewards in doubt. Once the expected reward is calculated for each strategy, the strategy 

with the highest return will be selected by the algorithm. 

Since a player may adjust his/her own strategy as stated above, the confidence level of the 

projected opponent strategy must be constantly updated. Given that the only instances when the 

opponent’s behavior can be observed is during an act of aggression from either side, the 

confidence level, 𝐶𝑠, is adjusted after every moment of contact. Let 𝛿 be the discount factor, 𝜋 be 

the reward received at this contact event, 𝑥 be the current observed event, and 𝜓𝑠,𝑡 be the 

probability factor representing the believe that a player is utilizing strategy 𝑠 at time 𝑡, and is a 

representation of the information received during a contact event. The confidence level is then 

defined through the following formula: 

Cs = ∑ ψs,t × π × δx−t0
t=x    ( 8 ) 

In discussing the technique, the author provides two additional points of interest. Information 

gathering, as stated throughout the paper surveyed, is one of the most important aspects in this 

algorithm and in general in a RTS game. However, how the information is obtained can vary 

greatly dependent on the approach of the opposition. Against an aggressive player, the 

information often presents itself during attacks by the opponent and one only needs to observe 

the type of units deployed for the attack to classify which specific strategy the opponent is 

utilizing. However, against a defensive player, the opponent often will avoid attacking until the 

end-game goal is near completion. In such instance, the player is responsible for securing 

information by deploying units for scouting mission. Therefore, an addition to the approach 

should feature the utilization of scouting mission dependent on the actual need for information 

on the opponent. Also, an aggressive strategy may be altered relatively easily through focus on 

construction of a different unit then before. However, a defensive strategy usually requires 

extensive time dedicated to the specific approach and cannot be changed quickly. Therefore, 

Schadd et al. [15] suggest that the discount factor applied in the two formulas should be 

dependent on this additional game specific information rather than a "one-size-fits-all" constant 

factor. 
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While the initial work limits the observations to the current game and makes decisions based 

solely on those observations and expert knowledge relating to the game environment. 

Subsequent works by the same group in [17, 18, 19] introduce an addition level of opponent 

modeling by applying case-based reasoning. Case-based reasoning, in simple terms, is the 

approach to solve the current problem based on experiences in attempting to solve previous, 

similar problems. While strategy games require a certain amount of time to complete, each run 

of the game is independent from each other and there is no carry over bonus or penalty based on 

the result of the previous game. Therefore, the approaches presented in [17, 18, 19] make use of 

recorded information of previous runs of the same strategy game and cluster the opponent 

strategies into groups in the offline learning phase of the algorithm. During the game, the online 

application of the algorithm matches the current knowledge of the game world, particular any 

information that can be gathered regarding the opponent, with the various clusters to discover 

the subset of previous playthroughs that most resemble the current situation. Afterward, the 

algorithm selects from those playthroughs the strategy that best resembles the goal of the 

current game. This approach allows the algorithm to firstly respond quickly to changing 

situations in the game world, and secondly perform at a level that is not the absolute optimal 

solution. In other words, this approach can also function as a difficulty adjustment algorithm 

instead of simply as an optimal performance algorithm. 

5. CREATING PRO-LEVEL AI FOR A REAL-TIME FIGHTING GAME USING 

DEEP REINFORCEMENT LEARNING 

Oh et al. in [20] focuses the research on the fighting game genre. The algorithm is tested in the 

game Blade & Soul (NCSoft 2012). In particular, its two-player dueling system called B&S Arena 

Battles available in the game. 

The authors open the paper by presenting the challenges the developed system must overcome. 

The first is, as with most modern games, the size of the range of possible actions at each time 

step. In the case of this paper, given that the game utilizes a real-time system, the authors define 

a time step as one-tenth of a second in real time. Within each time step, the player must decide on 

all three components which make up the action decision: the direction in which the character will 

move toward; the direction in which the action will be directed toward, and the actual action that 

will be performed by the character. Therefore, the number of possible options at each time step is 

the product of the size of the range of each component. For the purpose of the paper, the authors 

estimate that number to be 144. The second issue is connected to the first in those certain actions 

can only be performed in certain specific states. In other words, the availability of certain actions 

at a particular time step may depend on what actions were chosen during the previous time steps. 

