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ABSTRACT 
 
The degree of roughness characterizes the uncertainty contained in a rough set. The rough entropy was 

defined to measure the roughness of a rough set. Though, it was effective and useful, but not accurate 

enough. Some authors  use information measure in place of entropy for better understanding which 

measures the amount of  uncertainty contained in fuzzy rough set .In this paper three new fuzzy rough 

information measures are proposed and their validity is verified. The application of these proposed 

information measures in decision making problems is studied and also compared with other existing 

information measures.  
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1. INTRODUCTION  
 

The extension of crisp set theory to fuzzy set and rough set theories was developed by Zadeh [26] 

and Pawlak [16] respectively. People use to compare rough set with that of fuzzy set, but both the 

notions in aims and objectives are different. However, there is no sense to compare which one is 

better or more useful than other. Rough set theory has its own importance in artificial intelligence 

and in cognitive sciences, particularly in the areas of pattern recognition, machine learning, 

inductive reasoning, knowledge acquisition, etc.  

 

The concept of rough set theory sometimes overlaps with Dempster-Shafer theory [23] of 

evidence. But the main difference between these is that the main tool in Dempster-Shafer theory 

is a belief function, where in rough set theory, lower and upper approximations sets are used. No 

preliminary and additional information is needed in rough set theory like membership grade in 

fuzzy set theory, probability distribution in statistics and basic probability assignment in 

Dempster-Shafer theory.  

 

A rough set deals with incomplete information where a fuzzy set deals with vagueness, so it is 

interesting to know how to handle the real life problems having both incomplete information as 

well as vagueness in data. Thus, to handle such kind of situation Nakamura [13] and Dubois and 

Prade [4] introduced the concept of fuzzy rough set, which was called as a hybrid model of fuzzy 

and rough sets. Thereafter, Nanda and Majumdar [14] widely used this concept in the 

development of their research. Banerjee and Pal [1] studied the roughness of fuzzy set in 1996 

and Verbiest [25] worked on fuzzy rough and evolutionary approaches to instance selection. 

https://airccse.org/journal/ijcsity/Current2021.html
https://doi.org/10.5121/ijcsity.2021.9401


International Journal of Computational Science and Information Technology (IJCSITY) Vol. 9, No. 4, November 2021 

 

2 
 

Jabar and Rashid [9] combined fuzzy rough set with salient features for human resource 

management classification.  

 

Some trigonometric information measures for fuzzy rough set and their applications in medical 

diagnosis were studied by Sharma and Gupta [21]. Similarity and distance information measures 

on fuzzy rough set with their applications were described by Sharma et al. [19]. Recently, a new 

approach to rough set based on remote system was introduced by Sun et al. [24]. Zhan et al. [28] 

also studied covering based multi-granulation (I,T)- fuzzy rough set models and their applications 

in multi-attribute group decision-making problems. 

 

The word “entropy” was first used to measure an amount of uncertainty in probability 

distribution of a random variable in an experiment by Shannon [18]. Later, non-probabilistic 

entropy of a fuzzy set was proposed and described by Zadeh [27]. Fuzziness of a fuzzy set due to 

ambiguity, impreciseness and vagueness can be measured by using fuzzy entropy which was 

defined and characterized by De Luca and Termini [3].  

 

Several other researchers, like Kapur [10], Liu [12], Pal and Pal [15], Kosko [11] and Gupta and 

Sheoran [5] used Shannon’s entropy axioms of characterization to measure uncertainty in fuzzy 

rough set. A similarity information measure between fuzzy rough set and fuzzy rough values was 

defined by Chengyi et al. [2] and that was characterized by Qi & Chengyi [17] in 2008.  

 

Logarithmic entropy for fuzzy rough set and its application in decision making was proposed by 

Sharma [22]. The word entropy is a tedious word usually not understood easily, so fuzzy entropy 

was replaced by fuzzy information measure. Thus, some authors have called fuzzy entropy as 

fuzzy information measure. Hooda and Jain [6] in 2009 introduced three sub additive measures of 

fuzzy information and studied their applications in medical and social sciences. A new 

information measure of a fuzzy set was suggested and characterized by Hooda and Bajaj [7] and 

called it as “useful” fuzzy information measure. Hooda and Raich [8] unified existing work of 

various authors and described various generalizations of fuzzy information measures with their 

applications.  

 

In the present paper, some new logarithmic information measures for fuzzy rough values and 

fuzzy rough set are proposed and their applications are studied. Basic concepts and definitions 

used in the later development of the paper are described in section 2. In section 3, a new 

logarithmic information measure for fuzzy rough values is defined and its validity is proved. 

Another information measure for fuzzy rough set and its application with illustrations are studied 

in section 4. In section 5, a weighted information measure for fuzzy rough set is discussed with 

its application. Comparison of the information measure with other existing information measures 

is studied in section 6. Conclusion is given in section 7 with references at the end of paper.  

 

2. PRELIMINARIES  
 

In this section some basic concepts and definitions used in development of the later part of the 

paper are described and illustrated with examples.  

