
International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 6, December 2015

DOI:10.5121/ijcsit.2015.7602 19

AN ENTROPIC OPTIMIZATION TECHNIQUE IN

HETEROGENEOUS GRID COMPUTING USING

BIONIC ALGORITHMS

Saad M. Darwish
1
, Adel A. El-zoghabi

2
 and Moustafa F. Ashry

3

Information Technology Department, Graduate Studies and Research Institute, University

of Alexandria. 163 Horreya Avenue, El-Shatby, 21526 P.O. Box 832, Alexandria, Egypt

ABSTRACT

The wide usage of the Internet and the availability of powerful computers and high-speed networks as low-

cost commodity components have a deep impact on the way we use computers today, in such a way that

these technologies facilitated the usage of multi-owner and geographically distributed resources to address

large-scale problems in many areas such as science, engineering, and commerce. The new paradigm of

Grid computing has evolved from these researches on these topics. Performance and utilization of the grid

depends on a complex and excessively dynamic procedure of optimally balancing the load among the

available nodes. In this paper, we suggest a novel two-dimensional figure of merit that depict the network

effects on load balance and fault tolerance estimation to improve the performance of the network

utilizations. The enhancement of fault tolerance is obtained by adaptively decrease replication time and

message cost. On the other hand, load balance is improved by adaptively decrease mean job response time.

Finally, analysis of Genetic Algorithm, Ant Colony Optimization, and Particle Swarm Optimization is

conducted with regards to their solutions, issues and improvements concerning load balancing in

computational grid. Consequently, a significant system utilization improvement was attained. Experimental

results eventually demonstrate that the proposed method's performance surpasses other methods.

KEYWORDS

 Grid Computing; Big Data; Bionic Algorithm; Load Balancing; Fault Tolerance; R-tree.

1. INTRODUCTION

Lately, the progressive expansion of large, complex, heterogeneous, and multi-dimensional data

has put under spot the capacity of the existing data management software and hardware

infrastructure. Nowadays, there exist many different types of data sources, such as sensors,

scientific instruments, and the Internet, contributing to the data booming. The relatively slower

development of new and efficient data models to process complex and large-scale data poses

huge challenges that require straightaway attention from academia, research, and industry [1] [2].

As traditional data models, which are basically relational in nature, can't handle the today’s data

needs, a new technology in data science is produced that gives rise to a fast emergence of a wide

range of non-relational data models, which, today, are popularly known as NoSQL and/or Big

Data models [3]. Grid technology has emerged as a new era of large-scale distributed computing

with high-performance orientation. Grid resource management is literally the process of

identifying requirements, matching resources to applications, allocating those resources,

scheduling and monitoring grid resources over time in order to run grid applications as efficiently

as possible [4]. Resource discovery represents the first phase of resource management, whereas

scheduling and monitoring is the next step. Scheduling process leads the job to the appropriate

resource and monitoring process views the resources. Heavily loaded resources will act as server

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 6, December 2015

20

of task, while lightly loaded resources will act as receiver of task. Task will migrate from heavily

loaded node to lightly loaded node. As the resources are dynamic in nature, their load varies with

change in configuration of grid resulting in a significantly influence of the load balancing of the

tasks on grid’s performance [5] [6].

Load balancing results in a low cost, dispensed scheme that balances the load among all the

processors. Efficacious load balancing algorithms are basically important in enhancing the global

throughput of grid resources. For applying load balancing in grid environment, multiple

techniques, algorithms and policies have been introduced. Load balancing processes can be

classified as centralized or decentralized, dynamic or static, and periodic or non-periodic [7].

Regarding the concept of fault tolerance, the main problems facing grid environments are

Feasibility, Reliability, Scalability, and Connectivity [8] [9]. A fault can be tolerated depending

on its behavior or the way of occurrence. To evaluate a fault tolerance in a system there are three

different methods which are Replication, Check-pointing, and Scheduling/Redundancy [10].

Fractal transform based self similarity will always be a critical issue in the prospect of the cost

of data storage and transmission times especially with the huge interest for images, sound, video

sequences, computer animations and volume visualization [11]. A measurement of the inherent

size of the data in a space can be represented by a fractal dimension of a cloud of points. This

method has a significant disadvantage which is the long computing time, which can be reduced

by several proposed methods. The most common approach for reducing the computational

complexity is to organize the domain blocks into a tree-structure, which could lead to faster

searching over the linear search [9]. This approach is able to reduce the order of complexity from

O(N) to O(log N). Instead of dividing space in some manner, it is also possible to group the

objects in some hierarchic organization based on a rectangular approximation of their location. R-

tree [12] is the most popular index structure for multi-dimensional data. Each type of R-tree could

be distinctive in some aspects of performance such as query retrieval, insertion cost, application

specific and so on. Accordingly the subsequent search in the domain pool is substituted by multi-

dimensional nearest neighbor searching, run in logarithmic time.

In this paper a new method based on a balanced tree structure overlay over a grid network is

proposed. Furthermore a fault tolerant technique, exploiting the replication of non leaf nodes to

ensure the tree connectivity in presence of crashes is presented. This method is based on

distributed R-tree with the concept of entropy of each node. Consequently, all ineffectual route

paths will be discarded from the pool creating a more stable network. The proposed method

improves the performance of the network and hence improves fault tolerance and load balancing

algorithm when applying this approach to a grid computing networks. The rest of this paper is

organized as follows: Section 2, mention a literature survey and related works. Section 3, presents

the proposed method that improve both fault tolerance and load balance in grid computing,

followed by experimental results and discussion in Section 4. In Section 5, conclusions of the

present work are outlined.