Lastly, also as with most modern games, the game operates as an imperfect information system. 

In other words, the players have no knowledge regarding the other player’s decision-making 

process. 

Given both the real-time nature and the imperfect information environment, the authors describe 

the game as “a series of rock-paper-scissors games” and that “the essence of the problem is to 

approximate a Nash equilibrium strategy so that the agent can respond appropriately to any 

opposing strategy.” In other words, the algorithm will give no consideration to modeling the 

behavior of the opponent and will simply focus its effort in creating the optimal version of the 

agent, or the character controlled by the algorithm, which is reasonable in this case given the 

limited amount of time available for processing for each action decision (one-tenth of a second in 

this case). 

To that end, the authors define a Markov decision process (MDP) = {𝑆, 𝐴, 𝑃, 𝑅, 𝛾} where 𝑆 is the 

set of all states, 𝐴 is the set of all actions, 𝑃 is the state transition probability defined as the 

probability that the game will reach a particular state given the current state and an action, 𝑅 is 
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the reward or gain of the action by a character at a given time, and 𝛾 is the discount factor which 

determines the weight of immediate rewards versus long term rewards [21, 22]. 

In addition, the authors define a policy 𝜋: 𝑆 → 𝐴, which defines the action performed given a 

specific state. The policy is given as 𝜋(𝑠𝑡) = 𝑎𝑡, defined simply as perform action 𝑎 at time 𝑡, 

defined as 𝑎𝑡, given state 𝑠 at time 𝑡, defined as 𝑠𝑡. Define the reward at time 𝑡, or the reward of 

transitioning from state 𝑠𝑡 to state 𝑠𝑡+1 as a result of performing action 𝑎𝑡, as 𝑟𝑡 and the discount 

factor at time 𝑡 as 𝛾𝑡. Given that the transition from 𝑠𝑡 to 𝑠𝑡+1 is locked in by the definition of 

rewards, the probability of transitioning from 𝑠𝑡 to 𝑠𝑡+1 no longer factors into the expected gain 

equation. The optimal policy 𝜋∗ is therefore defined by the following equation: 

𝜋∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜋𝐸𝜋(∑ 𝑟𝑡 × 𝛾𝑡
∞
𝑡=0 )   ( 9 ) 

Furthermore, as stated previously, the strategy of the opponent’s decision-making process is 

unknown to the algorithm, the authors make a further assumption that the pool of policies for the 

opponent is fixed and thus the policy of the opponent can be expressed as a function of the action 

of the agent. Given such an assumption, the MDP can be modified such that only the actions of 

the agent need be considered. 

Given the nature of fighting games, the reward of selected actions is computed by the health point 

information (𝐻𝑃). For this algorithm, at the terminal state of each battle, defined as one character 

having zero remaining life points, the reward rwint is given as +10 for a win and −10 for a loss. 

For non-terminal states, 𝑟𝑡
𝑤𝑖𝑛 = 0. In addition, for all states, there is an additional reward 

determined by health of the two characters given as 𝑟𝑡
𝐻𝑃 and is computed as the difference of the 

difference in health point of the agent (𝐻𝑃𝑡
𝑎𝑔𝑒𝑛𝑡

) and the difference in health point of the 

opponent (𝐻𝑃𝑡
𝑜𝑝𝑝𝑜𝑛𝑒𝑛𝑡

) in the current time step versus the immediate previous time step 

(𝐻𝑃𝑡−1
𝑎𝑔𝑒𝑛𝑡

) and (𝐻𝑃𝑡−1
𝑜𝑝𝑝𝑜𝑛𝑒𝑛𝑡

). 