 

Definition 2.1[ 26 ] 
 

Let X be a non-empty universal set and A is a subset of X, then a function ],1,0[:)( XxA

defines fuzzy set on X and is usually written as 

)}];1,0[)(:)(,{( XxxxxA iiAiAi    

where 𝜇𝐴(𝑥) is called membership function from 𝑋 to [0, 1] with the following properties: 
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𝜇𝐴(𝑥) = {

0,          𝑖𝑓 𝑥 ∉ 𝐴 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜 𝑎𝑚𝑏𝑖𝑔𝑢𝑖𝑡𝑦
1,         𝑖𝑓 𝑥 ∈ 𝐴 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜 𝑎𝑚𝑏𝑖𝑔𝑢𝑖𝑡𝑦 
0.5,      𝑤ℎ𝑒𝑡ℎ𝑒𝑟 𝑥 ∈ 𝐴 𝑜𝑟 𝑥 ∉ 𝐴 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑎𝑏𝑖𝑔𝑢𝑖𝑡𝑦

 

 

Definition 2.2[4] 
 

Let 𝑈 be the universal set and 𝑅 be an equivalent relation on 𝑈 × 𝑈which is also known as 

indistinguishable relation, then 𝑊 = (𝑈, 𝑅) is known as Pawlak approximation space. The set of 

equivalent class generated by 𝑅 on 𝑈i.e.𝑈/𝑅 = {𝑋1, 𝑋2, … , 𝑋𝑚} is called knowledge or 

equivalence class, [𝑥]𝑅is equivalent class of elements 𝑥 and the set of all fuzzy sets on 𝑈 is 

denoted by 𝐹(𝑈). Now suppose ∀𝑋 ⊆ 𝑈, 𝑋 = {𝑥 ∈ 𝑈|[𝑥] ⊆ 𝑋}and 𝑋 = {𝑥 ∈ 𝑈|[𝑥] ∩ 𝑋 ≠

∅, then 𝑋 = (𝑋, 𝑋) is called rough set in 𝑊 and 𝑋 𝑎𝑛𝑑 𝑋 are called lower and upper 

approximation of 𝑋 on W respectively.  

 

Example2.1  

 

Let U={1,2,3,4}be a universal set, B={{1,2},{3,4}} and X= {1,2,3}(X⊂U). Let B(X) be the 

rough set of X, then B(X)={{1,2},{1,2, 3,4}}={{1,2,3},{1,2,4}},where{1,2}is the lower 

approximation of X and{1,2,3,4} is upper approximation of X. {{1,2,3}, {1,2,4}} is family of all 

sets containing {1,2} and {1,2,3,4}astheirlowerandupperapproximations.Thus,({1,2},{1,2,3,4})is 

the rough set of {1,2,3}. 

 

Definition 2.3[4] 

 

Let 𝑈 be universe of discourse, 𝑅be a fuzzy relation on 𝑈 × 𝑈 and (𝑈, 𝑅) is fuzzy approximation 

space. For any set 𝐴 ∈ 𝐹(𝑈),the lower and upper approximations of A namely 𝑅(𝐴) 𝑎𝑛𝑑 𝑅(𝐴) 

with respect to approximation space (𝑈, 𝑅) are called fuzzy sets of 𝑈 whose membership 

functions are defined by  

 

𝑅(𝐴) =∨𝑦∈𝑈 [𝑅(𝑥, 𝑦) ∧ 𝐴(𝑦)], 𝑥 ∈ 𝑈 and 

𝑅(𝐴) =∧𝑦∈𝑈 [(1 − 𝑅(𝑥, 𝑦)) ∨ 𝐴(𝑦)],     𝑥 ∈ 𝑈. 

 

Hence, the pair (𝑅(𝐴), 𝑅(𝐴)) is defined as fuzzy rough set.  

 

Example2.2. 

 

 Suppose 𝑅 = {𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5} be the set of objects and 𝐶 = {𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6} be the 

set of parameters, then fuzzy rough set (R, C) is given below: 
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Table 2.1: Fuzzy Rough Set 

 
         

C 

R 

𝒄𝟏 𝒄𝟐 𝒄𝟑 𝒄𝟒 𝒄𝟓 𝒄𝟔 

𝒓𝟏 (.1, .5) (.2, .6) (.4, .8) (.7, .9) (.6, .8) (.4, .6) 

𝒓𝟐 (.2, .3) (.1, .3) (.4, .9) (.6, .8) (.5, .6) (.8, .8) 

𝒓𝟑 (.1, .5) (.3, .5) (.5, .7) (.3, .8) (.6, .6) (.4, .9) 

𝒓𝟒 (.5, .7) (.1, .5) (.3, .8) (.3, .7) (.1, .3) (.5, .8) 

𝒓𝟓 (.4, .6) (.5, .7) (.3, .5) (.7, .9) (.4, .5) (.5, .6) 

 

Definition 2.4[19] 
 

A real-valued function that enumerates the similarity between two objects is defined as similarity 

information measure. Actually, there is no particular definition of similarity information 

measures, in general these information measures are some implication of inverse of distance 

measures. Scores are given for similar quality, high score for more similar objects and low or 

negative scores for dissimilar quality.  
Let 𝑆 be the similarity measure on 𝐻, then the entropy corresponding to S is as follows: 

 

𝑒(𝐹) = 𝑆(𝐹, 𝐹𝐶), ∀ 𝐹 ∈ 𝐻,    (2.1) 

 

where ‘𝑒’,the entropy on 𝐻 is the entropy generated by similarity information measure 𝑆 and 

denoted by 𝑒(𝐹). 
 

3. INFORMATION MEASURE FOR FUZZY ROUGH VALUES 
 

In this section a new information measure for fuzzy rough values is proposed on t he lines of 

other existing similarity information measures.  