2. RELATED WORK

At the service level of the grid software infrastructure, workload and resource management are

two main functions provided. The problem of load balancing in grid computing is handled by

assigning loads in a grid taking into account the communication overhead in gathering the load

information. Load index is used as a decision aspect in the process of scheduling jobs within and

among clusters. To solve this problem, a decentralized model for heterogeneous grid has been

suggested as a collection of clusters by a ring topology for the Grid managers that are charged of

managing a dynamic pool of processing elements, computers or processors [7].

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 6, December 2015

21

Resource scheduling for tasks engages in the scheduling of a set of independent tasks [5]. Other

works have been based on scheduling technologies using economic/market-based models [6]. As

job scheduling is known to be NP-complete, the use of non-heuristics is an effective method that

practically matches its difficulty. Single heuristic approaches for the problem include Local

Search, Simulated Annealing, and Tabu Search [6]. In recent years, some new-type bionic

algorithms are become hot research topics such as Genetic Algorithm (GA), Particle Swarm

Optimization (PSO) algorithm, Ant Colony Optimization (ACO) algorithm, Bees Algorithm

(BA), Artificial Fish Swarm Algorithm (AFSA) [2]. In the Ant Colony algorithm, each job

submitted issues an ant which searches through the network finding the best node to deliver the

job to it. Ants catch information from each node they pass through as a pheromone in each node.

This eventually helps other ants to find their paths more efficiently. In the particle swarm

algorithm each node in the network individually acts as a particle which sends or receives jobs

from its neighbors to optimize its load locally, resulting in a partially global optimization of the

load within the whole network given time constraint limitations [17].

In [14], a hierarchical model of load distribution is introduced. It consists of a tree based Grid

model together with three load balancing algorithms at various levels of the hierarchical model.

The load balancing strategy is a hierarchical bottom up methodology where intra-site load is

balanced first, followed by intra-cluster and finally intra-grid load balancing. To run

complementary load balancing for batch jobs without specific execution deadlines, an agent-

based self-organization scheme is proposed in [18]. In [19], a combination of intelligent agents

and multi-agent scheme is applied for both global grid load balancing and local grid resource

scheduling. Another approach proposed in [15], based on the fault tolerant hybrid load balancing

strategy to reach job assignments with optimal computing node utilization and minimum response

time.

In this paper, a tree based structure and the domain-range entropy is proposed to reduce the

complexity of the grid computing network due to the similarity features with the tolerated and

balanced R-tree index structure which can be run in logarithmic time. This will improve both load

balancing and fault tolerance algorithm by enhancing connectivity, communication delay,

network bandwidth, in addition to resource availability, and resource unpredictability.

3. THE PROPOSED METHOD

The optimization procedures depends on the complete adaptive proposed method is shown in

Figure 1. The first step is to estimate Grid Computing Service (GCS) parameters then mapping

this grid structure into DR-tree index structure enhanced by the Entropy method to reduce the

completion time of the decision maker. Finally using threshold device to select the route path

depending on two parameters load balance and fault tolerance controller. Migration controller is

used to improve the fault tolerance and self-stabilizing controller is used to improve the load

balance in cumulative condition way and this method is depend on first introduced in [20]. Three

different optimization techniques applied on the herein proposed system to reach the optimum

solution, namely: Genetic Algorithm, Ant colony optimization and Particle swarm optimization.

Every user submits his computing jobs with their hardware requirements to the GCS. The GCS

then replies to the user by sending the results after finishing the processing of the jobs.

At the first step GCS estimation will analyze the network parameters by determine the Three-

level Top-Down view of the grid computing model depending on the method produced in [7] as

shown in Figure 2. Level 0: Local Grid Manager (LGM), the network is subdivided into

geographical areas where any LGM manages a group of Site Managers (SMs). Level 1: Site

Manager (SM), every SM is assigned the management of processing elements (computers or

processors) cluster which is dynamically configured (i.e., processing elements may join or leave

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 6, December 2015

22

the cluster at any time). Level 2: Processing Elements (PE) any public or private PC or

workstation can register within any SM to join the grid system and offer its computing resources

to be exploited by the grid users. As soon as being adhered to the grid, a computing element

triggers the GCS system which will return to the SM some information about its resources like

CPU speed.

Figure 1. The complete adaptive proposed procedure.

DR-Tree Index Structure

Fault Tolerance

Estimation

Load Balance

Estimation

Threshold Device

Migration

Controller

Route Path Selector

Self-Stabilizing

Controller

Grid Computing Service Estimation

Entropy Estimation

Grid Users

Grid Users

Optimization Techniques

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 6, December 2015

23

Figure 2. Grid computing model structure.

3.1. Distributed R-tree (DR-tree)

First we convert the tree model of grid computing nodes into DR-tree for the similarity features

then dealing with the new tree with the DR-tree conditions. R-trees [13] are defined as height-

balanced tree handling objects whose representation can be confined in a poly-space rectangle. In

other words, R-tree can be depicted as a data structure capable of efficiently indexing a multi-

dimensional space. R-tree has by the following structural properties: The root comprises 2 to M

children, every internal node has from m to M children (m ≤ M/2), and all leaves are equal in

level.