𝑟𝑡
𝐻𝑃 = (HPt

agent
− HPt−1

agent
) − (HPt

opponent
− HPt−1

opponent
)   ( 10 ) 

The base equation for 𝑟𝑡 is thus defined as the following: 

𝑟𝑡 = 𝑟𝑡
𝑤𝑖𝑛 + 𝑟𝑡

𝐻𝑃   ( 11 ) 

Note that, as stated in the title of the paper, the algorithm is based on a deep reinforcement learning 

technique. Deep reinforcement learning (Deep RL) is a combination of two separate techniques: 

deep learning and reinforcement learning. A reinforcement learning system is one in which 

autonomous agents learn how to best perform a given task by exploring possible actions through 

a series of trial-and-error processes. This system is typically defined in the form of a MDP like 

one defined above. A deep learning system is a system of learning based on artificial neural 

networks (ANN), in particular deep neural networks (DNN), which is an ANN with many layers. 

For the algorithm presented by Oh et al. [20], rather than creating only a single type of agent as 

well a single type of opponent for the agent to train against, the authors created three types of play 

styles by introducing additional factors to the rewards formula. The first is a time penalty, which 

penalizes the character for prolonging the battle. In other words, the longer the battle proceeds, 

the less rewarding the actions become. The second is a distance penalty, whereby the greater the 

physical distance between the agent and the opponent, the less rewarding the actions become. The 

last is a health ratio, which are weight factors added to both the agent and the opponent 

contribution in the 𝑟𝑡
𝐻𝑃 formula. 

With these three additional factors in the calculation of the reward formula, the authors create 

three different play style. The aggressive play style seeks to continuously press forward against 

the opposition and inflict as much damage to the opposition as quickly as possible. Given these 

properties, the authors define the aggressive play style by assigning a comparatively higher time 
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penalty (0.008 in the experiment), a comparatively higher distance penalty (0.002 in the 

experiment) and maintains a balanced health point weight ratio (50%:50% in the experiment). 

The defensive play style seeks to preserve the character’s health as much as possible even if it 

means maintaining a certain distance from the opposition to avoid suffering any damage and 

prolonging the battle. The defensive play style is therefore defined by no time or distance penalty 

while giving a higher health point weight ratio to the agent’s health point versus the opponent’s 

health point (60%:40% in the experiment). The third play style is termed a balanced play style 

and is in between the aggressive play style and the defensive play style. This play style is still 

given a time penalty (0.004 in the experiment) and a distance penalty (0.0002 in the experiment), 

but both penalties are less than the aggressive play style. Like the aggressive play style, the 

balanced play style is also given an equally distributed health point weight ratio (50%:50% in the 

experiment). 

As stated in the beginning of this section, the time steps are partitioned into one-tenth of a second 

intervals. It would be impractical to expect a constant stream of action during each time step. To 

that end, the authors devise two data skipping techniques to discard certain information during 

the self-play process in training the agents. Recall that the action decisions are partitioned into 

three components: the specific action to be selected, the direction for the character to move in, 

and the direction in which the action will be aimed. In fighting games, the movement direction 

and the action direction typically align with each other. In other words, the actions are typically 

aimed at the direction in which the character is moving in. Therefore, the action decision is only 

defined by the action selected and the direction selected and the two data skipping techniques 

focus on these two aspects of the action decision. 

Regarding action selection, the authors define the "no-op" action which signifies the time steps 

where no action is selected. These "no-op" actions are divided into passive "no-op" in which the 

game state dictates that the agent cannot perform any action, and active "no-op" in which the 

agent makes the decision to not perform any action during the current time step. While active "no-

op" reflects the strategy of the agent, passive "no-op" does nothing to contribution to strategy 

formulation as its use is enforced by the environment and not the agent. Therefore, passive "no-

op" are discarded by the algorithm in both the training of the agents and the evaluation of the 

rewards. 

In terms of movement, the authors make the argument that the distance traveled by the character 

during a given time step is very limited because the time step is contained within such a brief 

moment in time. It is impractical for a character to repeatedly move in different directions during 

consecutive time steps. Therefore, the agents are forced to maintain the move direction for a 

predefined number of time steps. In other words, once a movement direction is selected, policies 

which involve moving in a different direction is ignored for a predefined duration. This will allow 

the move action to reflect real in-game actions rather than simply performing a random walk 

across the game area. 

