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ABSTRACT 

 

The development of complex system makes challenging task for correct software development. Due to faulty 

specification, software may involve errors. The traditional testing methods are not sufficient to verify the 

correctness of such complex system. In order to capture correct system requirements and rigorous 

reasoning about the problems, formal methods are required. Formal methods are mathematical techniques 

that provide precise specification of problems with their solutions and proof of correctness. In this paper, 

we have done formal verification of check pointing process in a distributed database system using Event B. 

Event-B is an event driven formal method which is used to develop formal models of distributed database 

systems. In a distributed database system, the database is stored at different sites that are connected 

together through the network. Checkpoint is a recovery point which contains the state information about 

the site. In order to do recovery of a distributed transaction a global checkpoint number (GCPN) is 

required. A global checkpoint number decides which transaction will be included for recovery purpose. All 

transactions whose timestamp are less than global checkpoint number will be marked as before checkpoint 

transaction (BCPT) and will be considered for recovery purpose. The transactions whose timestamp are 

greater than GCPN will be marked as after checkpoint transaction (ACPT) and will be part of next global 

checkpoint number. 
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1. INTRODUCTION 

 
A distributed database system is collection of several sites where the database is distributed 

across different location. Data at any site may be replicated or fragmented either vertically or 

horizontally. Since there is no system wide global clock or shared memory, sites in these systems 

communicate the information in form of messages to other sites for successful completion of any 

global computation [1]. The database present at any site can be accessed through the transactions. 

A distributed transaction is a user activity which update different data objects located at different 

sites. A distributed transaction is collection of several sub-transactions. Depending on their 

requirements these sub-transactions may execute at several sites for reading or updating data 

objects [2].  

 
Checkpointing is an approach in which state information of each site is periodically saved known 

as checkpoint or recovery point. In distributed system, every site or a set of sites which are 

involved in the global computation will take local checkpoints which contain the local 
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information about the sub-transactions at that site. All local checkpoints, one from each site, form 

a global checkpoint [1], [3]. At the time of recovery, a recovered site resumes its execution from 

the previous error free consistent global state recorded by the checkpoints of all sites. For 

recovery purpose, it is necessary that global checkpoint must be consistent. To make global 

checkpoint consistent it is required that it must not have any local checkpoint which is depend on 

an event happened after the global checkpoint [1]. The global consistency for distributed database 

systems must address the issue like which transaction updates will be included in the checkpoints. 

Therefore, it is required to define unique global checkpoint number or recovery line. For recovery 

purpose, the updates of only those transactions are included in the checkpoints whose timestamps 

are less than global checkpoint number and the transactions whose timestamps are larger than 

global checkpoint number will be considered in next global checkpoint number [4].  

 
There is need to formally verify and ensure the correctness of checkpointing process for 

distributed database systems. The traditional testing techniques are not suitable to verify the 

correctness of such systems. It is unfeasible to explore every execution path because size of 

generated state space is very large. Formal methods are mathematical techniques that use the 

concepts and ideas from mathematics and formal logic to specify and reason about system 

properties [5], [6]. It provides a framework which make possible to write specification, analyze 

and verify the model in a systematic way. The formal methods allow complete analysis of system 

requirements, design and the behaviour of system including the possibility of faults. The tools 

also provide automated proofs support for verification of system properties.  

 
In this paper, we have done the formal verification of checkpointing process in a distributed 

database system using Event-B. Event-B [7], [8], [9], [10], [11], [12], [13] is event driven 

approach used to develop formal models of distributed database systems. It contains set of 

variables, constants, and property of model in form of invariant. For ensuring correctness of 

system invariant properties of model must always be satisfied. The remainder of this paper is 

organized as follows: section 2 describes the Event B and Rodin, section 3 presents system model 

and informal description of events, section 4 describes Event-B model of checkpointing process 

for DDBS, and section 5 concludes the paper. 

