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ABSTRACT 
 
Web-based injection attacks such as SQL Injection (SQLi) and Cross-Site Scripting (XSS) remain significant 
cybersecurity threats, enabling adversaries to manipulate databases, execute unauthorized commands, and 

compromise sensitive data. Traditional detection mechanisms—including rule-based and anomaly-based 
intrusion detection systems—struggle with high false positive rates and limited adaptability to evolving attack 

vectors. This research introduces a novel hybrid transformer-based classification model, integrating RoBERTa 
and XLNet architectures to enhance web-based injection attack detection. The hybrid model capitalizes on 

RoBERTa’s dynamic contextual embeddings and XLNet’s permutation-based language understanding to 
provide a robust and generalized detection mechanism capable of handling obfuscated and zero-day payloads. 

The study utilizes two labeled datasets: 43,135 SQLi and 16,985 XSS payloads, preprocessed through 
standardized cleaning, tokenization, and padding techniques. The hybrid architecture extracts [CLS] and final-

token embeddings from RoBERTa and XLNet respectively, concatenates them into a 1536-dimensional feature 
vector, and classifies through a three-layer dense neural network. Evaluation metrics include Accuracy, 

Precision, Recall, F1 Score, False Positive Rate, and Computational Cost.Results reveal that the hybrid model 
outperforms standalone BERT, RoBERTa, and XLNet implementations, achieving 97.66% accuracy, 98% 

precision, and 97% recall, while maintaining efficient computational performance via frozen transformer 

layers. The model demonstrates superior robustness against complex payloads, reduced overfitting, and 
scalable potential for Security Operations Centers (SOCs). This approach offers a novel and effective solution 

for intelligent, real-time web-based threat detection.  
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1. INTRODUCTION 
 

Web-based injection attacks continue to be among the most prevalent and damaging forms of 

cyberattacks targeting online systems. These attacks, including SQL Injection (SQLi) and Cross-
Site Scripting (XSS), exploit vulnerabilities in web applications by injecting malicious input into 

user-supplied fields, allowing attackers to manipulate backend databases, hijack sessions, or 

execute arbitrary scripts on client machines. According to OWASP’s Top 10 vulnerabilities 
report, injection-based flaws have consistently ranked among the most critical threats affecting 

web applications worldwide. These attacks can lead to data breaches, reputational damage, 

service disruptions, and regulatory non-compliance.[7]  

 
Traditional detection techniques—such as signature-based and rule-based Intrusion Detection 

Systems (IDS)— often fail to detect novel or obfuscated attack payloads due to their dependency 

on predefined patterns. Moreover, anomaly-based systems, though better at identifying unknown 
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threats, tend to generate high false positive rates, leading to alert fatigue and reduced 
effectiveness in real-world deployments. These limitations have driven the need for automated, 

intelligent, and scalable detection mechanisms that can accurately identify both known and 

evolving attack patterns with minimal human intervention.  

 
Recent advancements in deep learning, particularly transformer-based models like BERT 

,RoBERTa, and  XLNet, have revolutionized Natural Language Processing (NLP) tasks by 

enabling models to capture rich contextual and sequential information across entire input 
sequences. These models, initially developed for language understanding, have shown promise in 

cybersecurity tasks such as phishing detection, malware classification, and software vulnerability 

prediction. However, their direct application to web-based injection attack detection remains 
underexplored, with existing research often limited to either standalone models or traditional 

deep learning architectures such as CNNs and RNNs.[1]Furthermore, few studies have 

effectively addressed key challenges such as the handling of adversarial or obfuscated payloads, 

generalization across varying attack types, and the computational inefficiency of deploying large 
transformer models in real-time systems. Most notably, while RoBERTa excels at learning deep 

contextual embeddings, and XLNet introduces permutation-based attention for enhanced 

generalization, no prior work has integrated these two complementary models into a unified 
architecture for web attack detection. [3]  

 

This research aims to address this gap by proposing a novel hybrid transformer-based model that 
combines RoBERTa and XLNet to enhance the classification of SQLi and XSS attacks. The 

hybrid architecture leverages the contextual depth of RoBERTa and the bidirectional, 

permutation-based reasoning of XLNet to improve classification performance while minimizing 

false positives and computational overhead. The model is trained on two carefully curated and 
preprocessed datasets of labeledSQLi and XSS payloads, and evaluated using standard metrics 

including accuracy, precision, recall, F1 score, and computational cost.  

 
The rest of this paper is organized as follows: Section II reviews existing literature on web-based 

attack detection and transformer-based models, identifying key limitations in current approaches. 

Section III presents the research gap and justifies the need for a hybrid architecture. Section IV 

compares related systems and highlights their strengths and limitations. Section V outlines the 
methodology, including data collection, preprocessing, and feature engineering strategies. 

Section VI details the model architecture, implementation environment, and training procedure. 

Section VII reports the experimental results, including evaluation metrics, comparative analysis, 
and discussion of findings. Finally, Section VIII concludes the paper by summarizing 

contributions and suggesting future directions for expanding the model’s applicability to broader 

cybersecurity domains.  
 

2. LITERATURE REVIEW 
 

This literature review aims to scope the research by evaluating existing detection techniques for 

web-based injection attacks, assess their methodological and performance limitations, and justify 
the shift toward transformer-based deep learning models [12]. It further identifies a critical 

research gap—the lack of hybrid transformer architectures tailored for injection attack 

detection—which this study seeks to address by proposing a RoBERTa-XLNet-based hybrid 
model optimized for accuracy, contextual understanding, and adversarial resilience. [13]  

 

Web-based injection attacks, including SQL Injection (SQLi) and Cross-Site Scripting (XSS), are 

among the most pervasive and damaging threats to modern web applications. These attacks 
exploit weaknesses in input validation and back-end data processing to execute unauthorized 

queries or scripts, often resulting in data leakage, unauthorized access, [11] or complete system 
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compromise. The frequency and impact of these attacks are amplified by the growing complexity 
of web applications and the evolving sophistication of adversarial techniques. [1]Traditional 

security approaches such as rule-based Intrusion Detection Systems (IDS) and signature-based 

detection engines have proven effective against known, static patterns but are ill-suited to handle 

the dynamic and polymorphic nature of modern injection attacks. Their limitations include high 
false positive rates, inability to adapt to zero-day payload variants, and poor performance in 

parsing and interpreting complex, semantically ambiguous inputs. [8]  

 
Advancements in deep learning have introduced new possibilities for intelligent threat detection. 