Distributed R-trees (DR-trees) expand the R-tree index structures having similar self-organized

nodes that are in a virtual balanced tree pave based on semantic relations. The structure maintains

the R-trees index structure features: search time logarithmic in the network size and bounded

degree per node. Physical machines connected to the system could be further referred to as p-

nodes (shortcut for physical nodes). A DR-tree is defined as a virtual structure distributed over a

set of p-nodes. In the following context, terms related to DR-tree will have the prefix: “v-”.

Consequently, DR-trees nodes will be denoted v-nodes. There are two distribution invariants

properties in the implementation of DR-tree proposed in [16]. The main points in the composition

of a DR-tree are the join/leave procedures. A p-node creates a v-leaf as soon as it is adhered to the

system. After that, it contacts another p-node to embed its v-leaf in the existing DR-tree. During

this insertion, some v-nodes may split as shown by Algorithm1.

High Speed Network

LGM

LGM

Site/Cluster

LAN

PE
PE

SM
SM SM

SM

PE
PE

PE
PE PE

PE

Level 0

Level 1

Level 2

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 6, December 2015

24

Algorithm1

1: Void onSplit (n:V_Node)

2: If n.is V_ Root then

3: Initiate new V_ Root = create n.V_Node.

4: Calculate n.v_ father = initiate new V_Root.

5: End if

6: Calculate m, where m = select n.v_children.

7: Initiate then calculate new V_Node = create m.V_Node.

8: Divide D = n.v_children.

9: Create new V_Node.v_children = D.

10: Create new V_ Node.v_ father then put n.v_ father into it.

3.2. Entropy

According to Shannon, Entropy [11] is defined as a set of events S={ x1 , x2 ,... xn }, where p(xi)

=pi represents the probability of incidence of each event. These probabilities, P={ p1 , p2 ,... pn },

are such that each pi ≥0 , and ∑ ���
��� = 1, which takes the form:

 	
��, ��, …��� = 	
�� = −∑ ���
��� log �� (1)

Entropy can be defined as the average self-information that is, the mean (expected or average)

amount of information for an occurrence of an event xi. In the context of message coding, entropy

can be represented as the minimum bound on the bits average number for each input value. The

function H has the following lower and the upper limits:

 0 = 	
1,0,0,…0� ≤ 	
��, ��, … ��� ≤ 	 ��� ,
�
� , …

�
�� = ���	� (2)

Searching the pool of domain blocks is considered time consuming as good approximations are

obtained when many domain blocks are allowed. This method consists of omitting the domain

block having high entropy from the domain pool, and hence all the unnecessary domains will

disappear from the pool to reach a higher production domain pool. This way will reduce the

overhead of the network by decrease the number of searching nodes and then improve the

performance of the grid computing networks. During GCS estimation, the grid manager will

trigger Algorithm1 by picking up some parameter ε, subsequently Algorithm2 will be executed.

Algorithm2
1: Step 1: Initialization choose parameter ε ;

2: Divide the input grid into n:V_Node

3: For (j =1; j ≤ n; j ++) {

4: H = entropy (V_Node);

5: If (H ≤ ε)

6: Step 2: execute Algorithm 1}

3.3. Optimization Techniques

A load balancing algorithm should optimize the usage of available resources either in the Grid

such as computational or data resources, in addition to time or cost related to these resources, etc.

The Grid environment results in a dynamic search space and hence as this optimality represents a

partial optimal solution that improves the performance. The proposed approaches optimize the

parameter ε by combining genetic algorithm, ant colony and particle swarm optimization

following the initialization process in the above mentioned algorithm2 to accomplish the

optimum resource utilization. These three optimized methods were discussed earlier in details in

[21].

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 6, December 2015

25

3.3.1. Genetic Algorithm (GA)

 GA is part of the group of Evolutionary Algorithms (EA). The evolutionary algorithms exploit

the three key principles of the natural evolution: natural selection, reproduction, and species

diversity, preserved by the differences of each generation with the previous. Genetic Algorithm

usually works with a group of individuals, representing possible solutions of the task. Giving an

individual assessment according to the desired solution, the selection principle is applied by using

a criterion. The best-suited individuals create the next generation. The huge diversity of problems

in the engineering sphere, equally as in other fields, implies the usage of algorithms from

different type, with multiple characteristics and settings. Algorithm 3 shows the GA procedure

used for select optimum parameter ε.

Algorithm 3

1: Initialize population of individual grid user jobs to both longest and smallest to fastest processor with 60

random schedules.

2: Evaluate the fitness of all individuals.

3: While termination condition not met do.

4: Select fitter individuals for reproduction at minimum execution time.

5: Crossover between individuals by two-point crossover.

6: Mutate individuals by simple swap operator.

7: Evaluate the fitness of the modified individuals that keeping relevant fitness.

8: Generate a new population

9: End while.
10: Initiate Authorized task for sequence Si For each processor Pi.

11: Concatenate sequences Si. A permutation sequence of tasks will be assigned to processors.

