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ABSTRACT 
 
The advancement of digital twin (DT) systems had revolutionized various industrial and safety applications, 

offering virtual replicas of physical processes for improved monitoring and training. Fire scenarios are 

highly dynamic, with conditions changing rapidly due to factors like wind direction, material flammability, 
and structural integrity. This study explored the application of a smart fire scene DT system (SFSDTS) for 

firefighting training and safety management. The novelty and contributions of this study was the proposed 

SFSDTS integrated machine learning models to predict fire spreading paths and estimate escape routes in 

real-time, providing an immersive and interactive training environment for firefighters. Various ML 

models, including random forest (RF), XGBoost, decision tree (DR), logistic regression (LR), and K-

nearest neighbors (KNN), were utilized for predicting fire spreading. The performance of these models was 

evaluated using metrics such as accuracy, precision, recall, and F1 score, with XGBoost and RF models 

demonstrating superior performance. The proposed SFSDTS also employed the A* algorithm for optimized 

escape route estimation based on dynamic fire conditions. User experience was assessed through a 

standardized questionnaire, user experience questionnaire (UEQ), revealing positive ratings for the 

proposed SFSDTS’s efficiency, stimulation, and perspicuity. Compared to commercial products, the 

proposed SFSDTS offered improved accessibility and real-time simulation functionalities. The study 
highlighted the potential of proposed SFSDTS in transforming firefighting training and safety management. 
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1. INTRODUCTION 
 
With the advancement of computational simulations integrated with real-world scenarios, the 

concept of digital twin (DT) systems became a significant research topic, providing virtual 

replicas for physical processes. A DT served as a virtual duplicate of a physical object, 

continually simulating real-world conditions. It was frequently employed for monitoring, design, 
optimization, maintenance, and remote access in industrial production [1]. While initial research 

on the integration of Industry 4.0 and DT technologies concentrated on the connection of 

manufacturing machines and systems [2], DTs were also applied to enhance the safety 
management of workers in various fields [3]. This was particularly crucial in hazardous 

environments such as chemical plants, manufacturing industries, and fire scenes. In firefighting, 

which involved different environmental factors and harsh conditions, the DT concept was further 
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expanded, which included interconnected networks of complex environmental situations and 
human conditions [5]. 

 
The application of DT technology held significance in the digital transformation of firefighting. 
DT technology provided firefighters with an immersive and interactive training environment, 

eliminating the risks associated with traditional real fire training exercises [5]. By simulating 

realistic building and fire scenarios, DTs were used to train firefighters, helping them familiarize 
themselves with various fire scenarios and learn optimal response strategies and operational 

techniques [6]. Diverse fire scenarios could be simulated, and conditions of the fire scenes could 

be remodeled in different ways to challenge trainees and enhance their problem-solving skills. 

The advantages of DTs in fire training included three key aspects [7]. Firstly, they provided a 
safe platform for trainees to experience and respond to high-risk scenarios without the dangers of 

burns, smoke inhalation, and structural collapse. Additionally, the training could be personalized, 

allowing instructors to tailor scenarios to address specific learning objectives and trainees’ 
weaknesses. Furthermore, the integration of real-time scene data and analytics allowed for 

immediate feedback, enabling trainees to review their actions and learn the best strategies to 

respond to similar situations in actual fire scenarios. 
 

In terms of building safety and security, DTs played a crucial role in advanced obstacles 

detection, precise localization, fire condition analysis, and real-time fire spreading modeling [8]. 

Additionally, DT facilitated safety management through building information modeling and 
machine learning algorithms. These technologies enabled real-time data collection and analysis 

of dynamic safety information and building data, thereby enhancing firefighter safety during 

emergencies [9]. Historical fire scene data could also be integrated into the DT, allowing it to 
utilize artificial intelligence (AI) models to analyze this data in real-time which enabled instant 

predictions and improved firefighter training [10]. 

 

The existing fire scenario simulation and prediction models required significant computational 
time, ranging from days to weeks, to simulate fire scenarios [11]. Various methods had been 

proposed by existing studies to overcome this limitation through the use of AI models [12]. For 

instance, Verlekar et al. [13] utilized a Convolutional Long Short-Term Memory neural network 
(Conv-LSTM) to link spatio-temporal temperature distributions with the number, size, and 

location of fire sources. Similarly, Wang et al. [14] demonstrated the effectiveness of using 

Conv-LSTM in a DT during a full-scale fire test chamber experiment. Additionally, Lei et al. [15] 
improved the fire prediction effectiveness at the China Palace Museum by utilizing the XGBoost 

model to categorize buildings into different risk levels based on the information of building 

materials and environmental factors (temperature, humidity, etc.). Zhang et al. [17] proposed a 

Transformer network to predict fires in tunnels, which also provided a 3D visual representation of 
the fire scene, aiding in firefighting operations, evacuation, and training exercises. 

