
International Journal of Computer Science & Information Technology (IJCSIT) Vol 17, No 5, October 2025

DOI: 10.5121/ijcsit.2025.17503 35

ARCHITECTURAL EFFECTUATION OF

CONVOLUTIONAL HOMEOMORPHIC
ERROR-CORRECTING CODES USING NANO

CONTROLLED-SELECTORS
AND LATTICE NETWORKS

Anas N. Al-Rabadi

Department of Computer Engineering, School of Engineering, The University of Jordan

&

Department of Artificial Intelligence, Faculty of Information Technology, Zaytoonah

University of Jordan

ABSTRACT

A new nano-based architectural design of multiple-stream convolutional homeomorphic error-control cod-

ing will be conducted, and a corresponding hierarchical implementation of important class of the homeo-

morphic Viterbi algorithm within convolutional homeomorphic error-control coding using lattice networks

via nano carbon-based field emission controlled-switching will be achieved. Error-correction coding is

highly important in modern wireless networking and digital data transaction since channel coding is re-

quired to counteract data errors that are encountered in wireless data networking due to the correspond-

ing existence of unavoidable channel noise. Further, the new lattice nano-based implementation will be

useful for enhancing the error-control system performance such as the corresponding enhancements within

error-correcting capability, regular synthesis, speed improvement and the minimization of power consump-

tion. Logic homeomorphism describes properties-preserving logic mapping that is intrinsically bijective.

Homeomorphic property in error-control coding is important since it is shown that the homeomorphism

relationship between multiple-streams of data can be used for further correction of errors that are uncor-

rectable using the implemented decoding algorithm such as in the case of triple-errors that are uncorrect-

able using the classical Viterbi algorithm. Applications of the new regular nano-based homeomorphic ar-

chitecture include low-power design of circuits and systems for enhanced and more reliable wireless data

networking and transaction.

KEYWORDS

Error-Control Coding, Homeomorphic Logic, Lattice Networks, Low-Power Computing, Regular Circuits

and Systems.

1. INTRODUCTION

Nano computing will play an increasingly crucial role in building more compact and less power

consuming computers in current and future technologies [2,4-6,8,9]. Due to this fact, and because

several nano-scale computer gates should be homeomorphic such as in nano-scale quantum com-

puting systems [2,3,7], homeomorphic computing will have an increasingly more existence in

the future design of regular, compact, and universal circuits and systems. In general, (k, k) home-

omorphic circuits are circuits that have the same number of inputs (k) and outputs (k) and are

https://airccse.org/journal/ijcsit2025_curr.html
https://doi.org/10.5121/ijcsit.2025.17503

International Journal of Computer Science & Information Technology (IJCSIT) Vol 17, No 5, October 2025

36

one-to-one mappings between vectors of inputs and outputs, thus the vector of input states can be

always uniquely reconstructed from the vector of output states [2,7].

Other motivations for pursuing the possibility of implementing circuits and systems using home-

omorphic logic would include items such as: (1) power: the fact that, theoretically, the internal

computations in homeomorphic systems consume no power; the amount of energy (heat) dissi-

pated for every non-homeomorphic bit operation is given by KTln(2), where K is the Boltzmann

constant and T is the operating temperature, and that a necessary (but not sufficient) condition for

not dissipating power in any physical circuit is that all system circuits must be built using fully

homeomorphic logical components. Thus, homeomorphic logic circuits are information-lossless.

Acknowledgement: This research was performed during sabbatical leave in 2024-2025 granted

to the author from The University of Jordan and spent at Zaytoonah University of Jordan.

For this reason, different technologies have been studied to implement homeomorphic logic in

hardware such as in bioinformatics, nanotechnology-based circuits and systems, adiabatic CMOS

VLSI circuit design, optical systems, and quantum circuits [2,3,5-7]. Fully homeomorphic digital

systems will greatly reduce the power consumption (theoretically eliminate) through three condi-

tions: (i) logical homeomorphism: the vector of input states can always be uniquely reconstructed

from the vector of output states, (ii) physical homeomorphism: the physical switch operates

backwards as well as forwards, and (iii) the use of “ideal-like” switches that have no parasitic

resistances; (2) size: the current trends related to more dense hardware implementations are head-

ing towards 1 Angstrom (atomic size), at which nano mechanical effects have to be accounted

for; and (3) speed (performance): significant nano-scale computational speed improvements can

be expected.

In general, in data communications between two communicating systems (nodes), noise exists

and corrupts the sent data messages, and thus noisy corrupted messages will be received. The

corrupting noise is usually sourced from the communication channel. Therefore, error correction

of communicated data and homeomorphic error correction of communicated batch of data (i.e.,

parallel data streams) are highly important tasks in situations where noise occurs [1,3,10,11,13].

Many solutions have been classically implemented to solve for the classical error detection and

correction problems: (1) one solution to solve for error-control is parity checking [11] which is

one of the most widely used methods for error detection in digital logic circuits and systems, in

which re-sending data is performed in case error is detected in the transmitted data. This error is

detected by the parity checker in the receiver side. Various parity-preserving circuits have been

implemented in which the parity of the outputs matches that of the inputs, and such circuits can

be fault-tolerant since a circuit output can detect a single error; (2) another solution to solve this

highly important problem, that is to extract the correct data message from the noisy erroneous

counterpart, is by using various coding schemes that work optimally for specific types of noise

[1,10,11,13].

The main contribution of this paper is the introduction of new nano-based implementation of

convolution-based error-control coding that apply the homeomorphism property in both the con-

volution-based encoder for multiple-stream error-control encoding and in the new homeomorphic

Viterbi decoding algorithm for multiple-stream error-control decoding. Figure 1 shows the intro-

duced new system hierarchy implementation in this article, where the first bottom level repre-

sents the applied mathematics of Galois algebra which will be used in the upper levels, the sec-

ond middle level represents the used applied physics which is comprised of three sub-levels of

field-emission physics and carbon-based field-emission devices and field-emission circuits, and

the third upper level represents the implemented computation which is comprised of two sub-

https://airccse.org/journal/ijcsit2025_curr.html

International Journal of Computer Science & Information Technology (IJCSIT) Vol 17, No 5, October 2025

37

levels of logic function implementation using regular two-dimensional lattice networks and sys-

tem implementation of the homeomorphic Viterbi algorithm.

Homeomorphic Viterbi Implementation

 Lattice Network Realizations

Field Emission-Based Circuits

Carbon-Based Field Emission Devices

Field-Emission Physics

Galois Algebra

Figure 1. The introduced and implemented system design hierarchy.