 

2. EVENT-B AND RODIN PLATFORM 
 
Event-B model [14], [15], [16], [17], [18] is made of several components of two kinds: contexts 

and machines [19], [20]. Contexts which represent static part of model contain sets, constants and 

axioms. Sets may be enumerated or carrier. Axioms are used to describe the properties of those 

sets and constants. Machines represent behavioural properties of model. It contains the system 

variables, invariants, theorems, and events of a model. The state of machine is defined through 

variables. The mathematical constructs such as relations, functions, sets and numbers are 

represented by variables. The invariants of machine represent constraints that must be applied on 

machine’s variables. During execution of model, the state of machine change from one state to 

other but the invariants of machine which give properties of those variables should not be 

violated. All invariants must be satisfied by every state of machine. If violation occur, it means 

model is not working according to the specification and there is need to modify the machine. The 

theorem of machine is derived from context and invariants of that machine. The machine can see 

the context directly or indirectly [21]. Besides its state, a machine contains a number of events 

which specify how the state may evolve. An event is made up of three elements its name, guards 

and actions. The guards are the necessary conditions for the event to occur. An event known as 

initialization event has no guard and it gives initial position of model. For any event, if all guards 

of event become true then list of actions is performed by that event. The action is a substitution or 

assignment of new values to variables. There are three kinds of substitutions associated with an 
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event [19] deterministic multiple substitution, non deterministic multiple substitution and empty 

substitution. An event is triggered and performs list of actions when guards of that event will 

becomes true. The properties of machine are verified through proof obligations [19], [8]. 

 
In our research work, we have used Rodin platform [13], [19], [22]. It is an open extensible tool 

for specification and verification of Event B. The tool support construction and verification of 

Event-B models and provides a seamless integration between modelling and proving. It also 

provides an environment for generation and discharge of proof obligations. It supports 

incremental development of model whereby verification is done automatically in the background 

during model development. Therefore, each incremental modification generates a small change to 

the set of proof obligations. It is embedded by various plugins such as provers, model checkers, 

UML transformers, proof-obligation generators etc. 

 

3. SYSTEM MODEL  
 
We have considered a group of sites which coordinate each other for taking checkpoints in such 

manner that the resulting global state is consistent. We have used Lamport’s logical clock to 

assign the timestamp to sites and messages which are involved in the communication. In order to 

take the consistent global checkpoint in DDBS, it is required to decide which transactions are to 

be included in the checkpoint. While taking a checkpoint it is also needed that it must not 

interfere or block the transaction which are already executing at that site. In our model, 

checkpointing process is initiated by a site known as coordinator site. This site broadcast a 

timestamped request message to all other sites (participant sites). After receiving the request 

message, participant site updates its local checkpoint number and send back timestamped reply 

message to the coordinator. For assigning timestamp to message, each time when a message is 

sent by any site, it increments its own local checkpoint number by one and that incremented value 

is assigned to message. At the time of delivery of message the receiving site update its local 

checkpoint number with the maximum value of timestamp of received message and current 

checkpoint number. In order to decide which transaction are to be included in the checkpoint, all 

participant sites must agree upon a special timestamp value known as global checkpoint number. 

After receiving the reply message from all participant sites, coordinator site compute global 

checkpoint number. This global checkpoint number is broadcast to all participants so that they 

can include in their local checkpoint to all those transaction whose timestamp value is less than 

global checkpoint number. The informal descriptions about the events are as follows: 

 
1. Broadcasting a request message: The coordinator site broadcast timestamped request message 

to all the participant sites. For assigning the timestamp to request message coordinator site 

increment its own local checkpoint number by one and this incremented value is assigned to 

request message. 
 

2. Submission of transaction: Transaction may be submitted at any site. After submission of a 

transaction a timestamp value is assigned to it. The current local checkpoint number of site is 

assigned to transaction as its timestamp. 

 
3. Delivery of request message: A request message sent by coordinator site will be delivered to all 

participant sites. After the delivery of request message, participant site update its local checkpoint 

number with the timestamp of received request message or its current timestamp value. The value 

which one is maximum will be assigned to it. 
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4. Local marking of transaction: Each participant site locally marks all those transactions whose 

timestamp value is less than local checkpoint number of site as a before checkpoint transaction 

(bcpt) and rest of transaction as after checkpoint transaction (acpt). 
 

5. Sending of reply message: After local marking of transaction, each participant site will send 

timestamped reply message to the coordinator site. In order to assign the timestamp to reply 

message, participant site increments its local check point number by one and that incremented 

value is assigned to reply message. 