 

On the other hand, numerical fire modeling was implemented through a computational fluid 
dynamics approach [11]. Crucial steps included mesh generation, capturing combustion physics, 

turbulence modeling, and heat transmission between solid obstacles. The model addressed 

ignition, fuel combustion, and conservation of mass, focusing on accurate fire dynamics 
simulation. To ensure accuracy, the model was validated against experimental data and 

continuously modified to improve predictive capability. However, numerical modeling required a 

long duration to simulate sample scenes and lacked real-time fire predictions in firefighting 

practice. SmokeView [17] served as the visualization companion for the fire dynamics simulator 
(FDS), displaying simulation results where the virtual smoke, fire, and heat spread were 

presented in a 3D visual representation, enabling researchers and firefighters to visually analyze 

and interpret the data generated by FDS. 
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Meanwhile, fire prediction models utilizing datasets from sensors have gained increasing 

significance since the 2010s. For instance, Han et al. [18] proposed the FireGrid system, which 

quickly and accurately forecasted fire spread using real-time sensor data. Optimization methods 

were employed to enhance FireGrid’s computational efficiency, enabling better adaptation to 
changing fire scenarios. Additionally, various optimization strategies, such as inverse 

computational fluid dynamics predictions and regional modeling approaches, were utilized to 

decrease the computational response time to sudden changes in fire scenes and simplify fire 
models [19]. 

 

One of the research gaps in the field of firefighting DT technology was the lack of creation of 
interior layout information [20]. This project aimed to design a customizable scenario that 

considered various building layouts, fire intensity, obstacles in different locations, and different 

building floors. Designing and implementing such scenario allowed firefighters to gain training 

and experience in different fire scenarios. The contributions of this study included designing and 
implementing a machine learning (ML)-based fire and smoke prediction model that were 

customizable in real-time to simulate dynamic fire changes in a DT model. Additionally, the 

study proposed an AI-based fire escape route recommended model, predicting escape routes 
based on current fire and smoke conditions. 

 

2. METHODS 
 

2.1. System Overview 
 

 
 

Figure 1.  Overview design of the proposed SFSDTS 

 
Figure 1 depicted the overview design of the proposed a smart fire scene DT system (SFSDTS) 

which consisted of several elements. For demonstration purpose, the SFSDTS started in a 

building without fire. The fire was started after 5 minutes. Then, the spreading of fire was 

initially simulated through a machine learning (ML) model, analyzed based on the environmental 
condition. Then, the evacuation guidance module is triggered, utilizing different AI model to 

provide an estimated escape route. The estimated escape route was constantly updated, depending 

on the fire spreading condition. Here, three data values, including temperate, wind level, and fire 
spread index (see Figure 2), can be adjusted manually in real-time by the users to simulate 

unexpected events, e.g., rising of temperature in short period due to explosion. Lastly, the 

realistic 3D fire scene was visualized with the predicted escape route, along with virtual flames 
and smokes. Similarly, the scene was updated dynamically. 
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The fire scene had been modeled on a three-floor building in an urban area, as illustrated in 

Figure 3a. The interior layouts of each floor were depicted in Figures 3b and 3c. Note that the 

modeled building had no elevators, but with staircases connected each floor, situated on both the 
left and right sides, as shown in Figure 3d. To simulate realistic fire scenes, fire and smoke 

particle effects were employed. Three distinct fire effects, representing large, medium, and small 

fire intensities, were designed, as depicted in Figure 4. These variations in fire effects enabled 
users to identify and assess the current risks associated with the fire situations. 

 

 
 

Figure 2.  Illustration of a user interface that allows users to manually adjust the data for stimulating 

changes in environment, including temperature, wind level and fire spread index 

 

  
 

(a)                                         (b) 

 

  
 

(c)                                          (d) 
 

Figure 3.  Views of the modeled building from the (a) outside, (b) first floor, (c) second floor, and (d) 

staircase 
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Figure 4.  Three different types of fire effects, ranging from large to small fire intensities 

 

2.2. Fire Spreading Prediction And Escape Route Estimation Models 
 

This study adopted ML models to predict fire spreading paths and estimate escape routes. 

