
International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 5, October 2015

DOI:10.5121/ijcsit.2015.7504 59

FORMAL VERIFICATION OF DISTRIBUTED

CHECKPOINTING USING EVENT-B

Girish Chandra
1
, Raghuraj Suryavanshi

2
 and

Divakar Yadav

1

1
Department of Computer Science & Engineering, Institute of Engineering &

Technology, Lucknow, Uttar Pradesh 226021, India
2
Department of Computer Science & Engineering, Pranveer Singh Institute of

Technology, Kanpur, Uttar Pradesh 209305, India

ABSTRACT

The development of complex system makes challenging task for correct software development. Due to faulty

specification, software may involve errors. The traditional testing methods are not sufficient to verify the

correctness of such complex system. In order to capture correct system requirements and rigorous

reasoning about the problems, formal methods are required. Formal methods are mathematical techniques

that provide precise specification of problems with their solutions and proof of correctness. In this paper,

we have done formal verification of check pointing process in a distributed database system using Event B.

Event-B is an event driven formal method which is used to develop formal models of distributed database

systems. In a distributed database system, the database is stored at different sites that are connected

together through the network. Checkpoint is a recovery point which contains the state information about

the site. In order to do recovery of a distributed transaction a global checkpoint number (GCPN) is

required. A global checkpoint number decides which transaction will be included for recovery purpose. All

transactions whose timestamp are less than global checkpoint number will be marked as before checkpoint

transaction (BCPT) and will be considered for recovery purpose. The transactions whose timestamp are

greater than GCPN will be marked as after checkpoint transaction (ACPT) and will be part of next global

checkpoint number.

KEYWORDS

Formal Methods, Formal Specifications, Formal Verification, Event-B, Distributed Transaction, Check-

pointing, Local checkpoint number, Global checkpoint number.

1. INTRODUCTION

A distributed database system is collection of several sites where the database is distributed

across different location. Data at any site may be replicated or fragmented either vertically or

horizontally. Since there is no system wide global clock or shared memory, sites in these systems

communicate the information in form of messages to other sites for successful completion of any

global computation [1]. The database present at any site can be accessed through the transactions.

A distributed transaction is a user activity which update different data objects located at different

sites. A distributed transaction is collection of several sub-transactions. Depending on their

requirements these sub-transactions may execute at several sites for reading or updating data

objects [2].

Checkpointing is an approach in which state information of each site is periodically saved known

as checkpoint or recovery point. In distributed system, every site or a set of sites which are

involved in the global computation will take local checkpoints which contain the local

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 5, October 2015

60

information about the sub-transactions at that site. All local checkpoints, one from each site, form

a global checkpoint [1], [3]. At the time of recovery, a recovered site resumes its execution from

the previous error free consistent global state recorded by the checkpoints of all sites. For

recovery purpose, it is necessary that global checkpoint must be consistent. To make global

checkpoint consistent it is required that it must not have any local checkpoint which is depend on

an event happened after the global checkpoint [1]. The global consistency for distributed database

systems must address the issue like which transaction updates will be included in the checkpoints.

Therefore, it is required to define unique global checkpoint number or recovery line. For recovery

purpose, the updates of only those transactions are included in the checkpoints whose timestamps

are less than global checkpoint number and the transactions whose timestamps are larger than

global checkpoint number will be considered in next global checkpoint number [4].

There is need to formally verify and ensure the correctness of checkpointing process for

distributed database systems. The traditional testing techniques are not suitable to verify the

correctness of such systems. It is unfeasible to explore every execution path because size of

generated state space is very large. Formal methods are mathematical techniques that use the

concepts and ideas from mathematics and formal logic to specify and reason about system

properties [5], [6]. It provides a framework which make possible to write specification, analyze

and verify the model in a systematic way. The formal methods allow complete analysis of system

requirements, design and the behaviour of system including the possibility of faults. The tools

also provide automated proofs support for verification of system properties.

In this paper, we have done the formal verification of checkpointing process in a distributed

database system using Event-B. Event-B [7], [8], [9], [10], [11], [12], [13] is event driven

approach used to develop formal models of distributed database systems. It contains set of

variables, constants, and property of model in form of invariant. For ensuring correctness of

system invariant properties of model must always be satisfied. The remainder of this paper is

organized as follows: section 2 describes the Event B and Rodin, section 3 presents system model

and informal description of events, section 4 describes Event-B model of checkpointing process

for DDBS, and section 5 concludes the paper.