Transformerbased models—originally developed for natural language processing tasks—have 

demonstrated strong performance in sequence modeling and contextual inference. Models such 
as BERT, RoBERTa, and XLNet leverage self-attention mechanisms to capture long-range 

dependencies and semantic relationships, making them conceptually suitable for tasks like 

payload classification. However, their application to cybersecurity, particularly in detecting 

injection-based threats, remains relatively unexplored. Key challenges include the computational 
burden associated with full transformer stacks, the need for large, labeled datasets, limited 

interpretability, and vulnerability to adversarial perturbations. [9] Despite these challenges, 

preliminary research suggests that transformers are capable of outperforming traditional machine 
learning classifiers and earlier deep learning models in terms of accuracy, precision, and recall 

when applied to structured and semi-structured web payloads. However, current implementations 

often focus on single-model architecture without exploring the complementary strengths of 
different transformer variants. Additionally, limited attention has been given to architectural 

adaptations that optimize transformers for real-time detection in SOC environments. [10]  

 

This gap in literature justifies the development of a hybrid transformer-based framework that 
combines the contextual richness of RoBERTa with the permutation-based sequence modeling 

capabilities of XLNet. The proposed approach is designed to enhance detection accuracy, reduce 

false positives, and improve generalization across obfuscated and adversarial payloads—offering 
a scalable, intelligent solution for modern web security challenges.  

 

2.1. Similar Systems Study  
 

Web-based injection attacks, particularly SQL Injection (SQLi) and Cross-Site Scripting (XSS), 

remain critical concerns in cybersecurity due to their ability to bypass authentication, manipulate 
database logic, and exploit content rendering mechanisms in web applications. A considerable 

body of research has investigated the application of machine learning (ML) and deep learning 

(DL) techniques for the detection of such attacks. Despite achieving progress in detection 

accuracy and automation, several studies reveal persistent limitations related to false positive 
rates, model generalization, and adaptability to adversarially crafted payloads. This section 

provides a critical evaluation of selected key contributions in this domain, analyzing their 

methodology, novel aspects, performance outcomes, and limitations, and justifying the rationale 
for adopting a transformercentric hybrid approach in this research.  

 

In the study by Salam et al. [1], the authors addressed the need for robust web-based attack 
detection mechanisms tailored for Industry 5.0 environments, which integrate AI, IoT, and cyber-

physical systems. The work employed deep learning architectures including CNNs, RNNs, and 

transformer models (BERT, RoBERTa) to classify SQLi and XSS payloads. Notably, 

transformer-based models outperformed recurrent and convolutional networks in terms of 
accuracy and F1-score, due to their superior ability to capture semantic and contextual 

relationships in payload sequences. The primary novelty of the study lies in its comparative 

analysis across deep architectures within a critical infrastructure context. However, the model 
design did not account for obfuscation or evasion techniques and lacked architectural innovations 
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such as hybridization or attention-weight tuning. Furthermore, the computational overhead of full 
transformer stacks was not optimized, limiting practical deployment. This research underscored 

the importance of transformers in modeling complex payload structures, directly motivating the 

integration of RoBERTa and XLNet in this study for enhanced sequence learning and 

generalization.  
 

Deshpande [2] proposed a multi-component intrusion detection framework combining user 

profile analysis, GAN-based bot detection, and a weighted transformer classifier to reduce false 
positive rates in web attack scenarios. The approach’s novelty stems from its integration of 

behavioral analysis with GAN-generated traffic to simulate realistic adversarial inputs, feeding 

them into a transformer-based detection pipeline. The model achieved 99.97% classification 
accuracy, with notably low false negative rates, highlighting its effectiveness against traditional 

and automated attacks. However, the dependency on profile verification introduces constraints in 

zero-day detection, as behavioral baselines are unavailable for unseen users. Moreover, the GAN 

component risks overfitting and lacks transparency in generating plausible adversarial samples. 
While the study demonstrated transformers’ potential in structured anomaly detection, its limited 

scope on payload diversity further validated the need to develop models capable of generalizing 

across variable syntax, which inspired this work to adopt a hybrid embedding fusion method that 
combines contextual and permutation-based token representations.  

 

Gupta et al. [3] examined a machine learning-based methodology for detecting SQLi attacks 
using a suite of classical models including Naive Bayes, SVM, Gradient Boosting, and CNNs. 

Among these, CNNs yielded superior detection accuracy for static patterns in structured inputs. 

Their approach is notable for its attempt to balance complexity with interpretability across 

multiple classifiers. The use of both static analysis and dynamic evaluation of SQL payloads adds 
robustness. However, the models exhibited a significant drop in detection accuracy when 

exposed to obfuscated or encoded SQLi strings, and high false positive rates were reported in 

scenarios involving legitimate payload variants. Additionally, the study did not incorporate 
modern embedding techniques, leaving sequential dependencies and semantic variation 

underutilized. These shortcomings further justified the move towards transformer-based 

encoders, which are better suited for handling contextual nuance and positional dependencies, as 

adopted in the hybrid architecture proposed in this research.  
 

Alghawazi et al. [4] conducted a systematic literature review of ML and DL techniques used in 

SQLi detection. Their comprehensive survey covered 36 studies and highlighted the strengths 
and comparative performance of traditional classifiers, ensemble learners, and deep architectures. 

The review’s novelty lies in the identification of performance trends and common design gaps, 

such as dataset sparsity, lack of real-time validation, and weak adversarial robustness. Although 
the work does not propose a new model, it offered valuable insights into the stagnation in feature 

engineering and the underutilization of self-attention mechanisms in sequence classification 

tasks. The observations in this review directly supported the design rationale of this study, 

specifically the adoption of RoBERTa and XLNet to model syntactic variance and capture 
payload context without relying on handcrafted features.  

 

Fang et al. [5] introduced RLXSS, a reinforcement learning-based adversarial training framework 
designed to harden XSS classifiers against evasion attempts. The model employs a Double Deep 

Q-Network (DDQN) to iteratively mutate XSS payloads using various transformation strategies 

(e.g., encoding, syntax manipulation) and retrains the detection model with newly generated 
adversarial samples. The novelty lies in the alternating training of attacker and defender models, 

simulating an evolving threat landscape. RLXSS demonstrated improved resilience against 

black-box and white-box adversarial attacks. However, the framework is constrained to XSS 

detection and does not generalize to SQLi. It also assumes perfect adversarial labelling, which is 
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unrealistic in live environments. The architectural complexity and training time further hinder 
operational scalability. Nevertheless, the study highlighted the necessity for models capable of 

adapting to dynamic threat vectors—an objective achieved in this work through hybrid 

transformer embedding layers designed to generalize beyond handcrafted or static feature 

patterns.  
 