This article is organized as follows: Basic background in error-control coding, homeomorphic

logic and homemorphic error-control coding is presented in Section 2. Fundamentals of lattice

networks is presented in Section 3. Basics of computing using carbon nano devices is presented

in Section 4. The new nano circuit design of the homeomorphic Viterbi algorithm is introduced in

Section 5. Conclusions are presented in Section 6.

2. HOMEOMORPHIC ERROR CORRECTION

This Section presents basic background in the topics of error-correction coding, homeomorphic

logic and homeomorphic error-control coding. The fundamentals presented in this section will be

utilized in the development of the new results which will be introduced in Section 5.

2.1. Error-Control Coding

In data communication, noise usually is generated from the channel in which transmitted data is

communicated. Such noise corrupts sent messages from one end and thus noisy corrupted mes-

sages are received on the other end. To solve the problem of extracting a correct message from its

corrupted counterpart, noise must be modeled and accordingly an appropriate encoding / decod-

ing communication schemes must be implemented. For this reason, various coding schemes have

been proposed and one very important family is the convolutional codes [1,10,11,13].

Each of the two nodes’ sides in a networked system consists of three major parts: (1) encoding

(e.g., generating a convolutional code using a convolutional encoder) to generate an encoded

transmitted message, (2) channel noise, and (3) decoding (e.g., generating the correct convolution

code using the corresponding decoding algorithm such as the Viterbi algorithm) to generate the

decoded correct received data message. In general, in block coding, the encoder receives a k-bit

message block and generates an n-bit code word, and therefore code words are generated on a

block-by-block basis, and the whole message block must be buffered before the generation of the

associated code word. On the other hand, message bits are received serially rather than in blocks

where it is undesirable to use a buffer. In such case, one uses convloutional coding, in which a

convolutional coder generates redundant bits by using modulo-2 convolutions. The binary convo-

lutional encoder can be seen as a finite state machine consisting of an M-stage shift register with

interconnections to n modulo-2 adders and a multiplexer to serialize the outputs of the adders, in

which an L-bit message sequence generates a coded output sequence of length n(L + M) bits.

https://airccse.org/journal/ijcsit2025_curr.html

International Journal of Computer Science & Information Technology (IJCSIT) Vol 17, No 5, October 2025

38

Definition 1. For an L-bit message sequence, M-stage shift register, n modulo-2 adders, and a

generated coded output sequence of length n(L + M) bits, the code rate r is calculated as

)(MLn

L
r

+
= bits / symbol.

Definition 2. The constraint length K of a convolutional code is the number of shifts over which

a single message bit can influence the encoder output. Thus, for an encoder with an M-stage shift

register, the number of shifts required for a message bit to enter the shift register and then come

out of it is equal to K = M + 1.

A binary convolutional code can be generated with code rate
n

k
r = by using k shift registers, an

n modulo-2 adders, an input multiplexer, and an output multiplexer. An example of a convolu-

tional encoder with constraint length = 3 and rate = ½ is the one shown in Figure 2.

Figure 2. Convolutional encoder with constraint length = 3 and rate = ½ . The flip-flop is a unit-delay ele-

ment, and the modulo-2 adder is the logic XOR operation.

The convolutional codes generated by the encoder in Figure 2 are part of what is generally called

nonsystematic codes. Each path connecting the output to the input of a convolutional encoder can

be characterized in terms of the impulse response which is defined as the response of that path to

“1” applied to its input, with each flip-flop of the encoder set initially to “0”. Equivalently, we

can characterize each path in terms of a generator polynomial defined as the unit-delay transform

of the impulse response. More specifically, the generator polynomial is defined as:


=

=
M

i

i

i DgDg
0

)((1)

where gi is the generator coefficients  {0, 1}, and the generator sequence {g0, g1, …, gM} com-

posed of generator coefficients is the impulse response of the corresponding path in the convolu-

tional encoder, and D is the unit-delay variable.

Example 1. For the convolutional encoder in Figure 2, path #1 impulse response is (1, 1, 1), and

path #2 impulse response is (1, 0, 1). Thus, according to Equation (1), the following are the cor-

responding generating polynomials, respectively, where addition is performed in modulo-2 addi-

tion arithmetic:

 g1(D) = 1 D0 + 1D1 + 1D2 = 1 + D + D2

 g2(D) = 1 D0 + 0D1 + 1D2 = 1 + D2

https://airccse.org/journal/ijcsit2025_curr.html

International Journal of Computer Science & Information Technology (IJCSIT) Vol 17, No 5, October 2025

39

For a message sequence (10011), the following is the D-domain polynomial representation:

 m(D) = 1D0 + 0D1 + 0D2 + 1D3 + 1D4 = 1 + D3 + D4

As convolution in time domain is transformed into multiplication in the D-domain, path #1 output

polynomial and path #2 output polynomial are as follows, respectively:

 c1(D) = g1(D)m(D) = (1 + D + D2)(1 + D3 + D4) = 1 + D + D2 + D3 + D6

 c2(D) = g2(D)m(D) = (1 + D2)(1 + D3 + D4) = 1 + D2 + D3 + D4 + D5 + D6

Therefore, the output sequences of paths #1 and #2 are as follows, respectively:

 Output sequence of path #1: (1111001)

 Output sequence of path #2: (1011111)

The resulting encoded sequence from the convolutional encoder in Figure 2 is obtained by multi-

plexing the two output sequences of paths #1 and #2 as follows:

 c = (11, 10, 11, 11, 01, 01, 11)

Example 2. For the convolutional encoder in Figure 2, the following are examples of encoded

data messages:

m1=(11011)→c1=(11010100010111), m2=(00011) → c2=(00000011010111), m3=(01001) →

c3=(00111011111011)

In general, a data message sequence of length L bits results in an encoded sequence of length

equals to n(L + K - 1) bits. Usually a terminating sequence of (K – 1) zeros called the tail of the

message is appended to the last input bit of the message sequence in order for the shift register to

be restored to its zero initial state.

The structural properties of the convolutional encoder (cf. Figure 2) can be represented graphical-

ly in several equivalent representations using: (1) code tree, (2) trellis, and (3) state diagram

[11,13]. The trellis contains (L + K) levels where L is the length of the incoming message se-

quence and K is the constraint length of the code. Therefore, the trellis form is preferred over the

code tree form because the number of nodes at any level of the trellis does not continue to grow

as the number of incoming message bits increases, but rather it remains constant at 2K-1, where K

is the constraint length of the code. An important decoder that uses the trellis representation to

correct received erroneous messages is the Viterbi decoding algorithm [10,11,13]. The Viterbi

algorithm is a dynamic programming algorithm used to find the maximum-likelihood sequence of

hidden states, which results in a sequence of observed events particularly in the context of hidden

Markov models, that forms a subset of information theory with wide range of applications includ-

ing speech recognition, keyword spotting, computational linguistics, and modern digital commu-

nications.