3.3.2. Ant Colony Optimization (ACO) algorithm

 Ant Colony Optimization (ACO) is denoted as an analytical approach for dealing with

optimization problems based on population met. ACO produces good solutions to the

optimization problems by redistributing work among the nodes by means of ants. The ants

traverse the grid network and leave the pheromones on the path. As soon as they reach the

destination, the ants update the pheromones tables. The pheromone trail laying and following

behavior of real ants represent the main source of ACO. The ants move from node to node, and

consequently explore the information presented by the pheromones values and thus increasingly

build the resultant solution. Algorithm 4 shows Ant Colony Algorithm procedure used for select

optimum parameter ε.

Algorithm 4
1: Input: Parameters for the ACO.

2: Output: Optimal solution to the problem.

3: Begin

4: Initialize the pheromone

5: While stopping criterion not satisfied do

6: Position each ant in a starting node

7: Repeat

8: For each ant do

9: Chose next node

10: by applying the state transition rate

11: End For

12: Until every ant has built a solution

13: Update the pheromone

14: End While

15: End

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 6, December 2015

26

3.3.3. Particle Swarm Optimization (PSO) algorithm

 As Particle Swarm Optimization technique is simple and able to successfully tackle these

problems, it is also applied in many optimization and search problems. PSO optimizes an

objective function by repeatedly amending a swarm of solution vectors, known as particles,

depending on special memory management technique. Each particle is altered by attributing the

memory of individual swarm’s best information. The swarm can regularly amend its best

observed solution and converges to an optimum by virtue of the collective intelligence of these

particles. Every element ranges from 0 to 1 and vice versa. Additionally, each particle processes a

D-dimensional velocity vector whose elements' range is [-Vmax,Vmax]. Velocities are

interpreted according to probabilities that a bit will be in one state or the other. When the

algorithm starts, a collection of particles with their velocity vectors are developed randomly. Then

in some phase the algorithm's aim is to obtain the optimal or near optimal solutions referring to its

predefined fitness function. The velocity vector is amended in each time step using two best

positions, pbest and nbest, and then velocity vectors are used to update the position of the

particles. Pbest and nbest are D-dimensional, with the elements composed of 0 and 1 exactly like

particles position and represent the algorithm's memory. The personal best position, pbest, is the

best position the particle has visited, whereas nbest is the best position visited by the particle and

its neighbors since the first time step. At the time where all of the population size of the swarm

becomes the neighbor of a particle, nbest is named global best (star neighborhood topology) and

if the smaller neighborhoods are specified for each particle (e.g. ring neighborhood topology),

then nbest can be called local. Algorithm 5 shows Particle Swarm Optimization Algorithm

procedure used for select optimum parameter ε.

Algorithm 5
1: Randomly particle and position will store in a created and initialized m x n matrix.

 Where

 ‘m’ denotes a number of node

 ‘n’ denotes a number of job

2: Calculate the estimated time to complete values of each node using Range Based Matrix.

3: Calculate the Fitness of each Particle and search for the Pbest and Gbest.

4: Xk is estimated and in case its value is greater than the fitness value of pbestk, pbestk is

 replaced with Xk. Where Xk is denotes the updated position of the particle.

5: Replace nbest with pbest because Fitness value of nbest is smaller than pbest.

6: Until to reach the max Velocity.

7: If it is satisfying the maximum velocity.

8: Stop.

9: End.

10: If the maximum velocity is not satisfied.

11: Update the Position Matrix.

12: Update the Velocity Matrix.

13:End.

3.4. Fault Tolerance

In the typical DR-tree performance [13], when a p-node fails, all its sub-trees are replaced in the

non-faulty structure (p-node by p-node) to ensure the DR-tree invariants. The proposed algorithm

guarantees fault-tolerance and also preserves the DR-tree design with its invariants by using the

non leaf v-nodes reproduction. The pattern for v-nodes replication is represented as every p-node

holds a replica of the v-father of its top v-node and on the other hand, the p-root holds no replica.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 6, December 2015

27

3.4.1. Fault Tolerance Estimation

This section investigates the cost of replication as presented in [9]. Then apply it to the proposed

system. Let costs be defined as the cost of updating replicas in a split time. As each v-node has

M−1 replicas and each update costs one message, we have:

 ����� =
 + 2�
− 1� (3)

A p-node associated with the system may change between 0 and $���%
&�' splits, adding its v-

leaf to the v-children of another v-node that is denoted in the sequence the joined v-node. The

latter has: Between m and M v-children; (���%
&� − 1)	v-ancestors; between m−1 and M −1

replicas. We will define hereafter an upper bound on the number of updates as long as each v-

node has M − 1 replicas. A v-node can have m to M v-children and therefore has M − m + 1

possible numbers of v-children. The split will happen only when it has exactly M v-children. The

probability for a v-node to split is p, where:

 � = �
*+%,� (4)

The probability for a p-node to generate k splits is the probability pk that the associated v-node

and its k – 1 first v-ancestor have literally M v-children while its k-th ancestor does not split.

Hence:

 �- = �-
1 − �� (5)

Let costr denote the average cost of replicas updates when a p-node is associated with a DR-tree:

����. = �/
− 1� + ∑
�-$0123
4�'
-�� 5	������ (6)

The first term represents the case where no splits are produced, i.e., M−1 replicas of the joined v-

node are to be updated, while the second corresponds to the other cases. We could have identified

the case where the v-root splits, with different probability as it has M − 1 possible v-children.