2. EVENT-B AND RODIN PLATFORM

Event-B model [14], [15], [16], [17], [18] is made of several components of two kinds: contexts

and machines [19], [20]. Contexts which represent static part of model contain sets, constants and

axioms. Sets may be enumerated or carrier. Axioms are used to describe the properties of those

sets and constants. Machines represent behavioural properties of model. It contains the system

variables, invariants, theorems, and events of a model. The state of machine is defined through

variables. The mathematical constructs such as relations, functions, sets and numbers are

represented by variables. The invariants of machine represent constraints that must be applied on

machine’s variables. During execution of model, the state of machine change from one state to

other but the invariants of machine which give properties of those variables should not be

violated. All invariants must be satisfied by every state of machine. If violation occur, it means

model is not working according to the specification and there is need to modify the machine. The

theorem of machine is derived from context and invariants of that machine. The machine can see

the context directly or indirectly [21]. Besides its state, a machine contains a number of events

which specify how the state may evolve. An event is made up of three elements its name, guards

and actions. The guards are the necessary conditions for the event to occur. An event known as

initialization event has no guard and it gives initial position of model. For any event, if all guards

of event become true then list of actions is performed by that event. The action is a substitution or

assignment of new values to variables. There are three kinds of substitutions associated with an

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 5, October 2015

61

event [19] deterministic multiple substitution, non deterministic multiple substitution and empty

substitution. An event is triggered and performs list of actions when guards of that event will

becomes true. The properties of machine are verified through proof obligations [19], [8].

In our research work, we have used Rodin platform [13], [19], [22]. It is an open extensible tool

for specification and verification of Event B. The tool support construction and verification of

Event-B models and provides a seamless integration between modelling and proving. It also

provides an environment for generation and discharge of proof obligations. It supports

incremental development of model whereby verification is done automatically in the background

during model development. Therefore, each incremental modification generates a small change to

the set of proof obligations. It is embedded by various plugins such as provers, model checkers,

UML transformers, proof-obligation generators etc.

3. SYSTEM MODEL

We have considered a group of sites which coordinate each other for taking checkpoints in such

manner that the resulting global state is consistent. We have used Lamport’s logical clock to

assign the timestamp to sites and messages which are involved in the communication. In order to

take the consistent global checkpoint in DDBS, it is required to decide which transactions are to

be included in the checkpoint. While taking a checkpoint it is also needed that it must not

interfere or block the transaction which are already executing at that site. In our model,

checkpointing process is initiated by a site known as coordinator site. This site broadcast a

timestamped request message to all other sites (participant sites). After receiving the request

message, participant site updates its local checkpoint number and send back timestamped reply

message to the coordinator. For assigning timestamp to message, each time when a message is

sent by any site, it increments its own local checkpoint number by one and that incremented value

is assigned to message. At the time of delivery of message the receiving site update its local

checkpoint number with the maximum value of timestamp of received message and current

checkpoint number. In order to decide which transaction are to be included in the checkpoint, all

participant sites must agree upon a special timestamp value known as global checkpoint number.

After receiving the reply message from all participant sites, coordinator site compute global

checkpoint number. This global checkpoint number is broadcast to all participants so that they

can include in their local checkpoint to all those transaction whose timestamp value is less than

global checkpoint number. The informal descriptions about the events are as follows:

1. Broadcasting a request message: The coordinator site broadcast timestamped request message

to all the participant sites. For assigning the timestamp to request message coordinator site

increment its own local checkpoint number by one and this incremented value is assigned to

request message.

2. Submission of transaction: Transaction may be submitted at any site. After submission of a

transaction a timestamp value is assigned to it. The current local checkpoint number of site is

assigned to transaction as its timestamp.

3. Delivery of request message: A request message sent by coordinator site will be delivered to all

participant sites. After the delivery of request message, participant site update its local checkpoint

number with the timestamp of received request message or its current timestamp value. The value

which one is maximum will be assigned to it.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 5, October 2015

62

4. Local marking of transaction: Each participant site locally marks all those transactions whose

timestamp value is less than local checkpoint number of site as a before checkpoint transaction

(bcpt) and rest of transaction as after checkpoint transaction (acpt).

5. Sending of reply message: After local marking of transaction, each participant site will send

timestamped reply message to the coordinator site. In order to assign the timestamp to reply

message, participant site increments its local check point number by one and that incremented

value is assigned to reply message.

6. Delivery of reply message: The coordinator site counts the number of sites which have sent the

reply message. Every time when a reply message is delivered to coordinator site it increments its

counter value by one. It also makes the entry of timestamp of each received reply message.

7. Computation and broadcasting of global checkpoint number: After receiving the reply message

from all participant sites, the coordinator site compute global checkpoint number. The global

checkpoint number is the maximum value of timestamp of all received reply messages. The

coordinator site broadcasts timestamped global checkpoint message to all participant sites.

8. Receiving of global checkpoint message: When participant site receives global checkpoint

message it updates its local checkpoint number as a timestamp of received global checkpoint

message.

9. Final marking of transaction: After the delivery of global checkpoint message at all participant

sites each participants will have its local checkpoint value equal to global checkpoint number.

Finally, all participant sites mark all transactions whose timestamp value is less than global

checkpoint number as a before checkpoint transaction and rest of transactions as after checkpoint

transaction.