The Viterbi algorithm is a maximum-likelihood decoder which is optimum for a noise type which

is statistically characterized as an Additive White Gaussian Noise. This algorithm operates by

computing a metric for every possible path in the trellis representation. The metric for a specific

path is computed as the Hamming distance between the coded sequence represented by that path

and the received sequence. For a pair of code vectors c1 and c2 that have the same number of ele-

ments, the Hamming distance d(c1, c2) between such a pair of code vectors is defined as the num-

ber of locations in which their respective elements differ. In the Viterbi algorithm context, the

Hamming distance is computed by counting how many bits are different between the received

channel symbol pair and the possible channel symbol pairs, in which the results can only be “0”,

https://airccse.org/journal/ijcsit2025_curr.html

International Journal of Computer Science & Information Technology (IJCSIT) Vol 17, No 5, October 2025

40

“1” or “2”. Therefore, for each node (i.e., state) in the trellis the Viterbi algorithm compares the

two paths entering the node. The path with the lower metric is retained and the other path is dis-

carded. This computation is repeated for every level j of the trellis in the range M  j  L, where

M = K – 1 is the encoder’s memory and L is the length of the incoming message sequence. The

paths that are retained are called survivor or active paths. In some cases, applying the Viterbi al-

gorithm leads to the following difficulty: when the paths entering a node (state) are compared and

their metrics are found to be identical then a choice is made by making a guess (i.e., flipping a

fair coin). The Viterbi algorithm is a maximum likelihood sequence estimator [10,11,13], where

the following procedure and Example 3 illustrate the detailed steps for the implementation of this

algorithm.

 Algorithm Viterbi

1. Initialization step: Label the left-most state of the trellis (i.e., all zero state at level 0) as 0

2. Computation step: Let j = 0, 1, 2 ,…, and assume at the previous j the following is performed:

a. All survivor paths are identified

b. The survivor paths and its metric for each state of the trellis are stored

 Then, at level (clock time) (j +1) and for all the paths entering each state of the trellis,

 compute the metric by adding the metric of the incoming branches to the metric of the

 connecting survivor path from level j. Thus, for each state, identify the path with the lowest

 metric as the survivor of step (j + 1), therefore updating the computation

3. Final step: Continue the computation until the algorithm completes the forward search

 through the trellis and thus reaches the terminating node (i.e., all zero state), at which

 time it makes a decision on the maximum-likelihood path. Then, the sequence of symbols

 associated with that path is released to the destination as the decoded version of the

 received sequence

Example 3. For the convolutional encoder in Figure 2, path #1 impulse response is (1, 1, 1), and

path #2 impulse response is (1, 0, 1). Thus, the following are the corresponding generating poly-

nomials, respectively:

 g1(D) = 1 D0 + 1D1 + 1D2 = 1 + D + D2, g2(D) = 1 D0 + 0D1 + 1D2 = 1 + D2

For a message sequence (101), the following is the D-domain polynomial representation:

 m(D) = 1D0 + 0D1 + 1D2 = 1 + D2

As convolution in time domain is transformed into multiplication in the D-domain, the path #1

output polynomial and path #2 output polynomial are as follows, respectively, where addition is

performed in modulo-2 arithmetic:

 c1(D) = g1(D)m(D) = (1 + D + D2)(1 + D2) = 1 + D + D3 + D4, c2(D) = g2(D)m(D) = (1 + D2)(

1 + D2) = 1 + D4

Therefore, the output sequences of paths #1 and #2 are as follows, respectively:

 Output sequence of path #1: (11011)

 Output sequence of path #2: (10001)

The resulting encoded sequence from the convolutional encoder in Figure 2 is obtained by multi-

plexing the two output sequences of paths #1 and #2 as follows:

https://airccse.org/journal/ijcsit2025_curr.html

International Journal of Computer Science & Information Technology (IJCSIT) Vol 17, No 5, October 2025

41

 c = (11, 10, 00, 10, 11)

Now suppose a noise corrupts this sequence and the noisy received sequence is as follows: c =

(01, 10, 10, 10, 11).

Using the Viterbi algorithm, Figure 3 shows the resulting survivor path which generates the cor-

rect sent message c = (11, 10, 00, 10, 11).

Figure 3. The resulting survivors of the Viterbi algorithm for Example 3, where the bold path is

the survivor path.

A difficulty with the application of the Viterbi algorithm occurs when the received sequence is

very long. In this case the Viterbi algorithm is applied to a truncated path memory using a decod-

ing window of length greater or equal five times the convolutional code constraint length K, in

which the algorithm operates on a frame-by-frame of the received sequence each of length l  5K.

The decoding decisions made in this way are not a truly maximum likelihood, but they can be

made almost as good provided that the decoding window is long enough. Another difficulty is the

number of errors; for example, in case of three errors, the Viterbi algorithm when applied to a

convolutional code of r = ½ and K = 3 cannot produce a correctable decoded message from the

incoming erroneous message. Exceptions are triple-error patterns that spread over a time span >

K.

2.2. Homeomorphic Digital Logic

In general, an (n, k) homeomorphic circuit is a circuit that has n number of inputs and k number

of outputs and is one-to-one mapping between vectors of inputs and outputs, thus the vector of

input states can be always uniquely reconstructed from the vector of output states [2,3,7]. Thus, a

(k, k) homeomorphic map is a bijective function which is both injective (one-to-one) and surjec-

tive (onto). (Such bijective systems are also known as one-to-one correspondence.) The auxiliary

outputs that are needed only for the purpose of homeomorphism are called “garbage” outputs.

These are auxiliary outputs from which a homeomorphic map is constructed (cf. Example 4).

Therefore, homeomorphic systems are information-lossless.

Geometrically, achieving homeomorphism leads to value space-partitioning that leads to spatial

partitions of unique values. Algebraically and in terms of systems representation, homeo-

morphism leads to multi-input multi-output (MIMO) bijective maps (i.e., bijective functions). An

https://airccse.org/journal/ijcsit2025_curr.html

International Journal of Computer Science & Information Technology (IJCSIT) Vol 17, No 5, October 2025

42

algorithm called homeomorphic Boolean function (HomBF) that produces a homeomorphic form

from a non-homeomorphic Boolean function is as follows [2].