 

Definition 3.1[3] 
 

A real valued function 𝑒: 𝐴 → [0, +∞), is a fuzzy information measure on 𝐴 if 𝑒 satisfies the 

following four axioms ∀ 𝑥 & 𝑦 ∈ 𝐴: 

 

a) 𝑒(𝑥) =  0, 𝑖𝑓 𝑥 =  [0, 0]𝑜𝑟 𝑥 = [1, 1] 𝑖. 𝑒.  𝑥&𝑥 = 0 𝑜𝑟 1. 

b) 𝑒(𝑥) = 𝑒(𝑥𝐶). 
c) Fuzzy Information measure𝑒 assumes a unique value that is 𝑒(𝑥) = 1 for 𝑥 = [0.5, 0.5]. 
d) 𝑒(𝑥) ≥ 𝑒(𝑦), if 𝑦 is crisper than 𝑥, 𝑖. 𝑒. 𝑥 ≥ 𝑦 𝑓𝑜𝑟 𝑥 ≤ 0.5(𝑥 ≤ 0.5) 𝑎𝑛𝑑 𝑦 ≥ 𝑥 𝑓𝑜𝑟 𝑥 ≥

0.5(𝑥 ≥ 0.5).   

 

In 2004 Chengyi et al. [2] defined a similarity information measure between two fuzzy rough 

values which is as follows: 

Let A be a fuzzy rough set and x, y are the fuzzy rough values in 𝐴, then the degree of similarity 

between fuzzy rough values x and y is given by 𝑀𝑍 as 

 

𝑀𝑍(x, y) = 1 −
1

2
(|𝑥 − 𝑦| − |𝑥 − 𝑦|).   (3.1) 

 

A similarity information measure between fuzzy rough sets and its elements was defined by Qi 

and Chengyi [17] in 2008 as given below: 
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Let A be a fuzzy rough and x, y are the fuzzy rough values in 𝐴, then similarity degree between 

elements x and y can be evaluated as 

 

𝑀(𝑥, 𝑦) = 1 −
1

2
(𝜌𝑥𝑦 + 𝜎𝑥𝑦),    (3.2) 

 

where 𝜌𝑥𝑦 = |𝜌𝑥 − 𝜌𝑦|, 𝜎𝑥𝑦 = |𝜎𝑥 − 𝜎𝑦| and 𝜏𝑥 = 𝑥 − 𝑥 is called the degree of indeterminacy of 

element 𝑥 ∈ 𝐴. 𝜌𝑥 = 𝑥 + 𝜏𝑥𝑥 = (1 + 𝜏𝑥)𝑥and 𝜎𝑥 = 1 − 𝑥 + 𝜏𝑥(1 − 𝑥) are called degree of 

favour 𝑥 ∈ 𝐴. 
 

Sharma et al. [20] defined entropy for fuzzy rough values corresponding to similarity information 

measure (3.1) as follows: 

 

𝑒(𝑥) = 1 −
1

2
(|2𝑥 − 1| + |2𝑥 − 1|), ∀𝑥 ∈ 𝐴,  (3.3) 

 

where A is a fuzzy rough set 𝑎𝑛𝑑 𝑥 = (𝑥, 𝑥). 
 

Corresponding to the similarity information measure (3.3), logarithmic information measure for 

fuzzy rough values is proposed as given below: 

 

𝒆𝒍𝒐𝒈(𝒙) = log2(2 −
1

2
(|2𝑥 − 1| + |2𝑥 − 1|)) , ∀𝑥 ∈  𝐴,  

where A is a fuzzy rough set and 𝑥 = (𝑥, 𝑥).     (3.4) 

 

(3.4) is called a similarity fuzzy rough information measure which must satisfy the four axioms 

given in definition (3.1) for its validity. Thus, these are verified by as lemmas 1to 4 and explained 

below:   

 

Lemma1 

 

Let A be a fuzzy rough set then ∀𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑥 = (𝑥, 𝑥), the fuzzy rough information measure 

defined in (3.4) is equal to zero for 𝑥 = [0, 0] 𝑜𝑟 𝑥 = [1,1] 𝑖. 𝑒. 𝑥 = 0 𝑜𝑟 1 𝑎𝑛𝑑 𝑥 = 0 𝑜𝑟 1.  
 

Proof 

 

Putting 𝑥 = [0, 0] 𝑖. 𝑒. 𝑥 = 0 𝑎𝑛𝑑 𝑥 = 0 in (3.4) we get  

𝑒𝑙𝑜𝑔(𝑥) = log2 (2 −
1

2
(|2 × 0 − 1| + |2 × 0 − 1|)) 

⟹ 𝑒𝑙𝑜𝑔(𝑥) = log2 (2 −
1

2
(|0 − 1| + |0 − 1|)) 

⟹ 𝑒𝑙𝑜𝑔(𝑥) = log2 (2 −
1

2
× 2) 

⟹ 𝑒𝑙𝑜𝑔(𝑥) = log2(2 − 1) = 𝑙𝑜𝑔21 = 0. 
 