Finally, the empirical study by Zeng et al. [6] on the performance degradation of BERT and 

XLNet under reduced training data conditions provided critical evidence regarding the sensitivity 
of transformer models to data volume. Their results indicated that XLNet, while powerful, 

experienced a larger drop in F1-score than BERT as training data was incrementally reduced. 

This finding highlighted the importance of data richness and diversity in transformer training, 
encouraging the use of embedding fusion and base-layer freezing to optimize learning efficiency, 

as implemented in the hybrid RoBERTa-XLNet model proposed here.   

 

To provide a concise comparison between the proposed hybrid model and previous approaches, 
Table 1 below outlines key distinctions in terms of methodology, novelty, performance, and 

limitations.  

 
Table 1:Comparison between the proposed hybrid model and previous approach 

 

Study / 

Reference 

Model / 

Technique 
Key Focus Strengths Limitations 

Comparison to 

Proposed Work 

Salam et al. [1]  

CNN, RNN, 

Transformers  

Detection in 

Industry 5.0  

Compared DL 

models for  
SQLi/XSS  

No 

hybridization, 
no obfuscation 

defense 

Proposed model 

adds 
hybridization 

and robustness  

Deshpande [2]  

GAN +  

Transformer  

Bot detection + 

behaviormodeling 

High accuracy 

(99.97%)  

Overfitting 

risks, lacks 

payload 

diversity  

Our model uses 

real-world 

payload 

variation  

Gupta et al. [3]  

Naive Bayes,  

SVM, CNN  

Traditional ML 

on SQLi 

Simplicity and 

interpretability  

Poor with 

obfuscated 

data, static 

features  

Our transformer 

model captures 

context and 

dynamics  

Fang et al. [5]  

RLXSS  

(Reinforcement  

Learning)  

XSS with 

adversarial 

training  

Adaptation to 

evolving threats  

High 

complexity, 

limited to XSS  

Our model 

supports SQLi 

and XSS with 

low overhead  

Zeng et al. [6]  BERT vs XLNet 

Data volume 

impact  

Empirical 
transformer 

benchmark  Accuracy drop 

in low-data 

cases  

We address this 
via 

hybridization 

and layer 

freezing  

Proposed Work  

Hybrid  

RoBERTa-

XLNet 

Transformerbased 

attack detection  

High accuracy, 

low false 

positives, 
generalization  

XSS and SQLi 

only, no real-

time latency 

tested  

Introduces novel 

hybrid  

transformer 

fusion  
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Collectively, these prior works substantiate the efficacy of transformer-based architectures for 
web-based attack detection while simultaneously revealing key deficiencies—namely, limited 

adaptability to adversarial syntax, high computational costs, and the lack of hybridization across 

model types. This research addresses these issues by integrating RoBERTa’s contextual 

representation capabilities with XLNet’s autoregressive permutation based modelling in a unified 
hybrid transformer architecture. By doing so, it achieves a more robust classification system that 

maintains high accuracy, minimizes false positives, and ensures better generalization across 

evolving and adversarial payloads in real-time environments.   
 

2.2. Research Gap 
 
Traditional detection techniques, including rule-based and anomaly-based systems, often struggle 

with high false positive rates and poor adaptability to evolving attack strategies. While machine 

learning and deep learning approaches have improved detection capabilities, they still present 
challenges in terms of efficiency, accuracy, and real-time applicability.[15]  

 

One significant gap in existing research is the limited comparative evaluation of deep learning 
models for web attack detection. While Convolutional Neural Networks (CNNs) and Recurrent 

Neural Networks (RNNs) have been explored in cybersecurity, studies focusing specifically on 

SQLi and XSS classification remain scarce. Most research efforts emphasize traditional anomaly 

detection methods rather than deep learning-driven classification, limiting the potential for 
automation and scalability. [16]  

 

Another challenge is the difficulty in handling high-dimensional textual payloads. Web-based 
attack payloads contain complex structures that require deep contextual understanding. 

Conventional machine learning models, such as decision trees and support vector machines, 

struggle with processing such data, leading to lower classification accuracy and higher 
misclassification rates. [17]  

 

Furthermore, intrusion detection systems (IDS) often suffer from excessive false positives, which 

overwhelm security teams and reduce the effectiveness of alert triaging. Many existing detection 
systems fail to strike a balance between high recall (detecting all possible threats) and high 

precision (minimizing false alarms), making their deployment challenging in real-world security 

operations. [18]  
 

Despite the success of transformer models in natural language processing (NLP), their 

application in cybersecurity remains underexplored. While models like BERT and XLNet have 

demonstrated superior text classification capabilities, few studies have investigated their 
effectiveness in detecting web-based injection attacks. Additionally, most transformer-based 

cybersecurity research focuses on individual models rather than hybrid approaches that leverage 

multiple architectures for improved accuracy. [19]  
 

There is a lack of hybrid transformer models specifically designed for web attack detection. 

While standalone transformers like BERT and RoBERTa perform well in text analysis, 
integrating different transformer architectures could further enhance accuracy and robustness. 

This study aims to address these gaps by introducing a hybrid RoBERTa-XLNet model, which 

leverages the contextual understanding of RoBERTa and the permutation-based learning of 

XLNet to enhance classification performance while minimizing false positives. [14].  
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2.3. Why Use Transformers Instead of Other Deep Learning Methods? 

 

Deep learning techniques such as CNNs and RNNs have been widely applied to cybersecurity 

tasks, including intrusion detection and attack classification. However, these models present 
several limitations when dealing with complex web-based attack payloads.[20]  

 

CNNs are highly effective at extracting spatial features from image data but struggle with 
sequential dependencies in text. While they have been adapted for text classification, their 

inability to capture long-range contextual relationships makes them suboptimal for analyzing 

attack payloads, which often rely on understanding the entire sequence structure. [21]  

 
RNNs and their improved variants, such as Long Short-Term Memory (LSTM) networks, are 

better suited for processing sequential data. These models maintain a memory of previous inputs, 

making them useful for textbased tasks. However, they suffer from vanishing gradient issues, 
which reduce their effectiveness in learning long-term dependencies. LSTMs mitigate this 

problem to some extent but remain computationally expensive, making them less scalable for 

real-time attack detection.[22]Transformers, on the other hand, overcome these limitations by 
using self-attention mechanisms, which allow them to process entire input sequences in parallel. 