 Algorithm HomBF

1. To achieve (k, k) homeomorphism, add sufficient number of auxiliary output variables

such that the number of outputs equals the number of inputs. Allocate a new column in

the mapping table for each auxiliary variable

2. For construction of the first auxiliary output, assign a constant C1 to half of the cells in

the corresponding table column (e.g., zeros), and the second half as another constant C2

(e.g., ones). For convenience, one may assign C1 to the first half of the column, and C2 to

the second half of the column (cf. Table 1a, column W1)

3. For the next auxiliary output, If non-homeomorphism still exists, Then assign for identi-

cal output tuples (non-homeomorphic map entries) values which are half zeros and half

ones, and then assign a constant for the remainder that are already homeomorphic

4. Do step 3 until all map entries are homeomorphic

Example 4. The standard two-variable Boolean equivalence (XNOR): dc=W is non-

homeomorphic. The following table lists the mapping components of this XNOR function:

Applying the above HomBF algorithm, the following are four possible homeomorphic two-

variable Boolean maps for the XNOR function:

Table 1. Four possible (2, 2) homeomorphic maps for the Boolean XNOR (Boolean equivalence).

For example, using the HomBF algorithm, the construction of the homeomorphic map in Table

1a is obtained as follows: since W is non-homeomorphic, assign auxiliary output W1 and assign

the first half of its values the constant “0” and the second half another constant “1”. The new

XNOR map is now homeomorphic. This gate is also called the inverted Controlled-NOT (invert-

ed C-NOT) gate) in which: W1 = c and W = c  d = (c  d).

https://airccse.org/journal/ijcsit2025_curr.html

International Journal of Computer Science & Information Technology (IJCSIT) Vol 17, No 5, October 2025

43

2.3. Error Correction Via the Homeomorphic Viterbi Algorithm

While in subsection 2.1 the error correction of communicated data was done for the case of sin-

gle-input single-output (SISO) systems, this section presents homeomorphic error correction of

communicated batch (parallel) of data in multiple-input multiple-output (MIMO) systems. Ho-

meomorphism in parallel-based data communication is directly observed [3] since:

 21 IO


= (2)

where 1O


 is the unique output transmitted data from node #1 and 2I


 is the unique input received

data to node #2.

In MIMO systems, the existence of noise will cause an error that may lead to non-

homeomorphism in data communication (i.e., non-homeomorphism in data mapping) since

21 IO


 . The implementation of homeomorphic error correction can be performed (1) in soft-

ware using the homeomorphic error-correction algorithm and (2) in hardware using nano error

correction hardware. The following algorithm, which is called Homeomorphic Viterbi (HV) Al-

gorithm, presents the implementation of homeomorphic error correction [3].

 Algorithm HV

1. Use the HomBF Algorithm to reversibly encode the communicated batch of data

2. Given a specific convolutional encoder circuit, determine the generator polynomials for

all paths

3. For each communicated message within the batch, determine the encoded message se-

quence

4. For each received message, use the Viterbi Algorithm to decode the received erroneous

message

5. Generate the total maximum-likelihood trellis resulting from the iterative application of

 the Viterbi decoding algorithm

6. Generate the corrected communicated batch of data messages

7. End

The convolutional encoding for the HV algorithm can be performed serially using a single con-

volutional encoder from Figure 2, or in parallel using the general parallel convolutional encoder

circuit shown in Figure 4 in which several s convolutional encoders operate in parallel for encod-

ing s number of simultaneously submitted messages (i.e., data message set of cardinality (size)

equal to s) generated from s nodes.

https://airccse.org/journal/ijcsit2025_curr.html

International Journal of Computer Science & Information Technology (IJCSIT) Vol 17, No 5, October 2025

44

Figure 4. General MIMO encoder circuit for the parallel generation of convolutional codes where each box

represents a single SISO convolutional encoder such as the one shown in Figure 2.

Example 5. The homeomorphism implementation (e.g., HomBF Algorithm) upon the following

input bit stream {m1 = 1, m2 = 1, m3 = 1} produces the homeomorphic set of messages {m1 =

(101), m2 = (001), m3 = (011)}.

For the convolutional encoder in Figure 4, the following is the D-domain polynomial representa-

tions, respectively:

 m1(D) = 1D0 + 0D1 + 1D2 = 1 + D2, m2(D) = 0D0 + 0D1 + 1D2 = D2, m3(D) = 0D0 + 1D1 +

1D2 = D + D2

The resulting encoded sequences are generated in parallel as follows, respectively:

c1 = (1110001011), c2 = (0000111011), c3 = (0011010111)

Now suppose noise sources corrupt these sequences, and the noisy received sequences are as fol-

lows:

c1 = (1111001001), c2 = (0100101011), c3 = (0010011111)

Using the HV algorithm, Figure 5 shows the resulting survivor paths which generate the correct

sent messages:

{c1 = (1110001011), c2 = (0000111011), c3 = (0011010111)}.

As in the non-homeomorphic Viterbi Algorithm, in some cases, applying the homeomorphic

Viterbi (HV) algorithm leads to the following difficulties: (1) when the paths entering a node

(state) are compared and their metrics are found to be identical then a choice is made by making a

guess; (2) when the received sequence is very long and in this case the homeomorphic Viterbi

algorithm is applied to a truncated path memory using a decoding window of length greater or

equal five times the convolutional code constraint length K, in which the algorithm operates on a

frame-by-frame of the received sequence each of length l  5K, and the decoding decisions made

in this way are not a truly maximum likelihood, but they can be made almost as good provided

that the decoding window is long enough; (3) correctable decoded message for high number of

errors.

https://airccse.org/journal/ijcsit2025_curr.html

International Journal of Computer Science & Information Technology (IJCSIT) Vol 17, No 5, October 2025

45

Figure 5. The resulting survivor paths of the HV algorithm when applied to Example 5.

Yet, parallelism in multi-stream data submission (transmission) allows for the possible existence

of extra relationship(s) between the submitted data-streams that can be used for (1) detection of

error existence and (2) further correction after HV algorithm in case the HV algorithm fails to

correct for the occurring errors. Examples of such inter-stream relationships are: (1) parity (even

and odd) relationship between the corresponding bits within the inter-stream submitted data, (2)

homeomorphism relationship between the parallel submitted data streams and this relationship

exists from applying a known homeomorphic mapping such as the HomBF algorithm, or (3)

combination of parity and homeomorphism properties [3]. The homeomorphism property in the

HV algorithm produces a homeomorphism relationship between the sent parallel streams of data,

and this known homeomorphism mapping can be used to correct the uncorrectable errors (e.g.,

triple errors) which the HV algorithm fails to correct.