However, for m > 2, this probability is smaller than p so in order to simplify the calculation, an

upper bound is assumed.

3.4.2. Migration Controller

Reinsertion policy and replication policy [16] are used to evaluate DR-Tree insertion operations,

which uses internal v-nodes. As soon as the crash of one non leaf p-node was generated for each

DR-tree, the cost of system restoration in terms of number of messages and stabilization time is

calculated based on both the reinsertion and replication policies.

(1) Stabilization time: The reinsertion mechanism is responsible of balancing the system in a

number of cycles proportional to both, the tip of the participation graph and the level of the burst

p-node. As the stabilization time is the time of the longest reinsertion, it is proportional to

logm(N).

(2) The message cost of the restoration phase: denoted by the number of messages required to

balance the system from a non leaf p-node burst. The costs are of different magnitude so with the

reinsertion policy, the number of message distribution is much skewed which results in a high

standard deviation.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 6, December 2015

28

3.5. Load Balance

As explained earlier in [14], every SM collects the information of any PE joining or leaving the

grid system and then transmits it to its parent LGM. This means that a processing element only

needs a communication when joining or leaving its site. The system workload between the

processing elements will be balanced when using the collected information to efficiently utilize

the whole system resources in order to minimize user jobs response time. By applying this policy,

not only the connectivity will be improved but also, the system performance. This is

accomplished by minimizing the communication overhead abstracted from capturing system

information before making a load balancing decision. The following parameters will be defined

for GCS model to formalize the load balancing policy:

1. Job: All jobs in the system will represented by a job Id, job size in bytes, and a number of job

instructions.

2. Processing Element Capacity (PECij): The PEC can be measured assuming an average

number of job instructions using the PEs CPU speed and will be defined as number of jobs per

second that the j
th
 PE at full capacity in the i

th
 site can be processed.

3. Site Processing Capacity (SPCi): Defined as number of jobs that can be processed by the ith

site per second. Hence, the SPCi can be measured by summing all the PECs for all the PEs

managed the i
th
 site.

4. Local Grid Manager Processing Capacity (LPC): The LPC can be measured by summing all

the SPCs for all the sites managed by that LGM and will be defined as number of jobs per second

that LGM can be processed.

3.5.1. Load Balance Estimation

The load balancing policy as presented in [7] is a multi-level one and can be explained at each

level of the grid architecture as follows:

A. Load Balancing At Level 0: Local Grid Manager

As mentioned earlier, the LGM sustains information about all of its responsible SMs in terms of

processing capacity SPCs. LPC can be considered as the total processing capacity of a LGM

obtained from the summation of all the SPCs for the total sites managed by that LGM. Depending

on the total processing capacity of every site SPC, the LGM scheduler will control the workload

balance between sites group members (SMs). Where N defined as the number of jobs arrived at a

LGM in the steady state, the ith site workload (SiWL) is the number of jobs to be allocated to ith

site manager and is calculated as follows:

 6�78 = & × :;<=>;< (7)

B. Load Balancing At Level 1: Site/Cluster Manager

Every SM stores some information about the PECs of all the processing elements in its cluster.

The total site processing capacity SPC of all the processing elements is calculated from the sum

of all the PECs included in that site. With the same policy used by the LGM scheduler to balance

the load, the SM scheduler will be used where M is defined as the number of jobs arrived at a SM

in the steady state. Under the policy of distributing site workload among the group of processing

elements based on their processing capacity, the throughput of every PE will be maximized and

also its resource utilization will be improved. On the other hand, the number of jobs to be

allocated to ith PE is defined as the ith PE workload (PEiWL) which is calculated as follows:

 ?@�78 = # × ;A<=:;< (8)

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 6, December 2015

29

3.5.2. Self-Stabilizing Controller

In order to calculate the mean job response time, we assume one LGM scenario as a simplified

grid model. In this scenario, we will be examining the time elapsed by a job in the processing

elements. Algorithm 6 will execute to calculate the traffic intensity ρij and hence, the expected

mean job response time:

Algorithm 6
1: Obtain λ,µ where, λ: is the external job arrival rate from grid clients to the LGM, µ: is the LGM

processing capacity.

2: Calculate ρ=λ/µ is the system traffic intensity. For the system to be stable ρ must be less than 1.

2: For i= 1 to m

3: Calculate λi,µi where, λi is the job arrival rate from the LGM to the i
th

 SM which is controlled by that

LGM, µi: is the i
th

 SM processing capacity.

4: Calculate the traffic intensity of the ith SM, ρi=λi/µi .

5: For j= 1 to n

6: Calculate λij,µij where, λij: is the job arrival rate from the i
th

 SM to the j
th

 PE controlled by that SM, µij:

is the j
th

 PE processing capacity which is controlled by the i
th

 SM.

7: Calculate the traffic intensity of the j
th

 PE which is controlled by i
th

 SM, ρij=λij/µij.

8: Calculate the expected mean job response time, @BCDE.
9: End.

10: End.

The jobs arrive consecutively from clients to the LGM with a time-invariant Poisson process

assumption. The inter-arrival times are not only independent, but also identically and

exponentially allocated with the arrival rate λ jobs/second. Simultaneous arrivals are excluded.