As stated, the algorithm is a deep reinforcement learning system, and the agents are trained 

through a self-play process. The experiment to test the learning algorithm is partitioned into three 

parts. The first experiment tests the effect of creating the three different play styles. The agents 

with the three play styles are trained against a shared pool of past selves from all three play styles, 

while the baseline agent is assigned the base reward equation and is trained against of pool of 

only its past selves. After the agents are trained, the agents with modified play styles are tested 

against the trained baseline agent. The result of this experiment shows that the agents with 

modified play styles have a winning percentage of approximately 60% and thus it can be 

concluded that the use of various play styles will provide a better result than simply using the 

baseline agent. 

While the first experiment shows that agents with various play styles are beneficial, a key 

component of the experiment set up is the shared pool of past selves that the agents are trained 
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against. With the shared pool, each agent can potentially face a copy of a past self of a different 

play style. The second experiment tests the performance of agents training against the shared pool 

versus agents training against independent opponent pools where agents can only face against a 

copy of a past self with the same play style as the agent in training. The assumption of the authors 

is that agents trained with the shared pool will perform better against opponents it has never 

encountered. Therefore, each trained agent will be tested against the two agents with different 

play styles that are trained with an independent opponent pool. The result of the experiment 

supports the assumption that the agents trained with the shared pool outperform the agents trained 

with independent pools. The last experiment involves testing the trained agents against 

professional human players. The result of the matches against professional players shows that the 

AI agents trained using this method can perform at minimum on par with professional 

championship level players, thus showcasing the effectiveness of the algorithm. 

6. ROLLING HORIZON EVOLUTIONARY ALGORITHMS FOR GENERAL VIDEO 

GAME PLAYING 

Gaina et al. [23] seek to optimize the Rolling Horizon Evolutionary Algorithm (RHEA) using N-

Tuple Bandit based approach. The optimization method operates by combining various 

approaches drawn from multiple literature as well as new modifications introduced in this paper. 

The full algorithm is then tested against 20 games from the General Video Game AI Framework 

with varying results. 

The central concept of the algorithm revolves around the evolutionary algorithm. Given the large 

state space of the games where the full algorithm is tested on, the author opts for the use of RHEA, 

which is an evolutionary algorithm where the length of the action sequences evaluated by the 

algorithm is bounded rather than seeking the full solution. Outside of the size limitation, RHEA 

operates in the exact same manner as any typical evolutionary algorithm. The algorithm begins 

by randomly creating a collection of action sequences. A heuristic function is defined to evaluate 

the game state at the conclusion of each action sequence to produce the fitness or desirability of 

the given action sequence. The best performing sequences are kept within the collection and 

additional sequences are created by combining two sequences in the previous iteration of the 

collection. Those newly created sequences are then mutated before being added to the collection 

for the next round of evaluation. The process repeats until a predefined termination points 

typically in the form of either a generation limit or a time limit. 

The authors then modify the standard RHEA with the N-Tuple Bandit method to form the N-

Tuple Bandit Evolutionary Algorithm (NTBEA) which is the focus of the paper. Let 𝐿 be the size 

limit of the action sequences, NTBEA creates a collection of n-tuples where the terms of the lists 

are drawn from the list [0, 𝐿 − 1] without replacement. Essentially, the collection of n-tuples is a 

collection of index sets of the action sequence. For a given action sequence, a set of neighbors is 

generated through uniform mutation of the input sequence. Once the collection of index sets and 

the neighbors of action sequences are generated, the following values are collected for each of the 

n-tuples: 

Let 𝑚 be the total number of n-tuples, 𝑇𝑗 be the 𝑗th n-tuple in the collection, 𝑜 be an action 

sequence, 𝑄(𝑇𝑗) is the average fitness of the neighbors, 𝑁(𝑇𝑗) is the number of times 𝑇𝑗 was 

sampled, and 𝑁(𝑇𝑗, 𝑜) be the number of times 𝑇𝑗 was sample and the values of the neighbor at the 

indices defined in 𝑇𝑗 is the same as input sequence 𝑜. The evaluation of action sequence o is then 

given by the following upper confidence bound (UCB) equation: 

UCBo =
1

m
∑ (Q(Tj) + √

2 𝑙𝑛 N(Tj)

N(Tj,o)
)M

j=1 + noise   ( 12 ) 
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The random noise parameter is added to the equation to randomly break ties. 