4. EVENT-B MODEL OF CHECKPOINTING IN DISTRIBUTED DATABASE SYSTEM

In the context of model, we have declared sets of SITE, MESSAGE and TRANSACTION as carrier

set. The other sets status, type and cpstatus are defined as enumerated set. The set status has

values waiting, received_all_replies, globalcpnbroadcast, idle. The set type has values

local_cp_request, local_cp_reply, global_cp_msg and set cpstatus has values pending,

globalmark, localmark. The variables and invariants of machine are given in Fig. 1.

The variable sender is a partial function from set MESSAGE to SITE. A mapping of the form

(mms)∈ sender indicates that message m was sent by a site s. For recovery purpose, every site

maintains local checkpoint number (lcpns) in order to record all the events occur local to it. it is

declared as total function from SITE to natural number which indicates that each site have local

checkpoint number associated with it. For any pair (ssmn1)∈ lcpns indicates that site ss has local

checkpoint number n1. Descriptions about other variables are as follows:

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 5, October 2015

63

Fig. 1. Variables and Invariants of Machine

(i) The variable sentmessages represent set of messages sent by any site. The timestamp of

message is formalised using variable tsmsg.

(ii) Every message must have a unique type. The variable messagetype maps each sent messages

to one of its type: local_cp_request, local_cp_reply, global_cp_msg.

(iii) The variable deliver represents delivery of messages at a site. There are number of messages

which are delivered to any site. This requirement is formalized by declaring variable deliver as a

relation between SITE and MESSAGE. A mapping (ssm mm1)∈ deliver represents that message

mm1 has been delivered to site ss. The message mm2 can also be relate with same site ss due to

relation.

(iv) The variable tsreplymsg is a set of natural number which represents timestamp of all reply

messages.

(v) The set of transactions at any site is represented by a variable trans_at_site. Relational image

of site ss under the relation trans_at_site is represented by trans_at_site[{ss}] and it contains all

the transactions at site ss.

(vi) The variable trans is a set of transaction that are submitted to any site.

(vii) The variable bcpt represents the set of transaction which are marked as before checkpoint

transaction. A mapping (smtr)∈ bcpt denotes that site s has marked transaction tr as before

 MACHINE Checkpointm

 VARIABLES

 sender, coordinatorstatus, totalrepliedsite, lcpns, tsmsg, trans_at_site

 trans, timestamp, deliver, bcpt, acpt, messagetype, checkpointstatus

 tsreplymsg, sentmessages

 INVARIANTS

inv1 : sender : MESSAGE2 SITE

inv2 : lcpns : SITE→Natural

inv3 : sentmessages ⊆ MESSAGE

inv4 : tsmsg : MESSAGE→Natural

inv5 : messagetype : sentmessages→type

inv6 : deliver : SITE 1 MESSAGE

inv7 : tsreplymsg (Natural

inv8 : trans_at_site: SITE↔TRANSACTION

inv9 : trans (TRANSACTION

inv10 : timestamp : trans→Natural

inv11 : bcpt: SITE ↔ trans

inv12 : acpt: SITE ↔ trans

inv13 : coordinatorstatus: {coordinator}→status

inv14 : checkpointstatus : SITE→cpstatus

inv15 : totalrepliedsite : Natural

inv16 : acpt ∩ bcpt = ∅

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 5, October 2015

64

checkpoint transaction. Similarly, the variable acpt represents the set of transaction which are

marked as after checkpoint transaction.

(viii) Any site can work as a coordinator which coordinates with other site for deciding global

check point number. The status of coordinator is represented by the variable coordinatorstatus. At

any time coordinator may be in the state of waiting, received_all_replies, globalcpnbroadcast and

idle.

(ix) The variable checkpointstatus represents checkpoint status of each site. The checkpoint status

of site may be one of the following: pending, globalmark, localmark.

(x) The variable totalrepliedsite is a set of natural number.

The invariant 16 denotes that any transaction may be either in set acpt or bcpt. Initially,

coordinator status and checkpoint status of each site is set to as idle and pending respectively. The

local checkpoint number of each site and timestamp of each message is set to as 0.

Fig. 2. Submission of Transaction

4.1. Submission of Transaction

The event Trans Submit models the submission of transaction at any site [Fig. 2]. The guard grd1

and grd2 ensure that tr is a transaction and it is a fresh transaction respectively. The guard grd4 is

written as: tr / trans_at_site[ss], it ensures that transaction tr is not present at site ss. The guard

grd5 specifies that checkpoint status of site ss is pending. After the submission of transaction

(act1) a unique time stamp is assigned to it (act2). The action act2 assigns local checkpoint

number of site ss to transaction tr. Each time when a site assigns a timestamp to transaction, it

increments its own timestamp value by one (act3). The action act4 records that transaction tr is

present at site ss. The action act5 marks the transaction tr at site ss as after checkpoint transaction.