Initially, the paths were modeled in grid-based regions, represented as rectangles, as illustrated in 

Figure 5a. Each region displayed three different fire risk levels: yellow for low or no risk, orange 
for medium risk, and red for high risk. These risks were simulated using the associated fire effect 

types and smoke particles (see Figure 4). Various ML models, including random forest (RF), 

XGBoost, decision tree (DR), logistic regression (LR), and K-nearest neighbors (KNN), 
predicted the occurrence of fire in a specific region, r(x, y). This prediction was based on data 

from neighboring regions, if present, such as top-left (r(x-1, y-1)), top-middle (r(x, y-1)), top-right 

(r(x+1, y-1)), center-left (r(x-1, y)), center-right (r(x+1, y)), bottom-left (r(x-1, y+1)), bottom-
middle (r(x, y+1)) and bottom-right (r(x+1, y+1)) regions. 

 
This study utilized the Algerian forest fires dataset [21] to train the ML models for fire spreading 
prediction. This dataset contained 11 attributes and 244 instances, with 138 instances labeled as 

fire and 106 as non-fire. Key attributes used for model training included temperature (°C), 

relative humidity (%), wind speed (km/h), rain (mm), Fine Fuel Moisture Code (FFMC), and 
Duff Moisture Code (DMC). 

 
For escape route estimation, the study employed the A* algorithm [22] to compute optimized 
escape routes (pathfinding) based on the predicted fire spreading index. The escape routes were 

modeled as continuous green 3D circles, as shown in Figure 5b. Referring to Figure 5b, it is 

important to note that the user was in a room with only one exit route (upper left), which the 

green circles were displayed despite two regions along the route having high fire risk levels. 

 
To assess the feasibility and usability of the proposed SFSDTS, participants were recruited to 
interact with the system. Prior to the experiment, participants were introduced to the SFSDTS and 

briefed on their role and the study's purpose. Consent forms were signed by those who agreed to 

participate. After the experiment, participants completed a questionnaire to evaluate their 

experiences with the SFSDTS. The study received approval from the university's research ethics 
committee, following the ethical review process outlined in the university's code of research 

conduct and ethics. 
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(a)                                             (b) 

 

Figure 5.  Illustration of the modeling for fire spreading, including the (a) paths divided into 

grid-based regions and (b) color indicators showing different risk levels for each region 
 

The SFSDTS’s fire scene 3D modeling was implemented using the Unity3D tool (version 

2021.2.7f1). Flask (version 2.0.1) was utilized as the server to connect the front-end (viewer) and 
back-end (fire spreading prediction and escape route estimation models), implemented in Python 

(version 3.8) programming language.  

 

2.3. Questionnaire 
 
A user experience questionnaire (UEQ) [23] was utilized as a standardized framework to assess 

the UX of participants interacting with the proposed SFSDTS. The UEQ comprised three main 

aspects: valence (VL), pragmatic quality (PQ), and hedonic quality (HQ) [24]. Specifically, VL 

included attractiveness (AT); PQ included efficiency (EF), perspicuity (PP), and dependability 
(DP); while HQ included stimulation (ST) and novelty (NV). Thus, the UEQ evaluated a total of 

six scales. These scales measured overall impressions, ease of use, efficiency of the models, 

control over interaction, innovation and creativity. Table 1 provided descriptions of each scale 
associated with the respective aspect. 

 

Table 1.  Descriptions of each scale associated with the respective aspect in the UEQ. 

 

Aspect Scale Description 
Total 

Items 

VT AT 
Overall impression of the game. Do participant like or dislike 

the proposed SFSDTS? 
6 

PQ 

PP 
Is it easy to get familiar with the game? Is it easy to learn how 

to use the proposed SFSDTS? 
4 

EF 
Can participants understand the shown escape route without 

unnecessary effort? 
4 

DP Does the participant feel in control of the interaction? 4 

HQ 

ST Is it exciting and motivating to use the proposed SFSDTS? 4 

NV 
Is the proposed SFSDTS innovative and creative? Does the 

proposed SFSDTS capture the interest of participants? 
4 

 

3. RESULTS AND DISCUSSION 
 

The performance of the fire spreading prediction models was assessed using five different 

evaluation metrics: accuracy (AC, see Equation (1)), precision (PR, see Equation (2)), recall (RC, 
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see Equation (3)), and F1 score (see Equation (4)). The respective equations for the evaluation 
metrics were as follows: 

 
AC = (TP + TN) / (TP + TN + FP + FN) (1) 
PR = TP / (TP + FP) (2) 
RC = TP / (TP + FN) (3) 
F1 = (2  PR  RC) / (PR + RC) (4) 

 

where TP, TN, FP, FN referred to true positive, true negative, false positive and false negative, 

respectively. 