Again putting𝑥 = [1,1] 𝑖. 𝑒. 𝑥 = 1 𝑎𝑛𝑑 𝑥 = 1 in (3.4) we get  

𝑒𝑙𝑜𝑔(𝑥) = log2 (2 −
1

2
(|2 × 1 − 1| + |2 × 1 − 1|)) 

⟹ 𝑒𝑙𝑜𝑔(𝑥) = log2 (2 −
1

2
(|2 − 1| + |2 − 1|)) 
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⟹ 𝑒𝑙𝑜𝑔(𝑥) = log2 (2 −
1

2
× 2) 

⟹ 𝑒𝑙𝑜𝑔(𝑥) = log2(2 − 1) = 𝑙𝑜𝑔21 = 0. 

Hence, for 𝑥 = [0, 0] 𝑜𝑟 𝑥 = [1,1] the fuzzy rough information measure (3.4) is zero.  

 

Lemma2 

 

Let A be a fuzzy rough set then ∀𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑥 = (𝑥, 𝑥), the fuzzy rough information measure 

defined in (3.4) is equal to its compliment.  

 

Proof 

 

The measured (3.4) is equal to its compliment when𝑒𝑙𝑜𝑔(𝑥𝐶) = 𝑒𝑙𝑜𝑔(𝑥), for this put 𝑥 = 1 −

𝑥  𝑎𝑛𝑑  𝑥 = 1 − 𝑥in equation (3.4), we get  

𝑒𝑙𝑜𝑔(𝑥𝐶) = 𝑙𝑜𝑔2 (2 −
1

2
(|2(1 − 𝑥) − 1| + |2(1 − 𝑥) − 1|)) 

 

⟹ 𝑒𝑙𝑜𝑔(𝑥𝐶) = 𝑙𝑜𝑔2 (2 −
1

2
(|2 − 2𝑥 − 1| + |2 − 2𝑥 − 1|)), 

⟹ 𝑒𝑙𝑜𝑔(𝑥𝐶) = 𝑙𝑜𝑔2 (2 −
1

2
(|1 − 2𝑥| + |1 − 2𝑥|)), 

⟹    𝑒𝑙𝑜𝑔(𝑥𝐶) = 𝑙𝑜𝑔2 (2 −
1

2
(|2𝑥 − 1| + |2𝑥 − 1|)). 

Clearly, 𝑒𝑙𝑜𝑔(𝑥𝐶) = 𝑒𝑙𝑜𝑔(𝑥), hence information measure (3.4) is equal to its compliment. 

Thus, second condition is also satisfied.  

 

Lemma3 

 

Let A be a fuzzy rough set, then ∀𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑥 = (𝑥, 𝑥𝑧𝑧𝑦 ), the fuzzy rough information 

measure defined in (3.4) is equal to one i.e. it assumes a unique maximum value for 𝑥 =
[0.5, 0.5]. 
 

Proof 

 

Let us put 𝑥 = 0.5 𝑎𝑛𝑑  𝑥 = 0.5 in equation (3.4), then  

𝑒𝑙𝑜𝑔(𝑥) = log2 (2 −
1

2
(|2 × 0.5 − 1| + |2 × 0.5 − 1|)) , 

⟹ 𝑒𝑙𝑜𝑔(𝑥) = log2 (2 −
1

2
(|1.0 − 1| + |1.0 − 1|)), 

⟹ 𝑒𝑙𝑜𝑔(𝑥) = log2 (2 −
1

2
(|0| + |0|)) , 

⟹ 𝑒𝑙𝑜𝑔(𝑥) = log2(2 − 0) = 𝑙𝑜𝑔2(2) = 1. 

Thus, for 𝑥 = [0.5, 0.5]fuzzy rough information measure (3.4) assumes a unique maximum 

value 1. Hence third property is satisfied. 
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Lemma 4 

 

Let A be a fuzzy rough set, then ∀𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑥 = (𝑥, 𝑥), we have 𝑒𝑙𝑜𝑔(𝑥) ≥ 𝑒𝑙𝑜𝑔(𝑦) if 𝑦 is 

sharper or crisper than 𝑥 i.e. 𝑦 ≤ 𝑥 𝑓𝑜𝑟 𝑥 ≤ 0.5(𝑥 ≤ 0.5) 𝑎𝑛𝑑 𝑦 ≥ 𝑥 𝑓𝑜𝑟 𝑥 ≥ 0.5(𝑥 ≥ 0.5).  
 

Proof 

 

For the first case let 𝑦 ≤ 𝑥 𝑓𝑜𝑟 𝑥 ≤ 0.5(𝑥 ≤ 0.5), 
⟹ 𝑦 ≤ 𝑦 ≤ 𝑥 ≤ 0.5 &𝑦 ≤ 𝑥 ≤ 𝑥 ≤ 0.5, 

⟹ |2𝑥 − 1| ≤ |2𝑦 − 1| 𝑎𝑛𝑑 |2𝑥 − 1| ≤ |2𝑦 − 1|, 

⟹
1

2
(|2𝑥 − 1| + |2𝑥 − 1|) ≤

1

2
(|2𝑦 − 1| + |2𝑦 − 1|). 

Subtracting the equation on both side from ‘2’ and taking binary logarithm we get 

𝑙𝑜𝑔2 (2 −
1

2
(|2𝑥 − 1| + |2𝑥 − 1|)) ≥ 𝑙𝑜𝑔2 (2 −

1

2
(|2𝑦 − 1| + |2𝑦 − 1|)), 

 

⟹ 𝑒𝑙𝑜𝑔(𝑥) ≥ 𝑒𝑙𝑜𝑔(𝑦).  
 

Similarly, second case can be proved. Thus, all the four axioms given in definition (3.1) are 

satisfied by fuzzy rough information measure (3.4). Hence, it is a valid information measure. 