 

6. Delivery of reply message: The coordinator site counts the number of sites which have sent the 

reply message. Every time when a reply message is delivered to coordinator site it increments its 

counter value by one. It also makes the entry of timestamp of each received reply message. 

 
7. Computation and broadcasting of global checkpoint number: After receiving the reply message 

from all participant sites, the coordinator site compute global checkpoint number. The global 

checkpoint number is the maximum value of timestamp of all received reply messages. The 

coordinator site broadcasts timestamped global checkpoint message to all participant sites. 

 
8. Receiving of global checkpoint message: When participant site receives global checkpoint 

message it updates its local checkpoint number as a timestamp of received global checkpoint 

message. 

 
9. Final marking of transaction: After the delivery of global checkpoint message at all participant 

sites each participants will have its local checkpoint value equal to global checkpoint number. 

Finally, all participant sites mark all transactions whose timestamp value is less than global 

checkpoint number as a before checkpoint transaction and rest of transactions as after checkpoint 

transaction. 

 

4. EVENT-B MODEL OF CHECKPOINTING IN DISTRIBUTED DATABASE SYSTEM 
 

In the context of model, we have declared sets of SITE, MESSAGE and TRANSACTION as carrier 

set. The other sets status, type and cpstatus are defined as enumerated set. The set status has 

values waiting, received_all_replies, globalcpnbroadcast, idle. The set type has values 

local_cp_request, local_cp_reply, global_cp_msg and set cpstatus has values pending, 

globalmark, localmark. The variables and invariants of machine are given in Fig. 1. 
 

The variable sender is a partial function from set MESSAGE to SITE. A mapping of the form 

(mms)∈ sender indicates that message m was sent by a site s. For recovery purpose, every site 

maintains local checkpoint number (lcpns) in order to record all the events occur local to it. it is 

declared as total function from SITE to natural number which indicates that each site have local 

checkpoint number associated with it. For any pair (ssmn1)∈ lcpns indicates that site ss has local 

checkpoint number n1. Descriptions about other variables are as follows: 
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Fig. 1. Variables and Invariants of Machine 

 

(i) The variable sentmessages represent set of messages sent by any site. The timestamp of 

message is formalised using variable tsmsg. 

 

(ii) Every message must have a unique type. The variable messagetype maps each sent messages 

to one of its type: local_cp_request, local_cp_reply, global_cp_msg.  

 

(iii) The variable deliver represents delivery of messages at a site. There are number of messages 

which are delivered to any site. This requirement is formalized by declaring variable deliver as a 

relation between SITE and MESSAGE. A mapping (ssm mm1)∈ deliver represents that message 

mm1 has been delivered to site ss. The message mm2 can also be relate with same site ss due to 

relation. 

 

(iv) The variable tsreplymsg is a set of natural number which represents timestamp of all reply 

messages. 

 

(v) The set of transactions at any site is represented by a variable trans_at_site. Relational image 

of site ss under the relation trans_at_site is represented by trans_at_site[{ss}] and it contains all 

the transactions at site ss. 

 

(vi) The variable trans is a set of transaction that are submitted to any site. 

 

(vii) The variable bcpt represents the set of transaction which are marked as before checkpoint 

transaction. A mapping (smtr)∈ bcpt denotes that site s has marked transaction tr as before 

       MACHINE Checkpointm 

        VARIABLES  

        sender, coordinatorstatus, totalrepliedsite, lcpns, tsmsg, trans_at_site 

        trans, timestamp, deliver, bcpt, acpt, messagetype, checkpointstatus 

        tsreplymsg, sentmessages 

  

         INVARIANTS 

inv1   :   sender : MESSAGE2 SITE 

inv2   :   lcpns : SITE→Natural  

inv3   :   sentmessages ⊆ MESSAGE 

inv4   :   tsmsg : MESSAGE→Natural  

inv5   :   messagetype : sentmessages→type 

inv6   :   deliver : SITE 1 MESSAGE 

inv7   :   tsreplymsg ( Natural   

inv8   :   trans_at_site: SITE↔TRANSACTION 

inv9   :   trans  ( TRANSACTION 

inv10 :   timestamp : trans→Natural  

inv11 :   bcpt: SITE ↔ trans

inv12 :   acpt: SITE ↔ trans

inv13 :   coordinatorstatus: {coordinator}→status 

inv14 :   checkpointstatus : SITE→cpstatus 

inv15 :   totalrepliedsite : Natural 

inv16 :   acpt ∩ bcpt = ∅ 
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checkpoint transaction. Similarly, the variable acpt represents the set of transaction which are 

marked as after checkpoint transaction. 