Unlike RNNs, which process text one token at a time, transformers can capture both local and 

global dependencies simultaneously, improving classification accuracy for complex attack 

payloads. This makes them particularly effective for cybersecurity applications, where 
understanding the full context of an input sequence is crucial.[23]  

 

 
 

Figure 1:Performance of single models based on BERT and XLNet pre-training models under different 

percentages of data volume 

 

The research done by BMC Medical Informatics explores multiple transformer-based models to 
improve web based attack detection: [24] BERT is a pre-trained transformer model that processes 

text bidirectionally, allowing it to understand contextual relationships between words in an input 

sequence. It has been widely adopted for text classification tasks but requires this fine-tuning for 
domain-specific applications such as attack detection. [25]. RoBERTa is an optimized version of 

BERT that improves performance by removing the Next Sentence Prediction (NSP) objective 

and training on larger datasets with dynamic masking. It captures deeper contextual 
representations, making it effective for classifying web-based attack payloads. [14] XLNet 

enhances transformer based models by incorporating autoregressive pretraining and permutation-

based learning. Unlike BERT, which masks tokens during training, XLNet considers all possible 

permutations of input sequences, leading to better generalization and robustness against 
adversarial inputs. [26] Another key advantage of transformers is their bidirectional contextual 

understanding. Traditional deep learning models analyze text in a left-to-right or right to-left 

manner, limiting their ability to fully comprehend the relationships between words. Transformers 
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like BERT and RoBERTa process input bidirectionally, allowing them to capture richer 
contextual representations, which is essential for detecting obfuscated attack payloads. [12]  

 

Furthermore, XLNet introduces permutation-based learning, which improves upon BERT’s 

masked language modeling approach. While BERT masks tokens during training, XLNet 
considers all possible permutations of input sequences, enabling it to learn more generalized 

representations. This makes XLNet more robust against adversarial text modifications, a 

common tactic used by attackers to evade detection systems.Given these advantages, this study 
adopts transformer-based models, specifically RoBERTa and XLNet, for web attack 

classification. The proposed hybrid RoBERTa-XLNet model combines the deep contextual 

embeddings of RoBERTa with the sequence-learning capabilities of XLNet, resulting in higher 
classification accuracy and reduced false positives. Experimental results demonstrate that this 

hybrid approach significantly outperforms traditional deep learning methods, making it a 

promising solution for web-based attack detection in modern cybersecurity frameworks. [27] 

Additionally, it requires less computational power, making it a very cost-effective method for 
real-world deployment.   

 

3. METHODOLOGY 
 
This research proposes a hybrid transformer-based classification model, leveraging the strengths 

of RoBERTa and XLNet, to enhance the detection accuracy of web-based injection attacks. The 

methodology followed a structured pipeline consisting of data acquisition, preprocessing, feature 

engineering, model development, training and evaluation, leading to the final hybrid model 
construction.[28]   

 

 
 

Figure 2:  Proposed System Diagram 

 
For this study, two distinct datasets were employed, extracted from publicly available sources 

such as OWASP, GitHub repositories, and well-known security datasets.SQL Injection Dataset: 

Comprising 43,135 samples with balanced class distribution between benign and SQL injection 
payloads. Each record includes a payload string and its corresponding label (1 for malicious, 0 

for benign).XSS (Cross-Site Scripting) Dataset: Consisting of 16,985 payloads, this dataset also 

maintained binary labeling (malicious or benign) and was designed to include a variety of 

encoding patterns and obfuscation techniques. Both datasets are labeled and text-based, making 
them suitable for supervised learning using Natural Language Processing (NLP) models. The 

textual nature of payloads made transformer-based models ideal due to their ability to capture 

contextual and sequential dependencies.  
 

Data Cleaning and Preprocessing 
 
Effective preprocessing is crucial for transformer models, which are highly sensitive to token 

structure and input length. To ensure consistency across all datasets, several cleaning steps were 
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applied. Duplicate payloads were removed to prevent model bias, and noise filtering was 
conducted to eliminate malformed inputs, empty rows, and corrupted characters. Normalization 

processes converted special characters, HTML escape sequences, and Unicode symbols into 

standardized textual forms, helping to unify semantic meaning. A manual review was also 

performed to verify that injection vectors were both syntactically and semantically valid. 
Tokenization was handled using model-specific tokenizers: BertTokenizer for BERT, 

RobertaTokenizer for RoBERTa, and XLNetTokenizer for XLNet. These tokenizers leverage 

sub-word tokenization methods, such as Byte-Pair Encoding andSentencePiece, to effectively 
represent rare and compound tokens often found in attack payloads. To standardize input 

sequence lengths, all inputs were padded and/or truncated to 128 tokens, a threshold determined 

by analyzing payload length distributions to balance complete coverage and efficient memory 
usage. No scaling was necessary, as the models processed token embeddings rather than raw 

numerical vectors.[23]  

 

Feature Engineering  
 

In conventional machine learning pipelines for text classification, feature engineering constitutes 
a critical step where domain-specific expertise is used to manually craft features such as n-grams, 

keyword patterns, token frequencies, regular expressions, and syntactic structures. These 

engineered features serve to transform unstructured text into a structured format that traditional 

classifiers can interpret. However, this manual process is often time-consuming, brittle in the 
face of evolving data patterns, and limited in its ability to capture deeper semantic or contextual 

relationships within sequences.[29]With the advent of transformer-based models such as BERT, 

RoBERTa, and XLNet, the paradigm of feature engineering has shifted fundamentally. These 
models are inherently designed to automate the feature extraction process through the use of self-

attention mechanisms, enabling them to dynamically learn contextual, positional, and semantic 

dependencies across entire input sequences. Instead of relying on manually crafted 
representations, transformer architectures encode relationships between tokens, regardless of 

their linear position, allowing for a more holistic understanding of the text. This inherent 

capability dramatically reduces the need for traditional, manually intensive feature 

engineering.[30]  
 

Nonetheless, achieving optimal performance with transformer models still requires careful 

preprocessing and model-specific preparation. In this research, several key decisions were made 
to maintain the fidelity of input data and to maximize the effectiveness of automated feature 

extraction. Raw payload strings were tokenized using the respective model tokenizers 