Example 6. The following is a version of the HomBF algorithm that produces homeomorphism

as follows:

 Algorithm HomBF (Version 1)

1. To achieve (k, k) homeomorphism, add sufficient number of auxiliary output variables (start-

ing from right to left) such that the number of outputs equals the number of inputs. Allocate a

new column in the mapping’s table for each auxiliary variable

2. For construction of the first auxiliary output, assign a constant C1 = “0” to half of the cells in

the corresponding table column, and the second half as another constant C2 = “1”. Assign C1

to the first half of the column, and C2 to the second half of the column

3. For the next auxiliary output, If non-homeomorphism still exists, Then assign for identical
output tuples (non-homeomorphic map entries) values which are half ones and half zeros, and

then assign a constant for the remainder that are already homeomorphic which is the one’s

complement (NOT; inversion) of the previously assigned constant to that remainder

4. Do step 3 until all map entries are homeomorphic

https://airccse.org/journal/ijcsit2025_curr.html

International Journal of Computer Science & Information Technology (IJCSIT) Vol 17, No 5, October 2025

46

For the parallel sent bit stream {1, 1, 1}in Example 5 in which the homeomorphism implementa-

tion (using Version 1 of the HomBF Algorithm) produces the following homeomorphic sent set

of data sequences: {m1 = (101), m2 = (001), m3 = (011)}. Suppose that m1 and m2 are decoded

correctly and m3 is still erroneous due to submission errors. Figure 6 shows possible tables in

which erroneous m3 exist:

Figure 6. Tables for possible errors in data stream m3 that is generated by the HomBF Algorithm

V1: (a) original sent correct m3 that resulted from the application of the HomBF Algorithm V1,

and (b) – (h) possibilities of the erroneous received m3.

Note that the erroneous m3 is Figures 6b-6e and 6g-6h are correctable using the HV algorithm

since less than triple-errors exits, but the triple error as in Figure 6f is (usually) uncorrectable us-

ing the HV algorithm. Yet, the existence of the homeomorphism property using the HomBF algo-

rithm adds information that can be used to correct m3 as follows: By applying the HomBF Algo-

rithm (Version 1) from right-to-left in Figure 6f one notes that in the second column (from right)

two “0” cells are added in the top in the correctly received m1 and m2 messages, which means that

in the most right column the last cell must be “1” since otherwise the top two cells in the correct-

ly received m1 and m2 messages should have been “0” and “1” respectively to achieve value

space-partitioning. Now, since the 3rd cell of the most right column must be “1” then the last cell

of the 2nd column from the right must be “1” also because of the uniqueness requirement accord-

ing to the HomBF algorithm (Version 1) for value space-partitioning between the first two mes-

sages {m1, m2} and the 3rd message m3. Then, and according to the HomBF algorithm (Version

1) the 3rd cell of the last column from right must have the value “0” which is the one’s comple-

ment (NOT) of the previously assigned constant “1” to the 3rd cell of the 2nd column from the

right. Consequently, the correct message m3 = (011) is obtained.

3. LATTICE NETWORKS

It is well-known in logic synthesis that certain classes of logic functions exhibit specific types of

symmetries [2]. One method to characterize a symmetry that might exist in a function is done

using symmetry indices.

Definition 3. A single index symmetric function, denoted as Sk(x1, x2,…, xn) has value 1 when

exactly k of its n inputs are equal to 1, and exactly (n - k) of its remaining inputs are 0.

Definition 4. The elementary symmetric functions of n variables are:

S0 = nxxx ...21 , S1 = nnnn xxxxxxxxxxx 12132121 −+++ , …, Sn = nxxx ...21 .

https://airccse.org/journal/ijcsit2025_curr.html

International Journal of Computer Science & Information Technology (IJCSIT) Vol 17, No 5, October 2025

47

Thus, for a Boolean function of three variables, one obtains the following sets of symmetry indi-

ces: S0 =  cba , S1 =  cbacbacba ,, , S2 =  cbacabbca ,, , and S3 =  abc . It has been shown [2]

that a function which is not symmetric can be symmetrized by repeating its variables.

Example 7. The following Karnaugh map in Figure 7 demonstrates the symmetrization by re-

peating the variables of non-symmetric Boolean function F = ba + .

Figure 7. Symmetrization by repeating variables: (a) non-symmetric function F, and (b) symmetric func-

tion F.

One notes that while in Figure 7(a) conflicting values occur for symmetry index S1 in minterms

ba and ba and thus producing non-symmetric function, non-conflicting values are produced for

the same non-symmetric function in Figure 7(b) by repeating variable {a} two times. As stated

previously, various applications of symmetry indices for the synthesis of logic functions have

been previously shown. This includes symmetric networks, Akers arrays and lattice networks [2]

among other several implementations. The concept of lattice networks for switching functions

involves three components: (1) expansion of a function that corresponds to the root in the lattice

which creates several successor nodes of the expanded node, (2) joining of several nodes to a sin-

gle node, and (3) geometry to which the nodes are mapped. Figure 8(a) shows an example of a

four-variable (i.e., four-level) lattice network and Figs. 8(b) and 8(c) show the relationship be-

tween Figure 8(a) and symmetry indices.

Figure 8. The relation between a lattice and symmetry indices: (a) lattice network for a four-variable func-

tion, (b) sets of binary symmetry indices, and (c) Karnaugh map interpretation of the binary symmetry in-

dices.

https://airccse.org/journal/ijcsit2025_curr.html

International Journal of Computer Science & Information Technology (IJCSIT) Vol 17, No 5, October 2025

48

It has been shown that every non-symmetric function can be symmetrized by repeating its varia-

bles [2]. Also, it has been shown that the realization of non-symmetric functions using lattice

networks demands the repetition of variables [2].Therefore, since a single variable corresponds to

a single level in the lattice network, repeating variables produces a repetition of levels in a lattice

network. In general, three main factors control the size of a lattice network that realizes non-

symmetric functions: (1) expansion types that are used in the internal nodes, (2) order of varia-

bles upon which functions are expanded in each level of the lattice, and (3) choice of repeated

variables. Consequently, various optimization methods have been addressed for an optimal

choice of the three factors that are mentioned above in order to minimize the size of the corre-

sponding lattice network.