 

(viii) Any site can work as a coordinator which coordinates with other site for deciding global 

check point number. The status of coordinator is represented by the variable coordinatorstatus. At 

any time coordinator may be in the state of waiting, received_all_replies, globalcpnbroadcast and 

idle. 
 

(ix) The variable checkpointstatus represents checkpoint status of each site. The checkpoint status 

of site may be one of the following: pending, globalmark, localmark. 
 

(x) The variable totalrepliedsite is a set of natural number. 

 

The invariant 16 denotes that any transaction may be either in set acpt or bcpt. Initially, 

coordinator status and checkpoint status of each site is set to as idle and pending respectively. The 

local checkpoint number of each site and timestamp of each message is set to as 0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2. Submission of Transaction 

 

4.1. Submission of Transaction 
 

The event Trans Submit models the submission of transaction at any site [Fig. 2]. The guard grd1 

and grd2 ensure that tr is a transaction and it is a fresh transaction respectively. The guard grd4 is 

written as: tr / trans_at_site[ss], it ensures that transaction tr is not present at site ss. The guard 

grd5 specifies that checkpoint status of site ss is pending. After the submission of transaction 

(act1) a unique time stamp is assigned to it (act2). The action act2 assigns local checkpoint 

number of site ss to transaction tr. Each time when a site assigns a timestamp to transaction, it 

increments its own timestamp value by one (act3). The action act4 records that transaction tr is 

present at site ss. The action act5 marks the transaction tr at site ss as after checkpoint transaction. 

 

 

 

 

 

 

 

 

Trans_Submit   ≙≙≙≙   

Any tr,ss  Where 

grd1   :   tr:TRANSACTION 

grd2   :   tr/ trans 

grd3   :   ss: SITE 

grd4   :   tr/ trans_at_site[{ss}] 

grd5   :   checkpointstatus(ss)= pending 

Then 

act1   :   trans≔ trans∪ {tr}

act2   :   timestamp(tr)≔ lcpns(ss) 

act3   :   lcpns(ss)≔ lcpns(ss) +1 

act4   :   trans_at_site≔ trans_at_site∪ {ssmtr} 

act5   :   acpt≔ acpt∪{ssmtr} 

End 
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Fig. 3. Submission of Sub-Transaction at Remote Site 

 

4.2. Submission of sub-transaction at remote site 

 

Depending on the requirements, distributed transaction may execute at several sites. This event 

models the submission of sub-transaction at remote site (Fig. 3). The guard grd1 ensures that 

transaction tr has been submitted at any site. The guard grd3 ensures that transaction tr is not 

present at site ss. The guard grd5 and grd6 ensure that transaction tr at site ss has neither been 

marked as after checkpoint transaction (acpt) nor before checkpoint transaction (bcpt). The guard 

grd7 specifies that checkpoint status of site ss is pending. The action act1 makes the entry of 

transaction tr at site ss. When a transaction is submitted at remote site then it updates its 

knowledge in form of local checkpoint number. The local checkpoint number is updated as 

(act2): 
 

lcpns(ss) ≔ max({timestamp(tr),lcpns(ss)+1}) 
 

It takes maximum of current local checkpoint number and timestamp of transaction. The value 

which is maximum is allotted as local checkpoint number of site ss. The action act3 marked the 

transaction tr at site ss as after checkpoint transaction (acpt). 

 

4.3. Broadcasting of request message 

 

In order to decide global checkpoint number, coordinator site broadcast request message to all 

sites [Fig. 4]. The guard grd1 and grd2 ensure that site ss is coordinator and its status is idle 

respectively. The message mm has not been sent is ensured by guards grd3 and grd4. Each time 

when a message is sent by any site, it increments its local checkpoint number by one and this 

updated timestamp value is assigned to message. The action act1 increments local checkpoint 

number of site ss by one. The action act2 assigns timestamp to message mm. The action act3 

specifies that message mm is sent by site ss. The status of coordinator is set to as waiting and 

message mm is added to set sentmessages through act4 and act5 respectively. The type of 

message mm is set to as local_cp_request through the action act6. 