The process then repeats with the neighbor of 𝑜 with the highest UCB value serving as the input 

action sequence from which a new set of neighbors is generated. The algorithm terminates after 

a given number of iterations or a time limit is reached and the action sequence with the highest 

average fitness value is selected for the current step. The N-Tuple Bandit approach is done as a 

tuning method to the RHEA to ensure that the entire population consists of, at minimum, points 

of local maxima to improve the performance of the evolutionary algorithm. 

In addition to the use of N-Tuple Bandit, the paper introduces several parameters which further 

refines the overall algorithm. These parameters are partitioned into two subsets: the first 

governing structure of the evolutionary algorithm, and the second controls how the evolutionary 

algorithm is applied during game play. 

The concepts of selection, crossover, and mutation form the basis of evolutionary algorithm and 

this paper introduces various means in which these three concepts are applied. In terms of 

selection, which governs which action sequences are used to produce the next generation, the 

options are tournament, roulette, and rank. The tournament approach is defined as randomly 

selecting a subset of the population then choosing those sequences with the best fits to produce 

the next generation. The roulette approach is defined as assigning probability to the sequences in 

accordance with their fitness value then using those probability to randomly select the parents. 

The rank approach assigns ranks to the sequence with those with the lowest fitness values ranked 

first. The sequences are then assigned probabilities equal to their rank in the parent selection 

process. The means in which the selected parents are then used to produce the next generation is 

then control by the concept of crossover. In terms of the approach presented in this paper, there 

are a total of two types of crossovers: uniform and 𝑛-point. The uniform approach creates the new 

sequence by randomly selecting individual actions from either parent with equal probability to 

fill the corresponding spot in the new sequence. The 𝑛-point approach partitions the two parent 

sequences into a collection of size 𝑛 sub-sequences before alternatively selecting sub-sequences 

to form the new action sequence. The last concept, mutation, governs how the newly created 

action sequences are altered before being added to the new population. The mutation steps are 

partitioned into four different approaches: uniform, softmax, diversity, and 𝑛-bits. Uniform 

mutation alters each step within the sequence with equal probability and assigned a new value 

with equal probability. Softmax mutation uses the softmax equation [24] to governs the likelihood 

of mutation. Diversity mutation focuses the mutation to steps with the least amount of information 

available and sets its value to the value with the least amount of information available. N-bit 

mutation selects a sub-sequence of 𝑛 steps and mutate the selected sub-sequence to different 

values. 

Beyond the above concepts, there are two more parameters defining the structure of an 

evolutionary algorithm. The first parameter controls the evaluation process of the action 

sequences by defining what constitutes the heuristic function. The second parameter controls the 

starting state of the evolutionary algorithm by governing how the initial population is generated. 

In terms of the heuristic function, the authors propose several evaluation methods to gauge the 

effectiveness of an action sequence. Each version has its own meaning in terms of what the 

heuristic function is measuring. The examples given by Gaina et al. [23] are the following: 

𝐹[𝐿 − 1], or only maintaining the value of the terminal state of the sequence; Δ(𝐹[𝐿 − 1], 𝐹[0]), 

or the difference between the value of the starting state and the terminal state; 𝐹̅, or the mean of 

the values of each individual state along the action sequence; 𝑚𝑖𝑛(𝐹), or the minimum value 

along the action sequence; 𝑚𝑎𝑥(𝐹), or the maximum value along the action sequence; and finally 