Trans_Submit ≙≙≙≙

Any tr,ss Where

grd1 : tr:TRANSACTION

grd2 : tr/ trans

grd3 : ss: SITE

grd4 : tr/ trans_at_site[{ss}]

grd5 : checkpointstatus(ss)= pending

Then

act1 : trans≔ trans∪ {tr}

act2 : timestamp(tr)≔ lcpns(ss)

act3 : lcpns(ss)≔ lcpns(ss) +1

act4 : trans_at_site≔ trans_at_site∪ {ssmtr}

act5 : acpt≔ acpt∪{ssmtr}

End

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 5, October 2015

65

Fig. 3. Submission of Sub-Transaction at Remote Site

4.2. Submission of sub-transaction at remote site

Depending on the requirements, distributed transaction may execute at several sites. This event

models the submission of sub-transaction at remote site (Fig. 3). The guard grd1 ensures that

transaction tr has been submitted at any site. The guard grd3 ensures that transaction tr is not

present at site ss. The guard grd5 and grd6 ensure that transaction tr at site ss has neither been

marked as after checkpoint transaction (acpt) nor before checkpoint transaction (bcpt). The guard

grd7 specifies that checkpoint status of site ss is pending. The action act1 makes the entry of

transaction tr at site ss. When a transaction is submitted at remote site then it updates its

knowledge in form of local checkpoint number. The local checkpoint number is updated as

(act2):

lcpns(ss) ≔ max({timestamp(tr),lcpns(ss)+1})

It takes maximum of current local checkpoint number and timestamp of transaction. The value

which is maximum is allotted as local checkpoint number of site ss. The action act3 marked the

transaction tr at site ss as after checkpoint transaction (acpt).

4.3. Broadcasting of request message

In order to decide global checkpoint number, coordinator site broadcast request message to all

sites [Fig. 4]. The guard grd1 and grd2 ensure that site ss is coordinator and its status is idle

respectively. The message mm has not been sent is ensured by guards grd3 and grd4. Each time

when a message is sent by any site, it increments its local checkpoint number by one and this

updated timestamp value is assigned to message. The action act1 increments local checkpoint

number of site ss by one. The action act2 assigns timestamp to message mm. The action act3

specifies that message mm is sent by site ss. The status of coordinator is set to as waiting and

message mm is added to set sentmessages through act4 and act5 respectively. The type of

message mm is set to as local_cp_request through the action act6.

Remote_Subtran_Submit ≙≙≙≙
ANY tr, ss WHERE

grd1 : tr: trans

grd2 : ss: SITE

grd3 : tr/ trans_at_site[{ss}]

grd4 : finite({timestamp(tr), lcpns(ss)+1})

grd5 : ssmtr/acpt

grd6 : ssmtr/ bcpt

grd7 : checkpointstatus(ss)=pending

THEN

act1 : trans_at_site≔ trans_at_site∪ {ssmtr}

act2 : lcpns(ss)≔ max({timestamp(tr),lcpns(ss)+1})

act3 : acpt≔ acpt∪{ssmtr}

 END

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 5, October 2015

66

Fig. 4. Broadcasting of Request Message

Fig. 5. Delivery of Request Message

4.4. Delivery of request message at participant site

This event models the delivery of request message at participant site [Fig. 5]. Site ss is not

coordinator site is ensured through guards grd1 and grd2. The message mm has been sent and its

type is request message is ensured through guard grd3 and grd4 respectively. The guard grd5

ensures that delivery of message mm has not been done at site ss. This event makes the delivery

of request message mm at site ss (act1). At the time of delivery of message site ss update its local

checkpoint number with the maximum of current local timestamp and timestamp of received

request message (act2).

4.5. Local marking of transaction

This event formalizes the marking of transaction on the basis of local checkpoint number of that

site [Fig.6]. After receiving the request message from coordinator site, all participant sites mark

those transactions as before checkpoint transaction bcpt whose timestamp are less than local

checkpoint number of that site. The guard grd2 specifies that site ss is not coordinator site. The

request message mm has been delivered at site ss is ensured through guard grd4 and grd5. The

Participant_Receive ≙≙≙≙
 ANY mm, ss WHERE

grd1 : ss: SITE

grd2 : ss ≠ coordinator

grd3 : mm: sentmessages

grd4 : messagetype(mm) = local_cp_request

grd5 : mm/ deliver[{ss}]

grd6 : finite({tsmsg(mm), lcpns(ss)+1})

grd7 : checkpointstatus(ss) = pending

THEN

act1 : deliver≔ deliver ∪{ss mmm}

act2 : lcpns(ss)≔ max({tsmsg(mm), lcpns(ss)+1})