Each of PE in the non-static site pool will be represented by an M/M/1 queue. Jobs arriving to the

LGM will be naturally distributed on the sites regulated by that LGM with a routing probability,

?F6� = :;<=
>;< .

Complying with the load balancing policy (LBP), if i is the site number	G� = G × ?F6� = G ×
:;<=
>;< . In a similar situation, the site i arrivals will be also naturally distributed on the PEs managed

by that site with a routing probability ?F@�H =
;A<=I
:;<=

 according to the LBP, where j is the PE

number and i is the site number	G�H = G� × ?F@�H = G� ×
;A<=I
:;<=

. As the arrivals to LGM are

simulated to follow a Poisson process, the arrivals to the PEs will also follow a Poisson process.

Let us consider that the service times at the j
th
 PE in the i

th
 SM are exponentially shared with fixed

service rate µij jobs/second. They will represent the PE's processing capacity (PEC) in our load

balancing policy. The service control is First Come First Serviced. To calculate the expected

mean job response time, we assume that E [Tg] denotes the mean time spent by a job at the grid to

the arrival rate λ and E [Ng] denotes the total number of jobs in the system. Thus, the mean

elapsed time by a job at the grid is given by equation 9 as follows:

 E	[Ng]	=	λ	×	E	[Tg] (9)

E [Ng] can be measured by adding the mean number of jobs in every PE at all grid sites. So,

@B&DE = ∑ ∑ @[&;A�H]�
H��

%
��� where i=1,2,…,m is the number of site managers handled by a LGM,

j=1,2,…,n is the number of processing elements handled by a SM and @[&;A�H] is the mean

number of jobs in a processing element number j at site number i. Because every PE is

represented as an M/M/1 queue, @B&;A�H E =
P=I
�+P=I

 where ρij=λij/µij, µij = PECij for PE number j at

site number i. Referring to equation 9, the expected mean job response time is given by:

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 6, December 2015

30

@BCDE = �
Q × @B&DE =

�
Q × ∑ ∑ @[&;A�H]�

H��
%
��� (10)

Note that the stability condition for PEij is ρ<1.

3.6. Threshold Device

A novel 2-D Figure of Merit is used to test the network performance. An example of the 2-D

figure of merit is shown in Figure 3. It divides the fault tolerance (FT) error – load balance (LB)

error space into different performance conditions as follows: The FT estimation varies between

three threshold intervals (FT error units are in numbers depending on the grid size) as follows: (1)

From [0 … 30] which indicates a Good system. (2) From [30 … 60] which indicates a Medium

system. (3) Above 60 which indicates a Bad system. The LB estimation varies between three

threshold intervals (LB error units are in second depending on the mean job response time) as

follows: (1) From [0 … 0.1] which indicates a Good system. (2) From [0.1 … 0.3] which

indicates a Medium system. (3) Above 0.3 which indicates a Bad system. We can observe that

Figure 3 is divided into 9 different areas as follows: (1) GG: this interval is good for both FT and

LB estimation. (2) GM: this interval is good for FT estimation and medium for LB estimation. (3)

GB: this interval is good for FT estimation and bad for LB estimation. (4) MG: this interval is

medium for FT estimation and good for LB estimation. (5) MM: this interval is medium for both

FT and LB estimation. (6) MB: this interval is medium for FT estimation and bad for LB

estimation. (7) BG: this interval is bad for FT estimation and good for LB estimation. (8) BM:

this interval is bad for FT estimation and medium for LB estimation. (9) BB: this interval is bad

for both FT and LB estimation.

Figure 3. The proposed 2-D Figure of Merit.

Finally, to enhance fault tolerance estimation we decrease replication time and message cost and

this will cause increase in probability of job completed. On the other hand, to enhance load

balance estimation we decrease mean job response time and this will cause increase in number of

jobs/second.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 6, December 2015

31

4. RESULTS AND DISCUSSION

A simulation model is built using MATLAB simulator to evaluate the performance of grid

computing system based on the proposed algorithm. This simulation model consists of one local

grid manager which manages a number of site managers which in turn manages a number of

processing elements (Workstations or Processors). All simulations are performed on a PC (Dual

Core Processor, 2.3 GHz, 2 GB RAM) using Windows 7 Professional OS. Figure 4 show the

comparison between the load balance of the proposed method and the old algorithm mentioned

before in [4] at different arrival rates. The mean job response time for different random

distributions such as Exponential, Uniform, Normal and Poisson are calculated and after many

trials it can be shown that the same results obtained for all distributions. The improvement ratio

(gain) can be calculated and shown in Figure 5 and from this figure we can see that maximum

improvement ratio is 98%.

Figure 4. Load Balance Estimation Compared With The Old Algorithm.

400 600 800 1000 1200 1400 1600 1800
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Arrival Rate jobs/second

M
e

a
n

 J
o

b
 R

e
s

p
o

n
s

 T
im

e
 in

 s
e

c
o

n
d

s

Proposed-Alg

Old-Alg

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 6, December 2015

32

Figure 5. Load Balance Improvement Ratio.