 

4. INFORMATION MEASURE FOR FUZZY ROUGH SETS 
 

In the previous section we have defined an information measure for fuzzy rough values. Next, 

corresponding to equation (3.4) another information measure for fuzzy rough set is proposed. Let 

us consider a fuzzy rough set ‘A’, then information measure for fuzzy rough set ‘A’ is proposed 

as given below: 

𝐸𝑙𝑜𝑔(𝐴) =
1

𝑛
∑ 𝑙𝑜𝑔2

𝑛

𝑖=1

(2 −
1

2
(|2𝑥𝑖 − 1| + |2𝑥𝑖 − 1|)) , ∀ 𝑥𝑖 ∈ 𝐴 𝑎𝑛𝑑 𝑥𝑖 = (𝑥𝑖 , 𝑥𝑖) 

           (4.1) 

(4.1) is called as a fuzzy rough information measure and it lies in the interval [0, 1]. Larger value 

of the fuzzy rough information measure indicates more uncertainty in ‘𝐴′. Obviously, four 

lemmas for the validity of the information measure hold.  

 

Next, some propositions are enumerated as  

 

Proposition 4.1 
 

 Let 𝐴 be a fuzzy rough set,then ∀ 𝑥𝑖 ∈ 𝐴value of information measure (4.1) is equal to zero for 

𝑥𝑖 = 0 𝑜𝑟 1 𝑎𝑛𝑑 𝑥𝑖 = 0 𝑜𝑟 1 𝑖. 𝑒. for A to be a crisp set. 

 

Proposition 4.2 
 

Let 𝐴 be a fuzzy rough set, then ∀ 𝑥𝑖 ∈ 𝐴 value of information measure (4.1) is equal to the value 

of its complement, where 𝐴𝐶 = (1 − 𝑥𝑖 , 1 − 𝑥𝑖). 

 

Proposition 4.3 
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 Let𝐴 be a fuzzy rough set, then ∀ 𝑥𝑖 ∈ 𝐴 value of information measure (4.1) is equal to one i.e. it 

assumes a unique maximum value for 𝑥𝑖 = 0.5 𝑎𝑛𝑑 𝑥𝑖 = 0.5. 

 

Proposition 4.4  
 

Let  𝐴, 𝐵 be fuzzy rough sets,𝑡ℎ𝑒𝑛 ∀ 𝑥𝑖 ∈ 𝐴 𝑎𝑛𝑑 𝑥𝑗 ∈ 𝐵,value of information measure for 𝐴 is 

greater than or equal to the value of information measure for 𝐵 when 𝐵 is sharper or crisper than 

A that is 𝐵 ≤ 𝐴 𝑓𝑜𝑟 𝑥𝑖 ≤ 0.5(𝑥𝑖 ≤ 0.5) 𝑎𝑛𝑑 𝐵 ≥ 𝐴 𝑓𝑜𝑟 𝑥𝑖 ≥ 0.5 (𝑥𝑖 ≥ 0.5). 

 

These propositions can be proved by following the same procedure as described in previous 

section 3. 

 

4.1. Application and Illustration  
 

In this section application of fuzzy rough information measures (3.4) and (4.1) is illustrated with 

two examples. 

  

Example 4.1.  
 

Let us consider the case of choice of restaurants in a particular city by the customers due to 

several factors such as quality of food, service provide, behaviour of staff etc. It is clear from 

customer’s behaviour that they are not happy with any one restaurant. They prefer different 

restaurants on the basis of their taste. This whole situation is represented in the form of fuzzy 

rough set as follows: 

 

Suppose 𝑅 = {𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5} be the set of restaurants in a particular city and                          

𝐶 = {𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6} be the set of attributes on basis of the taste of customers as 𝑐1 =
𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 𝑑𝑒𝑐𝑜𝑟𝑎𝑡𝑖𝑜𝑛, 𝑐2 = 𝑏𝑒𝑠𝑡 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 𝑚𝑜𝑛𝑒𝑦, 𝑐3 = 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝑐4 =
𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟 𝑜𝑓 𝑠𝑡𝑎𝑓𝑓, 𝑐5 = 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑜𝑓 𝑓𝑜𝑜𝑑 𝑎𝑛𝑑 𝑐6 = 𝑜𝑓𝑓𝑒𝑟 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒.  
 

The aim is to find out which restaurant is best in term of which attribute by using the information 

given by customers. The information available is model in the form of fuzzy rough set and 

represented in tabular form as given below: 

 
Table 4.1: Fuzzy Rough Set 

 
         C 

R 
𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 

𝑟1 (.1, .5) (.2, .6) (.4, .8) (.7, .9) (.6, .8) (.4, .6) 

𝑟2 (.2, .3) (.1, .3) (.4, .9) (.6, .8) (.5, .6) (.8, .8) 

𝑟3 (.1, .5) (.3, .5) (.5, .7) (.3, .8) (.6, .6) (.4, .9) 

𝑟4 (.5, .7) (.1, .5) (.3, .8) (.3, .7) (.1, .3) (.5, .8) 

𝑟5 (.4, .6) (.5, .7) (.3, .5) (.7, .9) (.4, .5) (.5, .6) 

 

From above table we find the uncertainty among restaurants and given attribute by using 

information measure for fuzzy rough set (4.1) as 𝐸𝑙𝑜𝑔(𝑅: 𝐶) = 0.626786. 