 END

 Coordinaor_Broadcast ≙≙≙≙

 ANY ss, mm WHERE

grd1 : ss = coordinator

grd2 : coordinatorstatus(ss)= idle

grd3 : mm: MESSAGE

grd4 : mm/ dom(sender)

 THEN

act1 : lcpns(ss)≔ lcpns(ss)+1

act2 : tsmsg(mm)≔ lcpns(ss)

act3 : sender≔ sender∪ {mmmss}

act4 : coordinatorstatus(ss)≔ waiting

act5 : sentmessages≔ sentmessages∪ {mm}

act6 : messagetype(mm)≔ local_cp_request

 END

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 5, October 2015

67

guard grd6 and grd7 specify that transaction tr at site ss is marked as after checkpoint transaction

(acpt). The timestamp of transaction tr is less than local checkpoint number of site ss is ensured

through grd8. The checkpoint status of site ss is pending is ensured through guard grd9. Due to

occurrence of this event transaction tr is removed from acpt (after checkpoint transaction) set

(act1) and added in to bcpt before checkpoint transaction set (act2).

Fig. 6. Local Marking of Transaction

Fig. 7. Reply to Coordinator Site

4.6. Reply to coordinator site

After marking all transactions whose timestamps are less than local checkpoint number of that

site, participant site sends the reply message to the coordinator site [Fig. 7]. The site ss is not a

coordinator site is ensured through guard grd2. The guard grd4 specifies that for all transactions

at site ss whose timestamps are less than local checkpoint number of that site has been marked as

bcpt (before checkpoint transaction). The guard grd5 specifies that checkpoint status of site ss is

pending. This event changes the checkpoint status of site ss as localmark (act1) and sends

 Trans_Marking ≙≙≙≙
 ANY tr, ss, mm WHERE

grd1 : tr: trans

grd2 : ss ≠ coordinator

grd3 : mm: sentmessages

grd4 : messagetype(mm)= local_cp_request

grd5 : ssmmm : deliver

grd6 : tr : trans_at_site[{ss}]

grd7 : ssmtr: acpt

grd8 : timestamp(tr)≤ lcpns(ss)

grd9 : checkpointstatus(ss)=pending

 THEN

act1 : acpt≔ acpt∖{ssmtr}

act2 : bcpt≔ bcpt ∪ {ssmtr}

 END

 Reply ≙≙≙≙
 ANY ss, mm WHERE

grd1 : ss : SITE

grd2 : ss ≠ coordinator

grd3 : mm / dom(sender)

grd4 :
∀ tr·(tr: trans ∧ tr: trans_at_site[{ss}]∧
timestamp(tr)≤ lcpns(ss)G ssmtr:bcpt)

grd5 : checkpointstatus(ss)=pending

 THEN

act1 : checkpointstatus(ss)≔ localmark

act2 : sentmessages≔ sentmessages∪ {mm}

act3 : messagetype(mm)≔ local_cp_reply

act4 : sender≔ sender∪ {mmmss}

act5 : tsmsg(mm)≔ lcpns(ss)+1

act6 : lcpns(ss)≔ lcpns(ss)+1

 END

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 5, October 2015

68

timestamped reply message mm (act 2, act3 & act4). For assigning timestamp to message mm site

increments its own timestamp by one and this incremented timestamp value is assigned to reply

message mm (act5). The action act6 updates local checkpoint number of site ss.

Fig. 8. Delivery of Reply Message at Coordinator Site

4.7. Delivery of reply message at coordinator site

This event models the delivery of reply message at coordinator site (Fig. 8). The guard grd1

specifies that site ss is coordinator site. Delivery of reply message mm (grd3) has not been done at

coordinator site ss is ensured through guard grd4. The guard grd5 ensures that status of

coordinator ss is waiting. When this event triggers, it makes delivery of reply message at

coordinator site (act1). The coordinator site also counts the total number of reply messages

received from participant site. Each time when a message is delivered, it increments

totalrepliedsite count by one (act2). The action act3 makes the entry of timestamp of reply

message mm.

4.8. Broadcasting global checkpoint number

After the delivery of reply message from all participant sites, coordinator site changes its status

from waiting to received_all_replies [Fig. 9]. The guard grd2 ensures that coordinator has

received reply message from all participant sites. The action act1 changes status of coordinator.

The event Broadcast_Gcpn formalizes broadcasting of global checkpoint number message to all

sites [Fig. 9]. The guards grd1 and grd4 ensure that site ss is coordinator site and it has received

reply messages from all sites respectively. After receiving reply message from all participant sites

(grd4), coordinator site compute global checkpoint number on the basis of timestamp of received

reply message. The global checkpoint number is the maximum value of timestamp of reply

message (grd6). Due to occurrence of this event, coordinator site ss broadcast timestamped global

checkpoint message mm (act1,act2,act3). The action act4 specifies that global checkpoint number

globalcpn is assigned as timestamp of message mm. The action act5 changes the status of

coordinator site as globalcpnbroadcast.