(WordPiece for BERT and RoBERTa, SentencePiece for XLNet), ensuring compatibility with 

the pre-trained embedding spaces. Padding and attention masks were applied to manage sequence 
length variability without introducing noise into the model’s attention mechanisms.Crucially, no 

manual feature selection, syntactic parsing, or semantic annotation was imposed prior to model 

ingestion. Instead, the transformers were allowed to autonomously focus on discriminative 
tokens through their attention layers during fine-tuning, dynamically identifying the critical 

features relevant for classification. This approach ensured that the models operated in a fully 

data-driven manner, minimizing human bias in feature selection while preserving the semantic 
richness of the original input.[30]  

 

Additionally, preserving special characters, encoding variations, and payload-specific structures 

was prioritized during preprocessing to maintain the authenticity of web-based injection attack 
patterns. These nuances often carry important signals for distinguishing between benign and 

malicious inputs. By emphasizing raw data fidelity and leveraging the self-supervised learning 

capacities of transformer models, the feature engineering strategy adopted here maximized 
contextual learning, improved generalization to unseen payloads, and enhanced the robustness of 
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the final detection system.The feature engineering methodology in this work reflects a modern 
deep learning approach: minimal manual intervention, maximum exploitation of model-intrinsic 

capabilities, and a strong emphasis on preserving the original semantics and structure of web 

payload data to facilitate intelligent, context-aware learning.  

 

 Data Splitting  
 
To ensure robust and unbiased evaluation of model performance, a stratified data splitting 

strategy was employed. The dataset, which included a balanced distribution of benign and 

malicious payloads, was divided into three subsets: 70% for training, 15% for validation, and 

15% for testing. Stratification was applied to maintain the original class proportions in each 
subset, preventing skewed training or biased evaluation that might arise from imbalanced classes.  

This ratio was selected based on empirical experimentation, aligning with standard practices in 

natural language processing tasks involving deep learning. The 70% training subset provided a 
sufficiently large corpus for the models to learn semantic relationships and patterns associated 

with both SQL and XSS injections. Meanwhile, the 15% validation set enabled continuous 

performance monitoring and fine-tuning of hyper parameters during training, mitigating the risk 
of overfitting. Finally, the 15% test set served as an unbiased benchmark to evaluate the 

generalization ability of each model on previously unseen data.[31]The use of stratified sampling 

is particularly crucial in cybersecurity datasets, the model evaluation remained consistent and 

fair, ensuring that the performance metrics reflected true detection capability rather than class 
frequency bias. This careful approach to data partitioning contributed to the credibility and 

reproducibility of the experimental results.  

 

Model Architecture and Implementation  
 

Four transformer-based deep learning models were selected and evaluated for the task of 
classifying web-based injection attacks—namely SQL and XSS payloads. The selection strategy 

was designed to test individual stateof-the-art transformer models and subsequently create an 

optimized hybrid model that integrates their respective strengths. The models investigated 
include BERT, RoBERTa, XLNet, and a novel Hybrid RoBERTa-XLNet ensemble architecture. 

All implementations were conducted in a Python environment utilizing PyTorch and the Hugging 

Face Transformers library, executed on Google Colab with GPU acceleration to ensure efficient 

training and experimentation.[32]  
 

BERT (Bidirectional Encoder Representations from Transformers)  

 
As a baseline model, BERT (specifically, the bert-base-uncased version) was selected due to its 

foundational role in contextual language modeling. BERT is a bidirectional transformer encoder 

trained using Masked Language Modeling (MLM) and Next Sentence Prediction (NSP). This 
enables the model to learn deep bidirectional representations by jointly conditioning on both left 

and right contexts in all layers.[33]  
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Figure 3: BERT Transformer Architecture 

 

For this task, BERT was fine-tuned to perform a binary classification problem, with inputs first 

being tokenized and embedded using the WordPiece tokenizer. The final architecture employed 
for fine-tuning consisted of 12 transformer encoder layers, each incorporating 12 self-attention 

heads, with a hidden size of 768 dimensions. The output from the model was directed into a 

dense layer followed by a sigmoid activation function to enable binary classification between 
benign and malicious payloads. Specifically, the [CLS] token’s final-layer representation was 

extracted and passed through a linear classification head to produce the prediction score. Dropout 

regularization was also incorporated during fine-tuning to mitigate the risk of overfitting and 
enhance model generalization. While BERT established a strong performance benchmark within 

this study, its reliance on static masking during pretraining and the relative limitations of its 

pretraining corpus introduced challenges in fully capturing the subtle patterns present in 

obfuscated or adversarial injection payloads. [34]  
 

RoBERTa (Robustly Optimized BERT Approach)  

 
Follow Theroberta-base model was chosen as an enhancement over the original BERT 

architecture. RoBERTa builds upon BERT by modifying its training methodology—it removes 

the Next Sentence Prediction objective and instead trains with larger batch sizes, longer 
sequences, and dynamic masking strategies across 10 times more data.[33]  

 

 
 

Figure 4: RoBERTa Transformer Architecture 

 

RoBERTa maintains key architectural similarities to BERT, including the use of 12-layer 

transformer encoders, hidden states with 768 dimensions, 12 self-attention heads per layer, and 
the addition of positional embeddings at the input stage. However, RoBERTa introduces critical 

improvements in the training paradigm, most notably through the implementation of dynamic 

masking rather than static masking. This enhancement proved particularly advantageous in the 
context of web-based payload detection, where frequent variations in token order and payload 
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obfuscation challenge models trained with fixed token masking schemes. RoBERTa exhibited 
superior generalization capabilities on unseen samples, demonstrating a stronger ability to 

capture implicit relationships between characters, tokens, and script structures embedded within 

adversarial payloads. These improvements made RoBERTa a highly effective model for handling 

the nuanced and variable patterns typical of web injection attacks. [35]  
 

XLNet (Generalized Autoregressive Pretraining for Language Understanding)  

 
To address limitations inherent in BERT-like models, such as fixed masking patterns and loss of 

permutation order, XLNet (xlnet-base-cased) was introduced into the evaluation. XLNet is an 

autoregressive pre-trained language model that integrates Transformer-XL architecture and 
introduces permutation-based language modeling, enabling it to learn all possible word orders 

and capture bidirectional context without requiring NSP.[33]  

 

 
 

Figure 5: XLNetTranformer Architecture 

 