 

Now we find out the uncertainties among restaurants and attributes by using information measure 

(3.4) for fuzzy rough values which are given below in table 4.2: 
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Table 4.2: Uncertainties among Restaurants and Attributes 

 
         C 

R 
𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 

𝑒𝑙𝑜𝑔(𝑟1) 0.678072 0.678072 0.678072 𝟎. 𝟒𝟖𝟓𝟒𝟐𝟕 0.678072 0.847997 

𝑒𝑙𝑜𝑔(𝑟2) 0.584963 0.584963 0.584963 0.678072 0.926 𝟎. 𝟒𝟖𝟓𝟒𝟐𝟕 

𝑒𝑙𝑜𝑔(𝑟3) 0.678072 0.847997 0.847997 0.584963 0.847997 𝟎. 𝟓𝟖𝟒𝟗𝟔𝟑 

𝑒𝑙𝑜𝑔(𝑟4) 0.847997 0.678072 0.584963 0.678072 𝟎. 𝟒𝟖𝟓𝟒𝟐𝟕 0.765535 

𝑒𝑙𝑜𝑔(𝑟5)  0.847997 0.847997 0.847997 𝟎. 𝟒𝟖𝟓𝟒𝟐𝟕 0.926 0.926 

 

Comparing the uncertainty 𝐸𝑙𝑜𝑔(𝑅: 𝐶)with those in table 4.2 and choosing the uncertainty less 

than or equal to 𝐸𝑙𝑜𝑔(𝑅: 𝐶)we can conclude that restaurants 1and 5 are good in terms of attribute 

𝑐4 i.e. behaviour of staff of restaurants 2 and 3 are good in terms of attribute 𝑐6 i.e. offer available 

and restaurant 4 is good in terms of attribute 𝑐5 i.e. quality of food.  

 

Example 4.2.  
 

Covid-19 pandemic has transformed individual lives as well as social life on global scale. The 

most effected sector by this virus is healthcare. Healthcare personnel have faced a significant 

higher risk of infection, particularly in the early stages of the outbreak. On an average it takes 5-6 

days for symptoms to appear when someone is infected with the corona virus. Symptoms of 

covid-19 are divided into three categories as  

 

Most Common Symptoms 

 Dry Cough 

 Tiredness 

 Fever 

 

Less Common Symptoms  

 Headache  

 Diarrhoea 

 Sore throat 

 Rash on Skin 

 Discolouration of Finger 

 Aches and Pain 

 Conjunctivitis 

 Loss of taste or Smell 

 

Serious Symptoms 

 Chest Pain  

 Loss of Movement or Speech 

 Shortness of breath or Difficulty in Breathing 

 

If you have serious type of symptoms then immediate medical attention is required. For most 

common and mild symptoms, people should stay at home and consult doctor for precaution and 

cure.  

 

Here we make use of fuzzy rough information measure to detect the type of symptoms in patient 

for covid-19 and suggest whether patient requires immediate medical attention or not. To see the 
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application of the fuzzy rough information measure a hypothetical case study is framed as 

follows: 

 

Let },,,{ 4321 AAAAA  is the set of patients under study and 

 

},,,,{ 54321 echspeofLossTbreathinginDifficultyTpainChestTHeadacheTFeverTT 

are the symptoms of the patients. Symptoms 3T , 4T , 5T are the serious type of symptoms and if 

they occur then immediate treatment is required.  The data for the relation between patients and 

symptoms is given hypothetically as 

 
Table 4.3: Fuzzy Rough Set for Patients and Symptoms 

 
T 

A 
1T  2T  3T  

4T  5T  

1A  [0.0,0.4] [0.6,0.9] [0.1,0.5] [0.3,0.7] [0.5,0.7] 

2A  [0.3,0.5] [0.2,0.6] [0.2,0.3] [0.5,0.9] [0.6,0.9] 

3A  [0.7,0.8] [0.0,0.9] [0.2,0.3] [0.1,0.2] [0.7,1] 

4A  [0.9,1] [0.3,0.8] [0.3,0.4] [0.2,0.6] [0.5,0.5] 

 

Using fuzzy rough information measure (3.4), the uncertainties for patients and symptoms are 

given below in table 4.4: 

 
Table 4.4: Uncertainties among Patients and Symptoms 

 
T 

A 
1T  2T  3T  

4T  5T  

1A  0.4855 0.585 0.6781 0.6781 0.848 

2A  0.848 0.6781 0.585 0.6781 0.585 

3A  0.585 0.1375 0.585 0.3785 0.3785 

4A  0.1375 0.585 0.7656 0.6781 1 

 

 
 

Fig 1: Uncertainties among Patients and Symptoms 

T…

T…

T…
T…
T…

0

0.5

1
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A3
A4
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The uncertainty for complete set using fuzzy rough information measure (4.1) is

59398.0);(log TAE 0. Now, compare the uncertainty );(log TAE with those in table 4.4, if 

uncertainties for symptoms 3T , 4T , 5T together are greater than );(log TAE , then the patient is 

suffering from serious symptoms of covid-19. From table 4.4 it is clear that patients 41 AandA

are suffering from serious symptoms and need immediate medical treatment, while patients

32 AandA are less effected by virus and can take home remedies to cure themselves.    

 

5. WEIGHTED INFORMATION MEASURE FOR FUZZY ROUGH SET 
 

In this section weighted information measure for fuzzy rough set is proposed corresponding to 

measure (3.4) and an application is presented. 