 
Table 2 summarized the performance of each ML model in predicting fire spreading. The results 

showed that the XGBoost model (µ = 0.972) performed the best across all metrics. The RF model 

(µ = 0.97) demonstrated similar performance to XGBoost. In contrast, the LR model (µ = 0.92) 
had the lowest performance, likely due to its limited capability in predicting fire spreading 

involving both discrete and continuous data types. The KNN model (µ = 0.93) indicated that 

unsupervised learning was less effective in distinguishing between fire and non-fire classes based 
on both data types. 

 
Table 2.  Performances metrics of ML models for fire spreading prediction. 

 
Model AC PR RC F1 Mean,  

LR 0.92 0.91 0.93 0.92 0.920 

DR 0.95 0.95 0.95 0.95 0.950 

RF 0.97 0.97 0.98 0.96 0.970 

KNN 0.93 0.93 0.93 0.93 0.930 

XGBoost 0.97 0.97 0.98 0.97 0.972 

 

Figure 6 displayed the UEQ results with mean scores for six scales. The rating scale ranged from 
-3 to +3 and was normalized to a range from 0 to 6. A mean value below 3 indicated a negative 

attitude, above 3 indicated a positive attitude, and 3 indicated neutrality. Overall, the mean values 

for all scales were above 3, suggesting that the proposed SFSDTS received positive ratings from 

participants. The top three scales, with the highest mean values, were perspicuity, stimulation, 
and efficiency, all rated above 5.3. Attractiveness and dependability also performed well, with 

mean ratings above 5. Novelty received the lowest rating, below 5 but still above 3. Some 

participants noted that the virtual scenes were less enjoyable, less realistic, and had a lower level 
of immersion, but generally were satisfied with the SFSDTS. 

 
The proposed SFSDTS differed from commercial products in several aspects. For example, the 
FDS [25] was a computational fluid dynamics model of fire-driven fluid flow used to address fire 

protection engineering problems and study fundamental fire dynamics and combustion. However, 

the FDS was complex and required a significant amount of time to simulate a scenario due to 
numerous parameters, limiting its effectiveness in real-time fire rescue missions. Similarly, 

Autodesk Revit [26] developed a design analysis tool for fire and smoke simulation in buildings, 

requiring users to specify building construction materials and initial fire types for accurate 
predictions. These building information modeling (BIM) software required substantial user 

training, and their complexity restricted their use to experts, making them less suitable for 

ordinary users. In contrast, the proposed SFSDTS offered advantages in accessibility and real-

time simulation functionalities. 
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Figure 6.  UEQ results displaying the mean scores for six scales, normalized on a 0 to 6 range. The x-axis 

represents the six GEQ scales, while the y-axis indicates the mean scores derived from participants’ GEQ 
ratings 

 

4. LIMITATION AND FUTURE WORK 
 

The current study concentrated on developing a SFSDTS designed for a single building, along 
with an initial examination of indoor weather conditions. Future efforts will focus on expanding 

the system to simulate more complex fire scenarios, including the consideration of escape routes 

for multiple individuals. This will involve integrating computer vision-based human detection 
within indoor environments to track individuals and estimate escape routes for those still inside 

the building. 

 

5. CONCLUSIONS 
 
This study had proposed the design and implementation of SFSDTS which had demonstrated 

substantial benefits in the field of firefighting training and safety management. By utilizing 

different ML models, the SFSDTS effectively predicted fire spreading paths and estimated escape 
routes in real-time. The significant performance of the models highlighted the SFSDTS 

robustness in handling dynamic fire scenarios. Additionally, the use of the model for escape route 

optimization further improved the SFSDTS practicality and effectiveness. Compared to existing 

fire simulation tools, the SFSDTS offers improved accessibility and real-time functionalities, 
making it an important asset for firefighter training and emergency response planning. Future 

work could explore further integration of advanced AI techniques and expanded real-world 

applications to continue improving the proposed SFSDTS capabilities. 
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