 Reply_Delivery ≙≙≙≙
 ANY mm, ss WHERE

grd1 : ss= coordinator

grd2 : mm: sentmessages

grd3 : messagetype(mm)= local_cp_reply

grd4 : mm/ deliver[{ss}]

grd5 : coordinatorstatus(ss)= waiting

 THEN

act1 : deliver≔ deliver∪ {ssmmm}

act2 : totalrepliedsite≔ totalrepliedsite+1

act3 : tsreplymsg≔ tsreplymsg ∪ {tsmsg(mm)}

 END

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 5, October 2015

69

Fig. 9. Broadcasting Global Checkpoint Number

4.9. Delivery of global checkpoint number message

This event models the delivery of global checkpoint message at participant site [Fig. 10]. The

global checkpoint message mm (grd4) has been sent by coordinator site s is ensured through

guard grd5. The guard grd6 ensures that delivery of message mm has not been done at site ss. The

guard grd7 specifies that for all transaction tr at site ss if they are marked as bcpt (before

checkpoint transaction) then timestamp of transaction will be less than timestamp of global

checkpoint message mm. Due to occurrence of this event, delivery of message mm is done at site

ss (act1). The site ss also updates its knowledge in form of local checkpoint number with the

timestamp of globalcheckpoint message mm (act2).

4.10. Final marking of transaction

This event formalizes the final marking of transaction [Fig. 11]. It marks all transactions as before

checkpoint transactions bcpt whose timestamps are less than timestamp of global checkpoint

message. The message mm is global checkpoint message is ensured through guard grd4. The

delivery of message mm has been done at site ss is ensured through guard grd6. The transaction tr

is not marked as before checkpoint transaction is ensured through guard grd7 and its timestamp is

less than local checkpoint number of site ss is ensured through guard grd8. This event marks the

transaction tr as before checkpoint transaction by adding it to bcpt (before checkpoint transaction)

set.

 Change_Co-ordinator_Status ≙≙≙≙

 ANY ss WHERE

grd1 : ss= coordinator

grd2 : totalrepliedsite= card(SITE)−1

grd3 : coordinatorstatus(ss)= waiting

 THEN

act1 : coordinatorstatus(ss)≔ received_all_replies

 END

 Broadcast_Gcpn ≙≙≙≙
 ANY ss, globalcpn, mm WHERE

grd1 : ss= coordinator

grd2 : tsreplymsg ≠0

grd3 : mm/ dom(sender)

grd4 : coordinatorstatus(ss)= received_all_replies

grd5 : finite(tsreplymsg)

grd6 : globalcpn= max(tsreplymsg)

 THEN

act1 : sender≔ sender∪ {mmmss}

act2 : sentmessages≔ sentmessages∪ {mm}

act3 : messagetype(mm)≔ global_cp_msg

act4 : tsmsg(mm)≔ globalcpn

act5 : coordinatorstatus(ss)≔ globalcpnbroadcast

 END

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 5, October 2015

70

Fig. 10. Delivery of Global Checkpoint Number Message

Fig. 11. Final Marking of Transaction

4.11. Update checkpoint status of participant

After marking all transactions whose timestamps are less than local checkpoint number of that

site (which is now global checkpoint number) as before checkpoint transaction, checkpoint status

of that site must be marked as globalmark [Fig. 12]. The global checkpoint message mm (grd4)

has been received by site ss is ensured through grd5. The guard grd6 ensures that for all

transactions tr whose timestamp are less than local checkpoint number of that site lcpns(ss) then

that transaction must be present in before checkpoint transaction set bcpt.

 GCPN_Message_Receive ≙≙≙≙

 ANY ss, mm, s WHERE

grd1 : s= coordinator

grd2 : ss: SITE

grd3 : mm: sentmessages

grd4 : messagetype(mm)=global_cp_msg

grd5 : mmms : sender

grd6 : ssmmm / deliver

grd7 :
∀tr·tr: trans ∧ tr: trans_at_site[{ss}]

∧ ssmtr: bcptG timestamp(tr)≤ tsmsg(mm)

grd8 : checkpointstatus(ss)=localmark

 THEN

act1 : deliver≔ deliver ∪ {ssmmm}

act2 : lcpns(ss)≔ tsmsg(mm)

 END

 Final_Trans_Marking ≙≙≙≙

 ANY tr, ss, mm WHERE

grd1 : tr: trans

grd2 : ssmtr: acpt

grd3 : mm: sentmessages

grd4 : messagetype(mm) = global_cp_msg

grd5 : ss ≠ coordinator

grd6 : ssmmm : deliver

grd7 : ssmtr/ bcpt

grd8 : timestamp(tr) ≤ lcpns(ss)

 THEN

act1 : acpt≔ acpt∖ {ssmtr}

act2 : bcpt≔ bcpt∪ {ssmtr}

 END

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 5, October 2015

71

Fig. 12. Update Checkpoint Status of Participant

5. CONCLUSIONS

Modern distributed systems are very difficult to develop and reason about. There is need to

formally verify and ensure the correctness of distributed systems and algorithms. During last few

years the research in the field of formal methods has been grown up and has reported significant

success in the development of describing and analyzing the complex systems in formal languages.