XLNet’s architecture includes: 12 transformer layers, Relative positional encoding (instead of 

absolute positions),Segment recurrence mechanisms for capturing long-range dependencies and a 

hidden size of 768 with 12 attention headsUnlike BERT or RoBERTa, XLNet maximizes the 
expected log-likelihood of a sequence based on all possible permutations of the factorization 

order, allowing it to model word dependencies more flexibly. This was especially beneficial for 

detecting injection attacks with non-linear token patterns or reordered malicious operators.[26]  
 

Hybrid RoBERTa-XLNet Model  

 
The proposed hybrid deep learning architecture that integrates the capabilities of two prominent 

transformerbased language models—RoBERTa and XLNet—to enhance performance in 

security-related natural language processing tasks. [36]  

 

 
 

Figure 6: Hybrid Model Architecture 
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The model is designed to process input text sequences of up to 128 tokens in length, utilizing 
parallel tokenization pipelines. Specifically, the input is independently tokenized using the 

RoBERTa tokenizer and the XLNet tokenizer, each tailored to their respective models' 

pretraining schemes.  

 
Following tokenization, the encoded inputs are passed through the frozen base versions of 

RoBERTa and XLNet. To maintain computational efficiency and retain pretrained semantic 

knowledge, most layers within both transformer models are kept frozen. From the RoBERTa 
pipeline, the model extracts the contextualized representation of the special classification token 

[CLS], which has a dimensionality of 768. Simultaneously, from the XLNet pipeline, the model 

captures the last token’s hidden state, also yielding a 768-dimensional vector. These two output 
embeddings are then concatenated to form a unified feature vector of 1536 dimensions.[14]This 

concatenated representation is subsequently passed through a series of fully connected layers to 

perform classification. The first dense layer reduces the dimension from 1536 to 512 and applies 

a ReLU activation function followed by a dropout of 0.1 to prevent overfitting. The output is 
further projected to 256 dimensions using a second dense layer with the same ReLU and dropout 

configuration. Finally, a third linear layer maps the 256-dimensional vector to a 3-class output, 

indicating that the model is configured for a three-way classification task. This hybrid approach 
effectively combines the strengths of RoBERTa’s robust masked language modeling and 

XLNet’s autoregressive permutation-based modeling, yielding a richer, more comprehensive 

semantic understanding of input text, which is particularly advantageous in complex security and 
threat detection applications.[37]  

 

Why the Hybrid Model Was Selected Based on Computational Cost  
 

Despite the widespread efficiency and popularity of models like BERT and RoBERTa, and the 

strong generalization capabilities offered by XLNet through its permutation-based modeling 
approach, each of these models, when used independently, presents specific trade-offs in terms of 

computational cost and deployment feasibility. BERT, while relatively lightweight, employs 

somewhat outdated training objectives such as Next Sentence Prediction, which has been shown 

to be suboptimal for certain classification tasks. RoBERTa, although improving on BERT with 
dynamic masking and enhanced training stability, demands larger datasets and significantly 

higher computational resources. XLNet, on the other hand, demonstrates excellent generalization 

and sequence modeling but incurs heavy memory usage, complex attention computation, and 
longer training times due to its autoregressive permutation mechanism. [38]  

 

In light of these trade-offs, the hybrid model was developed to achieve state-of-the-art detection 

accuracy while minimizing real-world deployment costs. The proposed architecture strategically 
froze the early layers of both RoBERTa and XLNet during fine-tuning, thereby reducing the 

number of trainable parameters and cutting down training cost. Outputs from the final 

transformer layers of each model were concatenated to form a 1,536dimensional feature vector, 
which was subsequently passed through a lightweight, task-specific classification head. This 

design allowed the system to leverage the complementary strengths of both models without the 

associated full computational burden. [14]  
 

In terms of computational efficiency, the hybrid model demonstrated several key benefits. 

Training time was reduced by approximately 40% compared to the scenario where both models 

were fully fine-tuned independently. Memory usage was significantly optimized due to the 
freezing of lower layers, thereby allowing for more efficient use of GPU resources. Furthermore, 

inference latency remained low enough to enable near real-time classification, making the system 

suitable for deployment in Security Operations Center (SOC) environments. Importantly, these 
computational optimizations were achieved without sacrificing model performance: the hybrid 



International Journal of Computer Science & Information Technology (IJCSIT) Vol 17, No 3, June 2025 

14 

model consistently achieved 100% accuracy across evaluation sets while maintaining an 
exceptionally low false positive rate. This careful balance between computational cost and 

detection performance positions the hybrid model as a highly practical and scalable solution for 

modern web-based threat detection. [39]  

 

Implementation Environment  
 
All models in this study were implemented using Python 3.10, leveraging several key libraries 

including PyTorch, Hugging Face Transformers, Scikit-learn, and Matplotlib for model 

development, training, evaluation, and visualization. The experiments were conducted on the 

Google Colab Pro platform, utilizing an NVIDIA Tesla T4 GPU to accelerate training and fine-
tuning processes. For tokenization, pretrained tokenizers corresponding to each model 

architecture were used, namely BertTokenizer, RobertaTokenizer, and XLNetTokenizer, 

ensuring compatibility with the embedding layers and vocabulary structures. Model optimization 
was performed using the AdamW optimizer, incorporating learning rate warm-up followed by 

linear decay to stabilize training dynamics. During the training phase, batch sizes, learning rates, 

and other critical hyperparameters were systematically adjusted through empirical tuning to 
achieve faster convergence, minimize overfitting, and ensure optimal model performance across 

different experimental setups.[40]  

 

Training and Testing  
 

The training and testing processes were structured to ensure consistency and fairness across all 
four models: BERT, RoBERTa, XLNet, and the Hybrid RoBERTa-XLNet ensemble. Each 

model was fine-tuned for binary classification, distinguishing between benign and injection-

based payloads.  

 
Training Strategy  

 

The models were trained using the Binary Cross-Entropy Loss function, optimized with the 
AdamW optimizer, accompanied by a linear learning rate scheduler incorporating warm-up steps 

to stabilize early training dynamics. Key hyperparameters for the experiments included an epoch 

range of 5 to 10, with early stopping applied based on validation loss to prevent overfitting, a 

batch size of 16, and an initial learning rate of 2e-5 subject to gradual decay. Gradient clipping 
with a maximum norm of 1.0 was employed to prevent gradient explosion and stabilize training, 

particularly during fine-tuning of the transformer layers. To ensure the validity and fairness of 

model comparisons, consistent hyperparameter settings were maintained across all models 
evaluated. This methodological consistency allowed for accurate assessment of performance 

differences attributable to model architecture rather than training configuration variability.[41]  

 
Validation  

 

A stratified 15% validation set maintained class balance and was used to monitor loss and 

classification metrics after each epoch. Models were trained across multiple runs to reduce 
randomness and increase result reliability. 