 

 

 

 

Remote_Subtran_Submit   ≙≙≙≙   
ANY tr, ss   WHERE           

grd1   :    tr: trans    

grd2   :    ss: SITE  

grd3   :    tr/ trans_at_site[{ss}]  

grd4   :    finite({timestamp(tr), lcpns(ss)+1})      

grd5   :    ssmtr/acpt

grd6   :    ssmtr/ bcpt

grd7   :    checkpointstatus(ss)=pending

THEN 

act1   :    trans_at_site≔  trans_at_site∪ {ssmtr}  

act2   :    lcpns(ss)≔ max({timestamp(tr),lcpns(ss)+1})

act3   :    acpt≔ acpt∪{ssmtr}

 END 
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Fig. 4. Broadcasting of Request Message 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5. Delivery of Request Message 

 

4.4. Delivery of request message at participant site 

 
This event models the delivery of request message at participant site [Fig. 5]. Site ss is not 

coordinator site is ensured through guards grd1 and grd2. The message mm has been sent and its 

type is request message is ensured through guard grd3 and grd4 respectively. The guard grd5 

ensures that delivery of message mm has not been done at site ss. This event makes the delivery 

of request message mm at site ss (act1). At the time of delivery of message site ss update its local 

checkpoint number with the maximum of current local timestamp and timestamp of received 

request message (act2). 

 

4.5. Local marking of transaction 

 
This event formalizes the marking of transaction on the basis of local checkpoint number of that 

site [Fig.6]. After receiving the request message from coordinator site, all participant sites mark 

those transactions as before checkpoint transaction bcpt whose timestamp are less than local 

checkpoint number of that site. The guard grd2 specifies that site ss is not coordinator site. The 

request message mm has been delivered at site ss is ensured through guard grd4 and grd5. The 

Participant_Receive   ≙≙≙≙   
 ANY mm, ss  WHERE           

grd1   :   ss: SITE

grd2   :   ss ≠ coordinator 

grd3   :   mm: sentmessages  

grd4   :   messagetype(mm) = local_cp_request  

grd5   :   mm/ deliver[{ss}] 

grd6   :   finite({tsmsg(mm), lcpns(ss)+1}) 

grd7   :   checkpointstatus(ss) = pending 

THEN 

act1   :   deliver≔ deliver ∪{ss mmm}

act2   :   lcpns(ss)≔ max({tsmsg(mm), lcpns(ss)+1}) 

 END 

 

  Coordinaor_Broadcast   ≙≙≙≙   

  ANY  ss, mm  WHERE          

grd1   :   ss = coordinator 

grd2   :   coordinatorstatus(ss)= idle 

grd3   :   mm: MESSAGE       

grd4   :   mm/ dom(sender) 

  THEN 

act1   :   lcpns(ss)≔ lcpns(ss)+1 

act2   :   tsmsg(mm)≔ lcpns(ss) 

act3   :   sender≔ sender∪ {mmmss} 

act4   :   coordinatorstatus(ss)≔ waiting 

act5   :   sentmessages≔ sentmessages∪ {mm} 

act6   :   messagetype(mm)≔ local_cp_request 

   END 
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guard grd6 and grd7 specify that transaction tr at site ss is marked as after checkpoint transaction 

(acpt). The timestamp of transaction tr is less than local checkpoint number of site ss is ensured 

through grd8. The checkpoint status of site ss is pending is ensured through guard grd9. Due to 

occurrence of this event transaction tr is removed from acpt (after checkpoint transaction) set 

(act1) and added in to bcpt before checkpoint transaction set (act2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6. Local Marking of Transaction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 7. Reply to Coordinator Site 

 

4.6. Reply to coordinator site 
 

After marking all transactions whose timestamps are less than local checkpoint number of that 

site, participant site sends the reply message to the coordinator site [Fig. 7]. The site ss is not a 

coordinator site is ensured through guard grd2. The guard grd4 specifies that for all transactions 

at site ss whose timestamps are less than local checkpoint number of that site has been marked as 

bcpt (before checkpoint transaction). The guard grd5 specifies that checkpoint status of site ss is 

pending. This event changes the checkpoint status of site ss as localmark (act1) and sends 