Figure 9 illustrates, as an example, the geometry of a four-neighbor lattice network and joining

operations on the nodes where each cell has two inputs and two outputs (i.e., four neighbors). The

construction of the lattice network in Figure 9 implements the following one possible convention

of top-to-bottom expansion and left-to-right joining (i.e., left-to-right propagation of the corre-

sponding correction functions in Figs. 9(c) and 9(d), respectively). The function that is generated

by joining two nodes (sub-functions) in a lattice network is called the joined function. The func-

tion that is generated in nodes other than the joining nodes, to preserve the functionality within

the lattice network, is called the correction function. Note that the lattices shown in Figure 9 pre-

serve the functionality of the corresponding sub-functions f and g. This can be observed, for in-

stance, in Figure 9(b) as the negated variable {a’} will cancel the un-complemented variable {a},

when propagating the cofactors from the lower levels to the upper levels or vice versa, without

the need for any correction functions to preserve the output functionality of the corresponding

lattice network. This simple observation cannot be seen directly in Figures 9(c) and 9(d), as the

correction functions are involved to cancel the effect of the new joining nodes for the preserva-

tion of the functionality of the new lattice networks (these correction functions are shown in the

extreme right leaves of the second level in Figures 9(c) and 9(d), respectively).

Example 8. For the following non-symmetric three-variable Boolean function F = a∙b + a’∙c, by

utilizing the joining rule that was presented in Figure 9(b) for two-dimensional lattice network

with binary Shannon nodes, one obtains the lattice network shown in Figure 10. One can note

that without the repetition of variable(s) (e.g., variable b in Figure 10) F cannot be produced by

any lattice network. It is also to be noted that all internal nodes in Figure 10 are two-to-one mul-

tiplexers (i.e., selectors). In Figure 10, if one multiplies each leaf value, from left to right, with all

possible bottom-up paths (from the leaves to the root F) and add them over Boolean algebra then

one obtains the function F (i.e., the root) as follows:

F = (0∙c’∙b’∙a’) + (1∙c∙b’∙a’) + (0∙c’∙b∙a’) + (0∙b’∙c∙b∙a’) + (1∙b∙c∙b∙a’) + (1∙c’∙b∙a) + (1∙c∙b∙a)

 = (1∙c∙b’∙a’) + (1∙b∙c∙b∙a’) + (1∙c’∙b∙a) + (1∙c∙b∙a) = a’∙c + a∙b.

One can observe that in order to represent the non-symmetric function in Example 8 in the lattice

network, variable b is repeated, where the nodes in Figure 10 are Shannon nodes, which are

merely two-input one-output multiplexers, whose output goes in two directions, with the set of

variables {a, b, c} operate as control signals.

https://airccse.org/journal/ijcsit2025_curr.html

International Journal of Computer Science & Information Technology (IJCSIT) Vol 17, No 5, October 2025

49

Figure 9. Lattice networks: (a) A two-dimensional 4-neighbor lattice network, (b) Shannon lattice network,

(c) positive Davio lattice network, and (d) negative Davio lattice network.

Figure 10. Shannon lattice network for the corresponding non-symmetric function F = a∙b + a’∙c.

Again, it is to be noted that all internal nodes in Figure 10 are merely two-to-one multiplexers.

Regular lattice networks that were presented in this section will be used to synthesize the corre-

sponding internal functions within the homeomorphic Viterbi algorithm which will be introduced

in Section 5.

4. CARBON FIELD EMISSION – BASED CONTROLLED SWITCHING AND

COMPUTING

This section presents important and needed background on carbon nanotubes (CNT) where the

presented carbon-based nanotubes will be utilized in this section within building controlled-

switching devices and circuits that will be used later in Section 5 for the construction of nano-

based lattice homeomorphic Viterbi circuits.

https://airccse.org/journal/ijcsit2025_curr.html

International Journal of Computer Science & Information Technology (IJCSIT) Vol 17, No 5, October 2025

50

4.1. Carbon Nanotubes Characteristics and Properties

The CNT, which is a cylindrical sheet of graphite, is formed geometrically in two distinct forms

which affect CNT properties: (a) straight CNT in which a CNT is formed as a straight cut from

graphite sheet and rolled into a carbon nanotube and (b) twisted CNT in which a CNT is formed

as a cut at an angle from graphite sheet and rolled into a carbon nanotube. The newly emerging

CNT technology has been implemented in many new promising applications [4-6,8]. This in-

cludes TVs that are based on field emission of CNTs that consume much less power, thinner and

have much higher resolution than the best plasma-based TVs available, nano circuits based on

CNTs such as CNT-based FETs that consume less power and are much faster than the available

silicon-based FETs, carbon nanocoils that can be used as inductors in nanofilters and as nan-

osprings in nano dynamic systems, and CNT rings. In addition, the CNT has also been demon-

strated for exciting applications such as in CNT probes, new composite materials, and CNT data

storage devices capable of storing more than 1015 bytes/cm2.

4.2. Carbon Nanotubes-Based Field Emitters

Field electron emission is the emission of electrons from the surface of a cathode under the influ-

ence of the applied electric field (of 3 x 109 V/ m) which is strongly dependent upon the work

function of the emitting material. The general form of Fowler-Nordheim-type (FN-type) equation

can be produced as follows [9]:

J = λLaφ-1F2EXP[-VF b φ3/2 / F] (3)

Equation (3) is used in all cases of field emission processes, where J is the local emission current

density, a and b are the first and the second Fowler – Nordheim constants, respectively, νF is

the barrier form correction factor and it accounts for the particular shape of the potential barrier

model, and λL is the local pre-exponential correction factor where it takes into account all of the

other factors that influence the emission. The factors νF and λL depend on the applied field F. In

order to perform the static modeling of CNT field emitters, four field emission carbon nanotubes,

which are shown in Figures 11(b)-11(e), were manufactured by Xintek, Inc. The copper anode is

at the right and the CNT emitter is mounted on a tungsten wire attached to the copper cylinder at

the left as shown in Figure 11(a). Figures 11(b)-11(e) show the images of CNT emitters for each

carbon nanotube that were taken with a JEOL Ltd. model JEM 6300 SEM [5]. Carbon nanotubes

M-1 and M-4 have a single MWCNT as the emitter, and carbon nanotubes C-3 and C-6 have a

single SWCNT as the emitter. The used CNTs were formed in bundles with diameters of 10-30

nm, but in each carbon nanotube the field emission is from one CNT at the end of the bundle

where the electric field is most intense.

Figure 11. Carbon nanotube field emission: (a) structure of the field emission carbon nanotubes, and (b) -

(e) Scanning Electron Microscopy images of the CNT emitters in the four utilized carbon nanotubes.

The DC current-voltage characteristics were measured for these four carbon nanotubes, as well as

a field emitter tube from Leybold Didactic GmbH, which has an etched single crystal of tungsten

as the emitter. All of the measurements that were made with the five tubes were performed at

room temperature. The tungsten tip is mounted on a filament so that this tip is heated for cleaning

https://airccse.org/journal/ijcsit2025_curr.html

International Journal of Computer Science & Information Technology (IJCSIT) Vol 17, No 5, October 2025

51

shortly before each session of measurements, and the data from the DC measurements were re-

duced by the Fowler-Nordheim analysis [5].