The second experimental results is shown in Figure 6, here fault tolerance estimation is

proportional to grid size and it can be shown that grid size for the proposed method is better than

the old algorithm mentioned in [7] and the calculated values experimented at different levels of

entropy values. The threshold device selects the best route path for the processing element from

the all members of the grid then deciding the best system to be stable with respect to load balance

and fault tolerance policies. When applying this best selected route path and feed back again to

select the best value for the entropy threshold to improve both load balance and fault tolerance we

found that the load balance still the same and this confirm the stability condition of DR-tree for

the system. But the experimental results show that fault tolerance enhanced with different entropy

threshold values and the improvement ratio for fault tolerance is 33%. The last experiment show

that when decrease the entropy threshold under 80% of its values the stability of the system

affected and the output result not accurate this could be shown in Figure 7 as the total final

improvement ratios are 98% for load balance and 33% for fault tolerance which are very good

enhancement ratios.

400 600 800 1000 1200 1400 1600 1800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Arrival Rate jobs/second

Im
p

ro
v

e
m

e
n

t
R

a
ti

o
 o

f
M

e
a

n
 J

o
b

 R
e

s
p

o
n

s
 T

im
e

 i
n

 s
e

c
o

n
d

s

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 6, December 2015

33

Figure 6. Fault Tolerance Estimation with different Entropy Levels Compared With The Old Algorithm.

Figure 7. Path Selector with 2-D Figure of Merit with different Entropy Levels Compared With The Old

Algorithm.

Finally, Applying optimization Algorithms to improve the performance of system utilization by

using parameters as follows: No. of dimensions = 20, No of particles = 64, No. of iterations =

1000. Figure 8, 9, 10 show Fitness functions for GA, ACO and PSO respectively. When

comparing the three different optimization algorithms with respect to system utilization the

experimental study show that they almost the same but PSO algorithm give the best performance

and the system utilization decrease about 75% as shown in Figure 11.

400 600 800 1000 1200 1400 1600 1800
40

45

50

55

60

65

Arrival Rate jobs/second

G
ri

d
 s

iz
e

No-Entropy

Entropy-100%

Entropy-90%

Entropy-80%

Entropy-70%

Old-Alg

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Mean Fault Tolerance Estimation Error

M
e

a
n

 L
o

a
d

 B
a

la
n

c
e

 E
s

tim
a

ti
o

n
 E

rr
o

r
in

 s
e

c
o

n
d

s

No-Entropy

Entropy-100%

Entropy-90%

Entropy-80%

Entropy-70%

Old-Alg

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 6, December 2015

34

Figure 8. Fitness function of GA.

Figure 9. Fitness function of ACO.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 6, December 2015

35

Figure 10. Fitness function of PSO.

Figure 11. System utilization

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 6, December 2015

36

5. CONCLUSION

This paper proposes a new adaptive procedure based on advanced fractal transform that enhances

the tree model structure of grid computing environment to improve the network performance

parameters affected by both fault tolerance and load balance. First, the network parameters fault

tolerance and load balance estimation have been calculated based on fractal transform. In our

work, simulator of fault tolerant approach for load balancing in grid environment is build. In this

one local grid manager with 9 sites and each site have 1 to 3 processing elements and queue

length of each computing element is from 1 to 50 and this was illustrated in a 2-D Figure of

Merit. The grid computing routing protocol is enhanced by improving both fault tolerance and

load balance estimation in a novel 2-D figure of merit. The improvement of the fault tolerance

estimation is achieved by decrease replication time and message cost and this will cause increase

in probability of job completed. On the other hand, the load balance estimation is enhanced by

decrease mean job response time and this will cause increase in number of jobs/second. Finally,

the improvement ratios are 98% for load balance and 33% for fault tolerance which are very good

enhancement ratios. Also when comparing the system utilization by three different optimization

algorithms GA, ACO and PSO they give almost the same results but PSO produce the best

performance and decrease the system utilization to 75% which is high performance parameters.

Further experimentation can be done by implementing our system on a real grid computing

network and study its performance.

REFERENCES

[1] S. Sharma, U. S. Tim, J. Wong, S. Gadia & S. Sharma, (2014) "A Brief Review on Leading Big Data

Models", Data Science Journal, Vol. 13, No. 0, pp. 138-157.

[2] S. Sharma, R. Shandilya, S. Patnaik & A. Mahapatra (2015a). Leading NoSQL models for handling

Big Data: a brief review, International Journal of Business Information Systems, Inderscience, Vol.

18, No. 4.

[3] S. Sharma, U. S. Tim, J. Wong, S. Gadia, R. Shandily & S. Peddoju (2015b). Classification and

Comparison of NoSQL Big Data Models, International Journal of Big Data Intelligence, Inderscience,

Vol. 2, No. 2.

[4] F. Berman, G. Fox & A. Hey, (2003) Grid Computing: Making the Global Infrastructure a Reality,

Wiley Series in Communications Networking & Distributed Systems, pp. 809-824.

[5] S. Elavarasi, J. Akilandeswari & B. Sathiyabhama, (2011) “A Survey on Partition Clustering

Algorithms”, International Journal of Enterprise Computing and Business Systems (Online)

(IJECBS), Vol. 1, Issue 1, pp. 1-14.

[6] R. Sharma, V. Soni, M. Mishra & P. Bhuyan, (2010) “A Survey of Job Scheduling and Resource

Management in Grid Computing”, World Academy of Science Engineering and Technology, Vol. 64,

pp. 461-466.