  Trans_Marking   ≙≙≙≙   
   ANY tr, ss, mm  WHERE 

grd1   :   tr: trans 

grd2   :   ss ≠ coordinator 

grd3   :   mm: sentmessages

grd4   :   messagetype(mm)= local_cp_request 

grd5   :   ssmmm : deliver 

grd6   :   tr : trans_at_site[{ss}] 

grd7   :   ssmtr: acpt 

grd8   :   timestamp(tr)≤ lcpns(ss) 

grd9   :   checkpointstatus(ss)=pending

   THEN 

act1   :   acpt≔ acpt∖{ssmtr}

act2   :   bcpt≔ bcpt ∪ {ssmtr}

   END 

  Reply   ≙≙≙≙   
  ANY ss, mm   WHERE 

grd1   :    ss : SITE

grd2   :    ss ≠ coordinator 

grd3   :    mm / dom(sender) 

grd4   :    
∀ tr·(tr: trans ∧ tr: trans_at_site[{ss}]∧ 
timestamp(tr)≤ lcpns(ss)G ssmtr:bcpt) 

grd5   :    checkpointstatus(ss)=pending

   THEN 

act1   :    checkpointstatus(ss)≔ localmark 

act2   :    sentmessages≔ sentmessages∪ {mm} 

act3   :    messagetype(mm)≔ local_cp_reply 

act4   :    sender≔ sender∪ {mmmss} 

act5   :    tsmsg(mm)≔ lcpns(ss)+1 

act6   :    lcpns(ss)≔ lcpns(ss)+1 

   END 
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timestamped reply message mm (act 2, act3 & act4). For assigning timestamp to message mm site 

increments its own timestamp by one and this incremented timestamp value is assigned to reply 

message mm (act5). The action act6 updates local checkpoint number of site ss. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8. Delivery of Reply Message at Coordinator Site 

 

4.7. Delivery of reply message at coordinator site 

 

This event models the delivery of reply message at coordinator site (Fig. 8). The guard grd1 

specifies that site ss is coordinator site. Delivery of reply message mm (grd3) has not been done at 

coordinator site ss is ensured through guard grd4. The guard grd5 ensures that status of 

coordinator ss is waiting. When this event triggers, it makes delivery of reply message at 

coordinator site (act1). The coordinator site also counts the total number of reply messages 

received from participant site. Each time when a message is delivered, it increments 

totalrepliedsite count by one (act2). The action act3 makes the entry of timestamp of reply 

message mm. 

 

4.8. Broadcasting global checkpoint number 

 

After the delivery of reply message from all participant sites, coordinator site changes its status 

from waiting to received_all_replies [Fig. 9]. The guard grd2 ensures that coordinator has 

received reply message from all participant sites. The action act1 changes status of coordinator. 

 

The event Broadcast_Gcpn formalizes broadcasting of global checkpoint number message to all 

sites [Fig. 9]. The guards grd1 and grd4 ensure that site ss is coordinator site and it has received 

reply messages from all sites respectively. After receiving reply message from all participant sites 

(grd4), coordinator site compute global checkpoint number on the basis of timestamp of received 

reply message. The global checkpoint number is the maximum value of timestamp of reply 

message (grd6). Due to occurrence of this event, coordinator site ss broadcast timestamped global 

checkpoint message mm (act1,act2,act3). The action act4 specifies that global checkpoint number 

globalcpn is assigned as timestamp of message mm. The action act5 changes the status of 

coordinator site as globalcpnbroadcast. 

 

 

 

 

 

 

  Reply_Delivery   ≙≙≙≙    
  ANY mm, ss  WHERE 

grd1   :    ss= coordinator 

grd2   :    mm: sentmessages 

grd3   :    messagetype(mm)= local_cp_reply 

grd4   :    mm/ deliver[{ss}] 

grd5   :    coordinatorstatus(ss)= waiting

   THEN 

act1   :    deliver≔ deliver∪ {ssmmm}

act2   :    totalrepliedsite≔ totalrepliedsite+1 

act3   :    tsreplymsg≔ tsreplymsg ∪ {tsmsg(mm)} 

   END 
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Fig. 9. Broadcasting Global Checkpoint Number 