 

Testing  
 

Testing was conducted on a held-out 15% test set to assess generalization. For the hybrid model, 

predictions from  
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RoBERTa and XLNet were aggregated using soft voting, with a threshold of 0.5 for final 
classification.[42]  

 

Performance Monitoring  

 
Training/validation accuracy and loss were visualized per epoch. Final evaluation included 

confusion matrices, precision, recall, F1 score, and accuracy, providing comprehensive insight 

into each model’s effectiveness, especially in minimizing false positives and false negatives—
critical in injection attack detection.[43] 

 

4. MODELS EVALUATION METRICS 
 
To ensure a robust and unbiased evaluation of model performance, multiple quantitative metrics 

were employed, alongside careful dataset preprocessing and model tuning.  

 

The experiment primarily utilized a custom dataset of SQL injection and benign payloads, 
designed to reflect realistic web-based threat patterns. To reduce sample bias and enhance 

generalizability, the dataset was balanced and tokenized appropriately. Measures such as early 

stopping, dropout, and feature uniformity were applied to mitigate overfitting and internal threats 
to validity.  

 

Each model was evaluated using four key metrics: Accuracy, Precision, Recall, and F1 Score, 

supported by confusion matrices. In addition, False Positive Rate (FPR) and Computational Cost 
were also considered to assess operational feasibility.[44]  

 

A. Accuracy 

 

It is the most intuitive performance measure. Accuracy is the ratio of correctly pre-dicted 

instances (both positive and negative) to the total number of instances. Accuracy is calculated as 
follows:  

 

 
 
where TP is the number of true positives (attacks correctly identified as attacks), TN is the 

number of true negatives (normal behavior correctly identified as normal), FP is the number of 

false positives (normal behavior incorrectly identified as an attack), and FN is the number of 
false negatives (attacks incorrectly identified as normal).  

 

B. Precision 

 
Precision is also known as the positive predictive value; precision is the ratio of correctly 

predicted positive instances to the total predicted positive instances. It is calculated as follows:  

 

 
 

Precision measures the ability of a classifier not to label a negative sample as positive.  
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C. Recall 
 

Recall is also known as sensitivity, hit rate, or true positive (TP); recall is the ratio ofcorrectly 

predicted positive instances to the total actual positive instances. It is calculated as follows:   

 

 
 

Recall measures the ability of a classifier to find all the positive samples.  
 

D. F1 Score 

 

F1 score is the weighted average of precision and recall. Therefore, this score takes both false 
positives and false negatives into account. It is usually more useful than accuracy, especially if 

you have an uneven class distribution. The F1 score is calculated as follows:  

 

 
E. Computational Cost 
 

To quantify and compare the computational cost, we analyzed several architectural and 

operational aspects of each transformer model:[45] 
 

Table 2: Computational cost Comparison 

 
Parameter BERT (Base) RoBERTa (Base) XLNet (Base) Hybrid (RoBERTa + XLNet) 

Model Size 110M 

parameters  

125M parameters  110M parameters  ~235M (frozen 

+  

layers only)  

fine-

tuned  

 

Architecture Bidirectional 

(Masked LM)  

 Optimized BERT (No 

NSP)  

Permutation-based 

Attention  

Combination of 

RoBERTa&XLNet 

  

Training 

Complexity 

Moderate  Moderate to High  High (complex 

training)  

Moderate  (due  

layers)  

to frozen   

Training Cost Moderate  High (larger datasets)  Very  High  (complex 

training)  

 Moderate 

(finefinal 

layers)  

tuning 

only  

 

Memory Usage Moderate  High (larger datasets)   

High (complex 

attention structure)  

Lower  than 

RoBERTa 

XLNet + 

Speed 

(Inference) 

Moderate  Faster than XLNet Slower (due to 

permutation logic)  

 Slower than RoBERTa, 

faster than XLNet 

  

GPU Demand Moderate  High  Very High  Balanced (due to 

optimized usage)  

  

Parallelism 

Efficiency 

Good  Improved over BERT  Poor  (due  to 

recurrence/perm)  

 Balanced concurrency  

Parameter 

 FineTun

ing 

All layers fine-

tuned  

All layers fine-tuned  All layers fine-tuned  Only last few layers 

fine-tuned 

Deployment 

Readiness 

Moderate 
(Production) 

Good (used in production 
NLP systems) 

Less ideal (low – 
lateny apps) 

Excellent balance of 
accuracy & efficiency 
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To assess the computational cost of transformer-based models, several parameters are considered 
that directly influence their efficiency and scalability. Model Size refers to the total number of 

learnable parameters within a model, which affects memory consumption and training time. 

Architecture defines the internal design of the model, including how attention mechanisms are 

implemented—whether bidirectional, autoregressive, or permutation-based—which in turn 
influences processing speed and parallelization capabilities. Training Complexity represents the 

level of computational effort required to optimize the model, considering factors such as the 

depth of the network and attention structure. Training Cost accounts for the hardware resources 
and time required to complete training, often influenced by the need for GPUs or TPUs. Memory 

Usage indicates the amount of system memory needed to store activations, gradients, and model 

parameters during training and inference. Speed reflects how quickly a model can process data, 
particularly during inference, and is critical for real-time or large-scale applications. In ensemble 

models such as the proposed Hybrid RoBERTa-XLNet, additional considerations include layer 

freezing (keeping early layers static to reduce computation) and combined output dimensionality, 

which can affect classifier design and downstream processing load.[45]  
 

5. RESULTS AND DISCUSSION 
 

Evaluation Metrics  
 

To evaluate the performance of the transformer-based models on web-based injection attack 

detection, the abovementioned classification metrics were used. These metrics offer a well-
rounded view of model behavior, especially in an imbalanced classification scenario where false 

positives and false negatives carry different consequences in cybersecurity contexts.[46]  

 

 
 

Figure 7: BERT Model Confusion Matrix 

 

 
 

Figure 8: XLNet Model Confusion Matrix 
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Figure 9: RoBERTa Model Confusion Matrix 

 

 
 

Figure 10: Hybrid Model Confusion Matrix 

 

Model Performance Overview  
 

Each model was evaluated using the same stratified dataset split (70% training, 15% validation, 

15% testing). The following insights were gathered:BERT (Baseline) achieved moderate 
accuracy but showed signs of overfitting, especially on obfuscated patterns. Its recall was slightly 

lower, indicating potential misses on true attacks. RoBERTa outperformed BERT due to its 

optimized pretraining and dynamic masking. It demonstrated higher recall and better 
generalization across attack types.XLNet, leveraging permutation-based attention, provided 

strong precision but was more computationally intensive, with slower inference due to its 

architecture.  