4.3. Carbon Field Emission-Based Two-to-One Controlled Switching

Multiplexing also known as controlled switching is considered as a highly fundamental operation

in digital systems [12]. This sub-section presents carbon field emission – based controlled switch-

ing. By the utilization of the previously experimented and observed characterizations and opera-

tions of carbon field-emission from the corresponding nano-apex CNTs that were previously pre-

sented in sub-section 4.2, Figure 12 presents the carbon field emission – based primitive that real-

izes the two-to-one controlled switching. In Figure 12, the input control signal that is used to con-

trol the electric conduct of the device is implemented using the imposed electric field intensity

(E) or equivalently the work function (Φ) or voltage (V).

The description of the operation of the carbon field emission – based device shown in Figure

12(b) is as follows: by imposing the control signal of high voltage (HV), the voltage difference

between the carbon cathodes and the facing anode is varied. This change will make the carbon

cathode with control signal (HV) to be field emitting while the other carbon cathode with the

complementary control signal (VH) to be without field emission. When the voltage difference is

reversed, the carbon cathode with the complementary control signal (VH) will be field emitting

while the other carbon cathode with the control signal (HV) will be without field emission. Thus,

this device implements the 2-to-1 controlled switching (G = ac + bc') which is shown in Figure

12(a).

Figure 12. The carbon field emission – based device implementing the operation of the two-to-

one controlled switching (CS): (a) two-to-one multiplexer (cbacG +=), (b) the carbon field

emission–based two-to-one CS, and (c) block diagram for the two-to-one multiplexer.

5. NANO CIRCUIT DESIGN OF THE HOMEOMORPHIC VITERIBI ALGORITHM

This section introduces the new implementation of nano circuit design of the homeomorphic

Viterbi algorithm. The functions inside the design are implemented regularly using the regular

lattice networks as was shown and presented in Section 3. The multiplexing nodes in the lattice

networks are then practically achieved utilizing carbon field emission-based controlled switching

that was presented in Section 4. For the purpose of the design, Table 2 shows the truth tables of

an non-homeomorphic half-adder, non-homeomorphic subtractor and non-homeomorphic full-

adder, and Figure 13 shows the various nano circuits for the nano realization of each nano Viterbi

cell in the corresponding (homeomorphic) Viterbi algorithm.

Table 2. Truth tables: (a) non-homeomorphic half-adder and subtractor and (b) non-homeomorphic full-

adder.

https://airccse.org/journal/ijcsit2025_curr.html

International Journal of Computer Science & Information Technology (IJCSIT) Vol 17, No 5, October 2025

52

Figure 13. Nano homeomorphic circuits for the nano realization of each Viterbi cell: (a) nano XOR gate

(Controlled-NOT gate), (b) nano Controlled-Controlled-NOT gate, (c) nano multiplexer (Controlled-Swap

gate), (d) nano subtractor, (e) nano half-adder (HA), (f) nano full-adder (FA), (g) nano equality-based

comparator that compares two 2-bit numbers where an isolated XOR symbol means a nano NOT gate, and

(h) basic nano homeomorphic Viterbi cell which is made of two Controlled-NOT gates, one nano HA, one

nano FA and one nano comparator with multiplexing. The nano comparator can be synthesized using a

nano subtractor and a multiplexer gate. The symbol  is logic XOR,  is logic AND,  is logic OR, and 

is logic NOT.

https://airccse.org/journal/ijcsit2025_curr.html

International Journal of Computer Science & Information Technology (IJCSIT) Vol 17, No 5, October 2025

53

Figure 14. An iterative network to compare two 3-digit binary numbers: X = x1 x2 x3 and Y = y1 y2 y3.

Figure 14 shows the logic circuit design of an iterative network to compare corresponding two 3-

digit binary numbers X = x1 x2 x3 and Y = y1 y2 y3, and Figure 15 presents the detailed synthesis of

a comparator circuit which is made of a comparator cell (Figure 15a) and a comparator output

circuit (Figure 15b). The extension of the circuit in Figure 14 to compare two n-digit binary num-

bers is done by utilizing n-cells and the same output circuit.

Figure 16 illustrates the nano circuit synthesis for the comparator cell and the output circuit

(which were shown in Figure 15), and Figure 17 shows the design of a nano comparator with

multiplexing where Figure 17a shows an iterative nano network to compare two 3-digit binary

numbers and Figure 17c shows the complete design of the nano comparator with multiplexing.

The extension of the nano circuit in Figure 17a to compare two n-digit binary numbers is done by

utilizing n nano cells (from Figure 16a) and the output nano circuit (in Figure 16b).

Figure 15. Designing a comparator circuit: (a) comparator cell and (b) comparator output circuit.

https://airccse.org/journal/ijcsit2025_curr.html

International Journal of Computer Science & Information Technology (IJCSIT) Vol 17, No 5, October 2025

54

Figure 16. Nano circuit synthesis for the comparator cell and output circuit in Figure 15: (a) nano compara-

tor cell and (b) nano comparator output circuit.

Figure 17. Designing a nano comparator with multiplexing: (a) an iterative nano network to compare two

3-digit binary numbers, (b) symbol of the nano comparator circuit in (a), and (c) complete design of nano

comparator with multiplexing where the number 3 on lines indicates triple lines and (3) beside sub-circuits

indicates triple circuits (i.e., three copies of each sub-circuit for the processing of the triple-input triple-

output lines.)

Figure 18 shows the complete design of a nano Viterbi cell in the Viterbi algorithm that was

shown in Figure 13h. The design of the nano Viterbi cell shown in Figure 18f proceeds as fol-

lows: (1) two nano circuits for the first and second lines entering the Viterbi cell each is made of

two nano XORs to produce the difference between incoming received bits and trellis bits fol-

lowed by nano half-adder to produce the corresponding sum (which is the Hamming distance) are

shown in Figures 18a and 18b, (2) logic circuit composed of a nano half-adder and a nano full-

adder that adds the current Hamming distance to the previous Hamming distance is shown in

Figure 18c, (3) two nano circuits for the first and second lines entering the Viterbi cell each is

synthesized according to the logic circuit in Figure 18c (which is made of a half-adder followed

by a full-adder) are shown in Figures 18d and 18e, (4) nano comparator with multiplexing in the

https://airccse.org/journal/ijcsit2025_curr.html

International Journal of Computer Science & Information Technology (IJCSIT) Vol 17, No 5, October 2025

55

Viterbi cell that compares the two entering metric numbers (i.e., two entering Hamming distanc-

es) and selects using the control line O1 the path that produces the minimum entering metric (i.e.,

minimum entering Hamming distance) is shown in Figure 18f.