In distributed database systems, formal methods take important role for ensuring the correctness.

In this paper, we have done formal verification of distributed checkpointing for the recovery of

distributed transaction. A distributed transaction may be divided in several subtransactions which

may execute at different sites to accomplish global computation. Each site maintains its state

information in form of local checkpoint. In order to recover a distributed transaction it is required

to decide a global recovery line or global checkpoint number which must include all sub-

transactions of a transaction whose timestamp are less than it. For others whose timestamp are

larger will be included in next checkpoint.

In our model, we have presented formal model of global checkpointing in distributed

environment using Event-B. Event-B is a formal method which is used to verify distributed

algorithms. It rigorously verifies all the properties of a model by discharging proof obligations

generated by it. Our model formally specifies the computation of global checkpoint number

GCPN and verifies that GCPN only includes those transactions whose timestamps are lesser than

it. More specifically, it includes all sub-transactions which are submitted before the global

checkpoint number. In order to ensure correctness of our model, we have added following

invariants:

 Participant_Change_Status ≙≙≙≙
 ANY ss, mm WHERE

grd1 : ss ≠ coordinator

grd2 : checkpointstatus(ss)= localmark

grd3 : mm: sentmessages

grd4 : messagetype(mm)= global_cp_msg

grd5 : ssmmm : deliver

grd6 :
∀ tr·tr: trans ∧ tr: trans_at_site[{ss}]∧
 timestamp(tr)≤ lcpns(ss)G ssmtr: bcpt

 THEN

act1 : checkpointstatus(ss)≔ globalmark

 END

Inv17: ∃ tr,si,sj. tr∈ trans ∧ si∈SITE ∧ sj∈SITE ∧ tr∈trans at site[si] ⇒
 tr∈ trans at site[sj]

Inv18:∀ ss,tr. tr∈trans ∧ ss∈SITE ∧ tr∈trans at site[ss] ∧ ssmtr∈bcpt ⇒

timestamp(tr)<lcpns(ss)

Inv19:∀ ss,tr. tr∈trans ∧ ss∈SITE ∧ ssd coordinator ∧ tr∈ trans at site[ss] ∧

checkpointstatus(ss)=globalmark ∧ timestamp(tr)< lcpns(ss)⇒ss mtr/ acpt

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 5, October 2015

72

The invariant 17 verifies the submission of transaction under distributed environment. The

distributed computation involves execution of transaction at several sites. This invariant ensures

that if transaction tr is present at site Si then it may also be present at other site Sj.

The invariant 18 ensures the correctness of our model by ensuring that there will be no

transaction in set bcpt whose timestamp are larger than local checkpoint number of that site. It

verifies that for all transactions tr if site ss has marked this transaction as before checkpoint

transaction then timestamp of transaction tr will be less than local checkpoint number of site ss.

The invariant 19 verifies that if the site has completed its final marking then all transactions

whose timestamps are less than local checkpoint number of that site will not be present in set acpt

(after checkpoint transaction). We have used Rodin tool for writing Event-B specifications. The

model generates 106 proof obligations out of which 51 are discharged automatically by the prover

of tool while 55 proof obligations are discharged manually. The proof obligations generated by

model give the rigorous reasoning about the design of model. During execution of model all

invariants are preserved which ensures that model is correct. In future, we aim to use vector

timestamp in place of scalar timestamp.

REFERENCES

[1] M.Singhal, N.G.Shivratri: Advanced Concepts in Operating Systems. Tata Mc-GrawHill Book

Company, India (2005).

[2] A.Helal, A.Heddya and B. Bhargava: Replication Techniques in Distributed System. Kluwener

Academic Publishers (1997).

[3] R.Koo,S. Toueg:Checkpointing and Rollback-Recovery for Distributed Systems. In: IEEE

Transactions on Software Engineering, vol. 13, no. 1, pp. 23-31, (1987).

[4] S.H.Son, A.K. Agrawala: Distributed Checkpointing for Globally Consistent States of Databases.In:

IEEE Transactions on Software Engineering, vol. 15, no. 10, pp. 1157-1167, (1989).

[5] M.G.Hinchey, JP. Bowen and R.L. Glass: Formal methods: Point-counterpoint. Computer,

29(4):1819, 1996.

[6] C.Jones, D. Jackson and J. Wing: Formal methods light. Computer, 29(4):2022, 1996.

[7] R.Banach: Retrenchment for Event-B: UseCase-wise development and Rodin integration. Formal

Aspects of Computing, 23, pp. 113131, (2011).