 

4.9. Delivery of global checkpoint number message 

 
This event models the delivery of global checkpoint message at participant site [Fig. 10]. The 

global checkpoint message mm (grd4) has been sent by coordinator site s is ensured through 

guard grd5. The guard grd6 ensures that delivery of message mm has not been done at site ss. The 

guard grd7 specifies that for all transaction tr at site ss if they are marked as bcpt (before 

checkpoint transaction) then timestamp of transaction will be less than timestamp of global 

checkpoint message mm. Due to occurrence of this event, delivery of message mm is done at site 

ss (act1). The site ss also updates its knowledge in form of local checkpoint number with the 

timestamp of globalcheckpoint message mm (act2). 

 

4.10. Final marking of transaction 

 

This event formalizes the final marking of transaction [Fig. 11]. It marks all transactions as before 

checkpoint transactions bcpt whose timestamps are less than timestamp of global checkpoint 

message. The message mm is global checkpoint message is ensured through guard grd4. The 

delivery of message mm has been done at site ss is ensured through guard grd6. The transaction tr 

is not marked as before checkpoint transaction is ensured through guard grd7 and its timestamp is 

less than local checkpoint number of site ss is ensured through guard grd8. This event marks the 

transaction tr as before checkpoint transaction by adding it to bcpt (before checkpoint transaction) 

set. 

 

 

  Change_Co-ordinator_Status   ≙≙≙≙    

  ANY ss   WHERE 

grd1   :   ss= coordinator 

grd2   :   totalrepliedsite= card(SITE)−1 

grd3   :   coordinatorstatus(ss)= waiting 

   THEN 

act1   :   coordinatorstatus(ss)≔ received_all_replies 

   END 

 

  Broadcast_Gcpn   ≙≙≙≙    
  ANY ss, globalcpn, mm  WHERE           

grd1   :   ss= coordinator  

grd2   :   tsreplymsg ≠0  

grd3   :   mm/ dom(sender)  

grd4   :   coordinatorstatus(ss)= received_all_replies 

grd5   :   finite(tsreplymsg)

grd6   :   globalcpn= max(tsreplymsg)

   THEN 

act1   :   sender≔ sender∪ {mmmss}

act2   :   sentmessages≔ sentmessages∪ {mm} 

act3   :   messagetype(mm)≔ global_cp_msg

act4   :   tsmsg(mm)≔ globalcpn

act5   :   coordinatorstatus(ss)≔ globalcpnbroadcast 

   END 
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Fig. 10. Delivery of Global Checkpoint Number Message 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 11. Final Marking of Transaction 

 

4.11. Update checkpoint status of participant 

 

After marking all transactions whose timestamps are less than local checkpoint number of that 

site (which is now global checkpoint number) as before checkpoint transaction, checkpoint status 

of that site must be marked as globalmark [Fig. 12]. The global checkpoint message mm (grd4) 

has been received by site ss is ensured through grd5. The guard grd6 ensures that for all 

transactions tr whose timestamp are less than local checkpoint number of that site lcpns(ss) then 

that transaction must be present in before checkpoint transaction set bcpt. 

 

 

 

 

 

   

  GCPN_Message_Receive   ≙≙≙≙   

  ANY ss, mm, s  WHERE 

grd1   :   s= coordinator 

grd2   :   ss: SITE

grd3   :   mm: sentmessages 

grd4   :   messagetype(mm)=global_cp_msg

grd5   :   mmms  : sender 

grd6   :   ssmmm / deliver 

grd7   :   
∀tr·tr: trans ∧ tr: trans_at_site[{ss}] 

∧ ssmtr: bcptG timestamp(tr)≤ tsmsg(mm) 

grd8   :   checkpointstatus(ss)=localmark

   THEN 

act1   :   deliver≔ deliver ∪ {ssmmm} 

act2   :   lcpns(ss)≔ tsmsg(mm) 

   END 

 

    Final_Trans_Marking   ≙≙≙≙   

  ANY tr, ss, mm   WHERE 

grd1   :    tr: trans 

grd2   :    ssmtr: acpt 

grd3   :    mm: sentmessages

grd4   :    messagetype(mm) = global_cp_msg 

grd5   :    ss ≠ coordinator 

grd6   :    ssmmm : deliver 

grd7   :    ssmtr/ bcpt 

grd8   :    timestamp(tr) ≤ lcpns(ss)