Let us consider a fuzzy rough set ′𝐴′,∀𝑥𝑖 ∈ 𝐴 and 𝑤𝑖 ∈ [0,1] is the weight for 

element 𝑥𝑖  𝑜𝑓 𝐴, then weighted fuzzy rough information measure for A is given below: 

𝐻𝑙𝑜𝑔(𝐴) =
∑ 𝑤𝑖𝑙𝑜𝑔2

𝑛
𝑖=1 (2 −

1

2
(|2𝑥𝑖 − 1| + |2𝑥𝑖 − 1|))

∑ 𝑤𝑖
𝑛
𝑖=1

,  

∀ 𝑥𝑖 ∈ 𝐴, 𝑤𝑖 ∈ [0, 1]𝑎𝑛𝑑 𝑥𝑖 = (𝑥𝑖, 𝑥𝑖).      (5.1) 

 

(5.1) is called weighted fuzzy rough information measure. Next, we state some propositions for 

the validity of (5.1). 

 

Proposition 5.1 
 

Let 𝐴 be a fuzzy rough set, then ∀ 𝑥𝑖 ∈ 𝐴 value of weighted information measure (5.1) is equal to 

zero for 𝑥𝑖 = 0 𝑜𝑟 1 𝑎𝑛𝑑 𝑥𝑖 = 0 𝑜𝑟 1 𝑖. 𝑒. for A to be a crisp set. 

 

Proposition 5.2 
 

Let  𝐴 be a fuzzy rough set, then ∀ 𝑥𝑖 ∈ 𝐴 the value of weighted information measure (5.1) is 

equal to the value of its complement, where 𝐴𝐶 = (1 − 𝑥𝑖 , 1 − 𝑥𝑖). 

 

Proposition 5.3 
 

Let  𝐴 be a fuzzy rough set, then ∀ 𝑥𝑖 ∈ 𝐴 the value of weighted information measure (5.1) is 

equal to one i.e. it assumes a unique maximum value for 𝑥𝑖 = 0.5 𝑎𝑛𝑑 𝑥𝑖 = 0.5. 

 

Proposition 5.4 
 

Let  𝐴, 𝐵 be fuzzy rough sets, then ∀ 𝑥𝑖 ∈ 𝐴 𝑎𝑛𝑑 𝑥𝑗 ∈ 𝐵, the value of weighted information 

measure for 𝐴 is greater than or equal to the value of weighted information measure for 𝐵 when 

𝐵 is sharper or crisper than A that is 𝐵 ≤ 𝐴 𝑓𝑜𝑟 𝑥𝑖 ≤ 0.5(𝑥𝑖 ≤ 0.5) 𝑎𝑛𝑑 𝐵 ≥ 𝐴 𝑓𝑜𝑟 𝑥𝑖 ≥

0.5 (𝑥𝑖 ≥ 0.5).  

It may noted that the above proposition hold good obviously, so the weighted fuzzy information 

measure is  a valid measure. 
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5.1. Application for Illustration 
 

For illustration purpose the data set of example 4.1 is considered in the following table: 

 
Table 5.1: Fuzzy Rough Set 

 

         

C 

R 

𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 

𝑟1 (.1, .5) (.2, .6) (.4, .8) (.7, .9) (.6, .8) (.4, .6) 

𝑟2 (.2, .3) (.1, .3) (.4, .9) (.6, .8) (.5, .6) (.8, .8) 

𝑟3 (.1, .5) (.3, .5) (.5, .7) (.3, .8) (.6, .6) (.4, .9) 

𝑟4 (.5, .7) (.1, .5) (.3, .8) (.3, .7) (.1, .3) (.5, .8) 

𝑟5 (.4, .6) (.5, .7) (.3, .5) (.7, .9) (.4, .5) (.5, .6) 

 
The uncertainties calculated on applying fuzzy rough information measure (3.4) are given in table 

5.2. 

 
Table 5.2: Uncertainties among Restaurants and Attributes 

 
C 

R 
𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 

𝑒𝑙𝑜𝑔(𝑟1) 0.678072 0.678072 0.678072 0.485427 0.678072 0.847997 

𝑒𝑙𝑜𝑔(𝑟2) 0.584963 0.584963 0.584963 0.678072 0.926 0.485427 

𝑒𝑙𝑜𝑔(𝑟3) 0.678072 0.847997 0.847997 0.584963 0.847997 0.584963 

𝑒𝑙𝑜𝑔(𝑟4) 0.847997 0.678072 0.584963 0.678072 0.485427 0.765535 

𝑒𝑙𝑜𝑔(𝑟5) 0.847997 0.847997 0.847997 0.485427 0.926 0.926 

 

Now, the weights corresponding to each element of table 5.1 are given below: 

 
Table 5.3: Weights Corresponding to Each Element of Fuzzy Rough Set 

 
0.53 0.62 0.55 0.82 0.92 0.87 

0.84 0.80 0.66 0.45 0.33 0.23 

0.16 0.25 0.39 0.64 0.87 0.33 

0.29 0.36 0.46 0.47 0.78 0.63 

0.13 0.85 0.74 0.53 0.24 0.82 

 

Using weighted fuzzy rough information measure (5.1), the weighted uncertainties for fuzzy 

rough values are 

 
Table 5.4: Uncertainties Using Weighted Fuzzy Rough Information Measure (5.1) 