∑ 𝐹[𝑖] × 𝛾𝑖𝐿
𝑖=0 , a weight sum of all the values along the action sequence. In terms of the 

initialization of the RHEA, the standard approach involves simply randomly generating the initial 

population. The author introduces two additional initialization process. The first is the one step 

look ahead method (1SLA), which evaluates all possible actions in the initial state and select the 
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action with the highest value given the heuristic function. The process is repeated with the next 

state generated by the selected action until the targeted length is reach. If the end state is reached 

prior to the targeted length, the sequences is padded with random actions until the targeted length 

is reached. The remaining population pool is then generated by mutating the initial selected 

sequence. The second method utilizes a depth limited Monte Carlo tree search method (MCTS) 

to find the optimal initial sub-sequence before padding the remainder of the sequence with 

randomly selected actions. The remainder of the population pool is generated by mutating the 

initial action sequence. 

The parameters governing how the RHEA is applied mainly revolves around four points: how 

often the algorithm is run during the game play, what information is retained between runs of the 

algorithm, determining how far ahead the evolutionary algorithm should evaluate, and how much 

additional information should be gathered during the simulation phase of the RHEA. The first 

point is governed by what the authors term "frame skipping". The idea behind frame skipping is 

the desire to seek a balance between response time and the depth of the evaluation process. If 

frame skipping is not applied, then a decision is made at every game step. This approach allows 

for a rapid response to sudden shifts in the game world at the cost of a very limited time frame 

for evaluation. If frame skipping is applied, then the algorithm can extend the evaluation across 

multiple game steps which in theory should result in better decision making. This benefit comes 

at a cost to the AI being restricted to pre-defined actions during game steps where no decisions 

are made. The authors offer four different types of pre-defined actions for those game steps: 

repeat, which performs the same action over and over until the next decision is made; null, which 

performs no actions until the next decision is made; random, which randomly selects actions until 

the next decision is made; and sequence, which continues with the action sequence selected rather 

than simply playing the first action and abandoning the remaining sequence. In terms of 

information retention, the idea behind this concept is tied to the previous point regarding 

evaluation time. The author defines this approach, name "shift buffer", as carrying the final 

population of the RHEA from the previous game step as the initial population for the RHEA 

during the current game step with the modification that the action representing the previous game 

state be removed and the sequences padded with a new random action to form sequences of the 

desired length. Regarding how far ahead the RHEA should evaluate, the authors suggest the use 

of "dynamic depth". Recall that the target of the algorithm is general game playing, which 

involves games across a multitude of genres. Each type of games has its own rewards method 

which the authors categorize into no rewards, which only grant rewards during end game 

conditions; dense rewards, which provides steady feed backs on the results of actions; and 

discontinuous rewards, which only provides intermittent feed backs. During periods of games 

where reward information is provided regularly, it may behoove the system to shorten the look 

ahead period to better attune to any potential shifts. During periods of games where reward 

information is less frequent, the system may consider lengthening the look ahead period to better 

gauge which actions are beneficial. Finally, with regards to simulation, the authors suggest the 

additional of a limited level of Monte Carlo rollouts to extend the evaluation of action sequences 

to pad the evaluation process with the addition of a Monte Carlo method. 

7. CONCLUSION 

We have reviewed papers from the game AI area across two time periods. The first set of papers, 

each drawn from the late 2000s to early 2010s, mainly approach the issue of game AI using tree 

search. These approaches focus on developing a model of player behavior and representing this 

model in the form of tree structures then performing the search on these constructed models. The 

second set of papers, drawn from the beginning of the 2020s to current time, approach the 

development of game AI using much more complex algorithms like neural network and 

evolutionary algorithm. While these methods were theorized very early on in studies of machine 

learning techniques, meaningful research utilizing these techniques were not popularized until the 
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turn of the century when computer hardware capacity has increased to the point where the use of 

these techniques become viable. Given that application of these techniques on specific topics are 

not typically studied until a certain level of understanding into their inner workings have already 

been reached, it is understandable that the deployment of these techniques in game AI is not a 

focus of researchers until the late 2010s into the early 2020s. By the same reasoning, we can 

expect developments in game AI to continue to expand with newer machine learning technologies 

currently in development or even to be developed in the future. 
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