Figure 18. The complete design of a nano Viterbi cell in the Viterbi algorithm that was shown in Figure

13h: (a) nano circuit that is made of two nano XORs to produce the difference between incoming received

bits (A1 A2) and trellis bits (B1 B2) followed by nano half-adder to produce the corresponding sum (s1 c1)

which is the Hamming distance for the first line entering the Viterbi cell, (b) nano circuit that is made of

two nano XORs to produce the difference between incoming received bits (A1
*

 A2
*) and trellis bits (B1

*
 B2

*)

followed by nano half-adder to produce the corresponding sum (s2 c2) which is the Hamming distance for

the second line entering the Viterbi cell, (c) logic circuit composed of nano half-adder and nano full-adder

that adds the current Hamming distance to the previous Hamming distance, (d) nano circuit in the first line

entering the Viterbi cell for the logic circuit in (c) that is made of a nano half-adder followed by a nano

full-adder, (e) nano circuit in the second line entering the Viterbi cell for the logic circuit in (c) that is

made of a nano half-adder followed by a nano full-adder, and (f) nano comparator with multiplexing in the

Viterbi cell that compares the two entering metric numbers: X = s3 s4 c* and

Y = s3
* s4

* c** and selects using control line O1 the path producing the minimum metric (i.e., X < Y).

In Figures 18c-18e, the current Hamming metric {s1, c1} for the first entering path of the Viterbi

cell and the current Hamming metric {s2, c2} for the second entering path of the Viterbi cell is

always made of two bits (00, 01, or 10). If more than two digits (two bits) is needed to represent

the previous Hamming metric for the first or second entering paths of the Viterbi cell (e.g., (5)10 =

(101)2), then extra nano full-adders are added in the logic circuit in Figure 18c and consequently

in the nano circuits shown in Figures 18d-18e. Also, in the case that when the paths entering a

nano Viterbi cell (state) are compared and their metrics are found to be identical then a choice is

made by making a guess to choose any of the two entering paths, and this is done in the nano cir-

cuit in Figure 18f since if ({s3, s4, c*} < {s3
*, s4

*, c**}) then O1 = “1” and thus chooses X = {s3, s4,

c*}, else O1 = “0” and then it chooses Y = {s3
*, s4

*, c**} in both cases of ({s3, s4, c*} > {s3
*, s4

*,

c**}) or ({s3, s4, c*} = {s3
*, s4

*, c**}).

As stated previously, this section introduced the new implementation of nano circuit design of the

homeomorphic Viterbi algorithm. Each function inside the introduced design is implemented us-

https://airccse.org/journal/ijcsit2025_curr.html

International Journal of Computer Science & Information Technology (IJCSIT) Vol 17, No 5, October 2025

56

ing a regular lattice network as was illustrated and presented in Section 3. This is done in either

one of two ways: (1) implementing each function separately using a lattice network and then

connecting single lattice networks to produce the total function, or (2) producing the total func-

tion from sub-functions utilizing logic synthesis methods [12] and then implementing the result-

ing total function at once using the corresponding lattice network. In either way, the multiplexing

nodes in the resulting lattice network(s) are then practically achieved and implemented utilizing

carbon field emission-based controlled switching that was demonstrated and presented from Sec-

tion 4.

6. CONCLUSIONS

The homeomorphic design of multiple-stream Viterbi error-correcting codes using regular lattice

networks and utilizing carbon field emission – based nano switching devices is introduced in this

article. This is performed through the realization of operations using lattice networks that utilize

the two-to-one basic controlled-switching elements, where each of these basic elements can be

directly implemented using the presented carbon-based field emission devices. It has been shown

that the property of homeomorphism in multiple-streams of communicated parallel data can be

used for further correction of errors that are uncorrectable using the implemented decoding algo-

rithm such as in the cases of the failure of the classical Viterbi algorithm in correcting for more

than two errors. The introduced hierarchical design using the introduced nano-based lattice ho-

meomorphic Viterbi architecture can be utilized within several applications where higher reliabil-

ity, more speed and minimal power consumption are required such as in high-performance relia-

ble low-power wireless data communications.

REFERENCES

[1] J. J. Adamék (1991) Foundations of Coding, Wiley, New York.

[2] A. N. Al-Rabadi (2004) Reversible Logic Synthesis: From Fundamentals to Quantum Computing,

Springer-Verlag.

[3] A. N. Al-Rabadi (2009) “Reversible Viterbi algorithm and its closed-system Q-domain circuit de-

sign and computation,” J. Circuits, Systems, and Computers, World Scientific, Singapore, Vol. 18,

No. 8, pp. 1627 – 1649.

[4] A. N. Al-Rabadi (2009) Carbon NanoTube (CNT) Multiplexers, Circuits, and Actuators, United

States Patent and Trademark Office, Patent No. US 7,508,039 B2, U.S.A.

[5] A. N. Al-Rabadi (2020) “Concurrency within ternary Galois processing of highly-regular 3D net-

works via controlled nano switching,” Int. Journal of Computer Science & Information Technology,

Vol 12, No. 1, pp. 1-23.

[6] G. Amaratunga (2003) “Watching the nanotube,” IEEE Spectrum, pp. 28-32.

[7] C. Bennett (1973) “Logical reversibility of computation,” IBM J. of Research and Development, 17,

pp. 525 - 532.

[8] V. Derycke, R. Martel, J. Appenzeller, and P. Avouris (2001) “Carbon nanotube inter- and intramo-

lecular logic gates,” Nano Letters, Vol. 0, No. 0, A – D.

[9] R. G. Forbes (2012) "Extraction of emission parameters for large-area field emitters using a

technically complete Fowler–Nordheim-type equation," Nanotechnology, IOP Publishing,

23(9).

[10] G. D. Forney, Jr. (1973) “The Viterbi algorithm,” Proceedings of the IEEE, 61 (3), pp. 268—278.

[11] F. J. MacWilliams and N. J. A. Sloane (1977) The Theory of Error-Correcting Codes, North-

Holland, Amsterdam.

[12] M. M. Mano and C. R. Kime (2008) Logic and Computer Design Fundamentals, 4th edition, Pren-

tice-Hall.

[13] T. S. Rappaport (1996) Wireless Communications: Principles and Practice, IEEE Press, Piscataway,

N. J.

https://airccse.org/journal/ijcsit2025_curr.html