[8] S.Hallerstede: On the purpose of Event-B proof obligations. Formal Aspects of Computing, 23: pp.

133150, (2011).

[9] S.Hallerstede and M. Leuschel: Experiments in program verification using Event-B. Formal Aspects

of Computing, 24: pp. 97125, (2012)

[10] D.Basin, A. Furst, T.S. Hoang, K. Miyazaki, and N. Sato: Abstract Data Types in Event-B - An

Application of Generic Instantiation. CoRR, 2012.

[11] J-R.Abrial. From Z to B and then Event-B: Assigning Proofs to Meaningful Programs. In E.B.

Johnsen and L. Petre, editors, IFM, volume 7940 of Lecture Notes in Computer Science, pages 115.

Springer, 2013.

[12] M.Butler and I.Maamria: Practical theory extension in Event-B. In Zhiming Liu, Jim Woodcock, and

Huibiao Zhu, editors, Theories of Programming and Formal Methods, volume 8051 of Lecture Notes

in Computer Science, pages 6781. Springer, 2013.

[13] J.R.Abrial : A system development process with Event-B and the Rodin platform. In: Lecture Notes

In Computer Science 4789, Springer, pp.1-3, (2007).

[14] R.Suryavanshi, D.Yadav: Formal Development of Byzantine Immune Total Order Broadcast System

using Event-B. In: ICDEM 2010, Andres,F., Kannan, R. (eds.) LNCS, Vol. 6411, Springer, pp.317-

324, (2010).

[15] J-R.Abrial. Modeling in Event-B: System and Software Engineering. Cambridge University Press,

2010.

[16] T.S.Hoang, Proving almost-certain convergence properties using Event-B, Tech. Rep. 768,

Department of Computer Science, ETH Zurich,

http://www.inf.ethz.ch/research/disstechreps/techreports (Jul. 2012).

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 5, October 2015

73

[17] T.Hoang, H. Kuruma, D.Basin, J.R.Abrial:Developing topology discovery in Event- B, Science of

Computer Programming 74 (11-12) (2009) 879899.

[18] T.S.Hoang, J.R. Abrial: Reasoning about liveness properties in Event-B,in: S. Qin, Z. Qiu (Eds.),

International Conference on Formal Engineering Methods 2011, Vol. 6991 of Lecture Notes in

Computer Science, Springer-Verlag, 2011, pp. 456471.

[19] C. Metayer, J.R. Abrial, L.Voison: Event-B language. RODIN deliverables 3.2,

http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf, (2005).

[20] Kriangsak Damchoom, Michael Butler, J-R Abrial: Modelling and Proof of a Tree- Structured File

System in Event-B and Rodin. In Shaoying Liu, Tom Maibaum and Keijiro Arak, editors, ICFEM-

2008, Formal Methods and Software Engineering, Lecture Notes in Computer Science, Volume 5256,

pages 25-44, Springer, 2008.

[21] J-R. Abrial and S. Hallerstede: Refinement, Decomposition, and Instantiation of Discrete Models:

Application to Event-B. Fundam. Inform., 77(1-2):128, 2007.

[22] J-R. Abrial, M. Butler, S. Hallerstede, T.S. Hoang, F. Mehta, and L. Voisin. Rodin: an open toolset

for modelling and reasoning in Event-B. International Journal on Software Tools for Technology

Transfer (STTT), 12(6):447466, 2010.

AUTHORS

Girish Chandra is an Associate Professor in Department of Computer Science and

Engineering at Institute of Engineering Technology, Lucknow.. He has received

M.Tech from IIT Kanpur. He is doing Ph.D. from Uttar Pradesh Technical University,

Lucknow. He has presented several international papers in IITs and other universities.

His research interest includes Cryptography, Formal Verification and Distributed

Systems.

Raghuraj Suryavanshi is working as Assistant Professor in Computer Science and

Engineering at Pranveer Singh Institute of Engineering & Technology Kanpur. He has

completed Ph.D. from Uttar Pradesh Technical University, Lucknow. He has received

Teacher Fellowship award from Uttar Pradesh Technical University. He has presented

several international papers in India and abroad. His research interests are formal

verification and validation of critical properties of distributed database systems.

Prof. Divakar Yadav is working as Director of Dr. Bhim Rao Ambedkar Engineering

College of Information Technology, Banda. He obtained Ph.D. in Computer Science

from University of Southampton, U.K under Commonwealth Scholarship & Fellowship

Plan, U.K. earlier, he obtained M.Tech in Computer Science from Indian Institute of

Technology, Kharagpur. Dr. Yadav possesses more than 25 years of experience in

academics/research in India and abroad. He is Professor of Computer Science and

Engineering at Institute of Engineering and Technology, Lucknow His primary

research interests are in formal methods, refinement of distributed systems using Event-

B.