   THEN 

act1   :    acpt≔ acpt∖ {ssmtr}

act2   :    bcpt≔ bcpt∪ {ssmtr}

   END 
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Fig. 12. Update Checkpoint Status of Participant 

 

5. CONCLUSIONS 
 

Modern distributed systems are very difficult to develop and reason about. There is need to 

formally verify and ensure the correctness of distributed systems and algorithms. During last few 

years the research in the field of formal methods has been grown up and has reported significant 

success in the development of describing and analyzing the complex systems in formal languages. 

In distributed database systems, formal methods take important role for ensuring the correctness. 

In this paper, we have done formal verification of distributed checkpointing for the recovery of 

distributed transaction. A distributed transaction may be divided in several subtransactions which 

may execute at different sites to accomplish global computation. Each site maintains its state 

information in form of local checkpoint. In order to recover a distributed transaction it is required 

to decide a global recovery line or global checkpoint number which must include all sub-

transactions of a transaction whose timestamp are less than it. For others whose timestamp are 

larger will be included in next checkpoint.  

 

In our model, we have presented formal model of global checkpointing in distributed 

environment using Event-B. Event-B is a formal method which is used to verify distributed 

algorithms. It rigorously verifies all the properties of a model by discharging proof obligations 

generated by it. Our model formally specifies the computation of global checkpoint number 

GCPN and verifies that GCPN only includes those transactions whose timestamps are lesser than 

it. More specifically, it includes all sub-transactions which are submitted before the global 

checkpoint number. In order to ensure correctness of our model, we have added following 

invariants:  

 

 

 

 

 

 

 

 

 
 

  Participant_Change_Status   ≙≙≙≙    
  ANY ss, mm  WHERE 

grd1   :   ss ≠ coordinator 

grd2   :   checkpointstatus(ss)= localmark 

grd3   :   mm: sentmessages 

grd4   :   messagetype(mm)= global_cp_msg 

grd5   :   ssmmm : deliver

grd6   :   
∀ tr·tr: trans ∧ tr: trans_at_site[{ss}]∧ 
 timestamp(tr)≤ lcpns(ss)G ssmtr: bcpt 

   THEN 

act1   :   checkpointstatus(ss)≔ globalmark 

   END 

 

Inv17: ∃ tr,si,sj. tr∈ trans ∧ si∈SITE ∧ sj∈SITE ∧ tr∈trans at site[si] ⇒ 
 tr∈ trans at site[sj] 

Inv18:∀ ss,tr. tr∈trans ∧ ss∈SITE ∧ tr∈trans at site[ss] ∧ ssmtr∈bcpt ⇒ 

timestamp(tr)<lcpns(ss) 

Inv19:∀ ss,tr. tr∈trans ∧ ss∈SITE ∧ ssd coordinator ∧ tr∈  trans at site[ss] ∧ 

checkpointstatus(ss)=globalmark ∧ timestamp(tr)< lcpns(ss)⇒ss mtr/ acpt 
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The invariant 17 verifies the submission of transaction under distributed environment. The 

distributed computation involves execution of transaction at several sites. This invariant ensures 

that if transaction tr is present at site Si then it may also be present at other site Sj. 

The invariant 18 ensures the correctness of our model by ensuring that there will be no 

transaction in set bcpt whose timestamp are larger than local checkpoint number of that site. It 

verifies that for all transactions tr if site ss has marked this transaction as before checkpoint 

transaction then timestamp of transaction tr will be less than local checkpoint number of site ss.  

 

The invariant 19 verifies that if the site has completed its final marking then all transactions 

whose timestamps are less than local checkpoint number of that site will not be present in set acpt 

(after checkpoint transaction). We have used Rodin tool for writing Event-B specifications. The 

model generates 106 proof obligations out of which 51 are discharged automatically by the prover 

of tool while 55 proof obligations are discharged manually. The proof obligations generated by 

model give the rigorous reasoning about the design of model. During execution of model all 

invariants are preserved which ensures that model is correct. In future, we aim to use vector 

timestamp in place of scalar timestamp. 
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