[7] S. El-Zoghdy, (2011) “A Load Balancing Policy for Heterogeneous Computational Grids”,

International Journal of Advanced Computer Science and Applications (IJACSA), Vol. 2, No. 5, pp.

93-100.

[8] A. Kumar, R. Yadav, Ranvijay & A. Jain, (2011) “Fault Tolerance in Real Time Distributed System”,

International Journal on Computer Science and Engineering (IJCSE), Vol. 3, No. 2, pp. 933-939.

[9] M. Valero, L. Arantes, M. Potop-Butucaru & P. Sens, (2011) “Enhancing Fault Tolerance of

Distributed R-Tree”, 5th Latin-American Symposium on Dependable Computing (LADC 2011), pp.

25-34.

[10] Y. Zhao & C. Li, (2008) “Research on the Distributed Parallel Spatial Indexing Schema Based on R-

Tree”, International Archives of the Photogrammetric, Remote Sensing and Spatial Information

Sciences. Vol. XXXVII, Part B2, pp. 1113-1118.

[11] M. Hassaballah, M. Makky & Y. Mahdy, (2005) “A Fast Fractal Image Compression Method Based

Entropy”, Electronic Letters on Computer Vision and Image Analysis, Vol. 5, No. 1, pp. 30-40.

International Journal of Computer Science & Information Technology (IJCSIT) Vol 7, No 6, December 2015

37

[12] V. Vaddella & R. Inampudi, (2010) “Fast Fractal Compression of Satellite and Medical Images Based

on Domain-Range Entropy”, Journal of Applied Computer Science & Mathematics, Vol. 4, No. 9, pp.

21-26.

[13] L. Balasubramanian & M. Sugumaran, (2012) "A State-of-Art in R-Tree Variants for Spatial

Indexing", International Journal of Computer Applications, Vol. 42, No. 20, pp. 35-41.

[14] B. Yagoubi & Y. Slimani, (2006) "Dynamic Load Balancing Strategy for Grid Computing", World

Academy of Science Engineering and Technology, Vol. 19, pp. 90-95.

[15] J. Balasangameshwara & N. Raju, (2012) "A Hybrid Policy for Fault Tolerant Load Balancing in Grid

Computing Environments", Journal of Network and Computer Applications (JNCA 2012), Vol. 35,

Issue 1, pp. 412-422.

[16] S. Bianchi, A. Datta, P. Felber, & M. Gradinariu, (2007) "Stabilizing Peer-to-Peer Spatial Filters",

27th International Conference on Distributed Computing Systems (ICDCS'07), pp. 27-36.

[17] R. Mukhopadhyay, D. Ghosh, & N. Mukherjee, (2010) "A Study on the Application of Existing Load

Balancing Algorithms for Large, Dynamic, Heterogeneous Distributed Systems", Recent Advances in

Software Engineering, Parallel and Distributed Systems ACM 2010, pp. 238-243.

[18] J. Cao, (2004) "Self-organizing Agents for Grid Load Balancing", Proceedings of the 5th IEEE/ACM

International Workshop on Grid Computing (GRID '04), pp. 388-395.

[19] J. Cao, D. Spooner, S. Jarvis, & G. Nudd, (2005) "Grid Load Balancing Using Intelligent Agents",

Future Generation Computer Systems, Vol. 21, Issue 1, pp. 135-149.

[20] Saad M. Darwish, Adel A. El-zoghabi, & Moustafa F. Ashry, (2015) "Improving Fault Tolerance and

Load Balancing in Heterogeneous Grid Computing Using Fractal Transform", World Academy of

Science, Engineering and Technology, International Journal of Computer and Information

Engineering Volume 2, Number 5, 2015, International Science Index Volume 2, Number 5, 2015

waset.org/abstracts/18473, International Conference on Distributed Computing and Networking

(ICDCN 2015), Tokyo, Japan, May 2015, pp. 820-840.

[21] R. Rajeswari & Dr. N.Kasthuri, (2013) "Comparative survey on load balancing techniques in

computational grids", International Journal of Scientific & Engineering Research (IJSER), Vol. 4,

Issue 9, pp. 79-92.

AUTHORS

Saad M.Darwish received his Ph.D. degree from the Alexandria University, Egypt. His

research and professional interests include image processing, optimization techniques,

security technologies, and machine learning. He has published in journals and conferences

and severed as TPC of many international conferences. Since Feb. 2012, he has been an

associate professor in the Department of Information Technology, Institute of Graduate

Studies and Research, Egypt.

Adel A.El-Zoghabi received his Ph.D. degree from the Alexandria University, Egypt. His

research and professional interests include image processing, optimization techniques,

security technologies, and machine learning. He has published in journals and conferences

and severed as TPC of many international conferences. Since April. 2013, he has been a

head of the IT Department of Information Technology, Institute of Graduate Studies and

Research, Egypt.

Moustafa F.Ashry received his M.Sc. degree in communication engineering from the Arab

Academy for Science And Technology (AASTMT), Egypt. His research, published and

professional interests include communication networks, Ad-Hoc networks, routing

protocols, optimization techniques, and security technologies. Since Feb. 2012, he has been

a Ph.D. student in the Department of Information Technology, Institute of Graduate Studies

and Research, Egypt.