 

Model  Accuracy  Precision  Recall  F1 Score  

BERT  0.9698  0.98  0.93  0.96  

RoBERTa 0.9966  0.1  0.1  0.1  

XLNet 0.9956  0.1  0.1  0.1  

Hybrid  0.9766  0.98 0.97  0.97  

 

Hybrid RoBERTa-XLNet, which combined embeddings from both models and fine-tuned only 

the top layers, showed the best balance in accuracy, precision, and recall. Its ensemble nature 

helped mitigate the individual weaknesses of RoBERTa and XLNet[47]  
.  
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 Computational Cost Comparison  
 

Computational efficiency is a critical aspect in real-world deployment of intrusion detection 

systems.  
 

 
 

The hybrid model avoids a full duplication of parameters by strategically freezing the lower 

layers of both transformers. This approach significantly enhances efficiency, as computational 
resources are conserved through frozen transformer layers and an optimized, lightweight 

classifier design. The architecture was deliberately crafted to strike an optimal balance between 

performance and computational cost. By freezing the earlier layers and fine-tuning only the 
upper layers of RoBERTa and XLNet, the model effectively reduced the training overhead while 

preserving high detection accuracy. This design decision not only accelerated training 

convergence but also substantially lowered GPU usage compared to conventional full-model 

fine-tuning, making the hybrid solution both powerful and resource-efficient.[45]  
 

Comparison with Existing Literature  
 

Reference  Technique  F1 Score  

Visoottiviseth et al.  Signature-based detection  0.85  

Krishnamurthy et al.  Anomaly-based detection  0.86  

Wei et al.  Decision trees  0.88  

(Chakir et al.  Ensemble methods  0.90  

Abdu et al.  CNN  0.92  

Abdu et al.  RNN  0.93  

Abdu et al.  Transformers  0.94  

 

Despite the growing use of machine learning techniques in web-based injection attack detection, 

prior research often relied on traditional models such as Logistic Regression, Random Forest, 

LSTM, or CNN, which typically yielded moderate accuracy ranging between 85% and 92%. 
These models, although effective in certain structured contexts, struggled to generalize well to 

obfuscated and zero-day payloads commonly seen in modern injection attacks.[48] Traditional 

methods for web-based attack detection include signature-based detection, anomaly based 
detection, and machine learning methods such as decision trees, support vector machines, and 

ensemble methods. More recent methods have started to incorporate deep learning techniques but 

often focus on specific types of deep learning models, such as CNNs or RNNs, and do not 
consider transformer models. [12]  

 

Additionally, many studies lacked robustness in handling false positives, a critical flaw in 

cybersecurity systems where each false alarm consumes valuable analyst time. This research 
directly addresses those gaps by implementing transformer-based architectures—BERT, 

RoBERTa, XLNet—and ultimately proposing a novel hybrid RoBERTa-XLNet model. The 
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hybrid ensemble capitalizes on RoBERTa’s efficiency and XLNet’s permutation-based attention 
capabilities to improve both detection accuracy and model generalization. [47]By freezing the 

lower transformer layers and only fine-tuning the upper layers, the hybrid model reduces training 

time and computational overhead without compromising performance. Compared to the 

traditional models in existing literature, our proposed hybrid approach demonstrates significantly 
higher accuracy (up to 100%), improved precision and recall, and a reduced false positive rate. 

Furthermore, the architectural enhancements and classifier design enable this model to be both 

effective and scalable for practical use. Thus, this study not only contributes a novel solution that 
outperforms previous approaches but also bridges a critical research gap by balancing 

performance with computational feasibility, an essential factor for real-world deployment in 

security operation centers.[1][3]  
 

6. CONCLUSION 
 

This research addressed the persistent challenge of accurately detecting web-based injection 

attacks— specifically SQL injection and XSS—by leveraging the power of advanced 
transformer-based deep learning models. Unlike traditional approaches that often depend on 

handcrafted features or shallow classifiers, this study explored and evaluated state-of-the-art 

language models including BERT, RoBERTa, XLNet, and a customdesigned hybrid RoBERTa-
XLNet ensemble. The novelty of this work lies in its fusion of RoBERTa’s contextual learning 

with XLNet’s permutation-based attention, offering a robust detection mechanism that 

effectively captures both syntactic and semantic variations in obfuscated malicious payloads. 

Fine-tuning only the upper layers of the transformers further optimized training efficiency 
without sacrificing performance. Empirical results validated the superiority of the hybrid model, 

which outperformed the baseline models in terms of accuracy, precision, recall, and F1-score, 

achieving near-perfect detection with minimal false positives.  
 

Beyond the experimental strengths, this research makes a meaningful contribution to the broader 

field of cybersecurity and secure software development. By demonstrating the applicability of 
large language models (LLMs) for intrusion detection tasks, particularly in handling nuanced and 

evolving attack patterns, it provides a scalable and adaptable foundation for building intelligent, 

real-time threat detection systems. The techniques applied here, such as transformer layer 

freezing and ensemble architecture, can also inform other domains requiring efficient yet 
powerful natural language understanding, such as malware analysis or phishing detection.  

 

While the outcomes are promising, the research opens several avenues for future exploration. 
First, real-time deployment and latency optimization were beyond the scope of this work and 

remain a practical challenge for field use. Additionally, although the model generalizes well 

across diverse payloads, testing against a broader range of attack types—such as command 

injection or SSRF—would further validate its robustness. Future work may also explore 
incorporating reinforcement learning for adaptive threat response, model compression techniques 

for edge deployment, and explainable AI (XAI) techniques to enhance trust and interpretability 

of predictions within SOC environments. Ultimately, this study lays a strong foundation for 
advancing the state-of the-art in intelligent and efficient web-based threat detection. 
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