 
         C 

R 

𝒄𝟏 𝒄𝟐 𝒄𝟑 𝒄𝟒 𝒄𝟓 𝒄𝟔 

𝒉𝒍𝒐𝒈(𝒓𝟏) 0.3594 0.4204 0.3730 0.3980 0.6239 0.7378 

𝒉𝒍𝒐𝒈(𝒓𝟐) 0.4914 0.468 0.3861 0.3051 0.3056 0.1116 

𝒉𝒍𝒐𝒈(𝒓𝟑) 0.1085 0.212 0.3307 0.3744 0.7378 0.1931 

𝒉𝒍𝒐𝒈(𝒓𝟒) 0.2459 0.2441 0.2691 0.3187 0.3786 0.4823 

𝒉𝒍𝒐𝒈(𝒓𝟓) 0.1102 0.7208 0.6275 0.2573 0.2222 0.7593 
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Weighted uncertainty for complete fuzzy rough set is 6988.0);(log TAH .After assigning the 

weights it can be noted that the decision regarding restaurants is changed. All the restaurants are 

up to the expectations of customers except restaurants 𝑟1, 𝑟3 𝑎𝑛𝑑  𝑟5, particularly for attributes 

𝑐6of restaurant 𝑟1, 𝑐5 of restaurant 𝑟3and 𝑐2, 𝑐6 of restaurant  𝑟5. Since, the uncertainties 

corresponding to these attributes are greater than );(log TAH . 

 

6. COMPARISON WITH OTHER FUZZY ROUGH INFORMATION MEASURES 
 

In this section information measure (3.4) and (4.1) are compared with the existing fuzzy rough 

information measures defined and studied by Sharma and Gupta [21]. 

 

Let ‘A’ be a rough set then, sine trigonometric information measures for fuzzy rough values of 

set ‘A’ and for fuzzy rough set ‘A’ are written respectively as given below: 

 

|))]12||12(|
2

1
1(

2
sin[)(sin  xxxe


, for every element ,Ax   (6.1) 

and |))]12||12(|
2

1
1(

2
[sin

1
)(

1

sin  


ii

n

i

xx
n

xE


,  for the whole set A. (6.2) 

 

Similarly, the cosine and tangent trigonometric information measures for fuzzy rough values and 

for fuzzy rough set respectively are 

 

|)]12||12(|
4

cos[)(cos  xxxe


, for every element ,Ax    (6.3) 

|)]12||12(|
4

[cos
1

)(
1

cos  


ii

n

i

xx
n

xE


,  for the whole set A.   (6.4) 

|))]12||12(|
2

1
1(

4
tan[)(tan  xxxe


, for every element ,Ax   (6.5) 

and  





n

i

ii xx
n

xE
1

tan |))]12||12(|
2

1
1(

4
tan[

1
)(


,for the whole set A.   (6.6) 

 

The uncertainties for fuzzy rough values in example 4.1 are computed using the above 

trigonometric fuzzy rough information measures as given in table 6.1. 
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Table 6.1: Uncertainties using Trigonometric FRI Measures  

 

               C 
R 

𝒄𝟏 𝒄𝟐 𝒄𝟑 𝒄𝟒 𝒄𝟓 𝒄𝟔 

𝒆𝒔𝒊𝒏(𝒓𝟏) .8090 .8090 .8090 .5878 .8090 .9511 

𝒆𝒄𝒐𝒔(𝒓𝟏) .8090 .8090 .8090 .5878 .8090 .9511 

𝒆𝒕𝒂𝒏(𝒓𝟏) .5095 .5095 .5095 .3249 .5095 .7265 

𝒆𝒔𝒊𝒏(𝒓𝟐) .7071 .5878 .7071 .8090 .9877 .5878 

𝒆𝒄𝒐𝒔(𝒓𝟐) .7071 .5878 .7071 .8090 .9877 .5878 

𝒆𝒕𝒂𝒏(𝒓𝟐) .4142 .3249 .4142 .5095 .8541 .3249 

𝒆𝒔𝒊𝒏(𝒓𝟑) .8090 .9511 .9511 .7071 .9511 .7071 

𝒆𝒄𝒐𝒔(𝒓𝟑) .8090 .9511 .9511 .7071 .9511 .7071 

𝒆𝒕𝒂𝒏(𝒓𝟑) .5095 .7265 .7265 .4242 .7265 .4142 

𝒆𝒔𝒊𝒏(𝒓𝟒) .9511 .8090 .7071 .8090 .5878 .8910 

𝒆𝒄𝒐𝒔(𝒓𝟒) .9511 .8090 .7071 .8090 .5878 .8910 

𝒆𝒕𝒂𝒏(𝒓𝟒) .7265 .5095 .4142 .5095 .3249 .6128 

𝒆𝒔𝒊𝒏(𝒓𝟓) .9511 .9511 .9511 .5878 .9877 .9877 

𝒆𝒄𝒐𝒔(𝒓𝟓) .9511 .9511 .9511 .5878 .9877 .9877 

𝒆𝒕𝒂𝒏(𝒓𝟓) .7265 .7265 .7265 .3249 .8541 .8541 

 

The uncertainties calculated using the trigonometric fuzzy rough information measures for fuzzy 

rough set are ,8136.0)(sin RE 8136.0)(cos RE and .55862.0)(tan RE  

 

 
 

Fig 2. Uncertainties Using Trigonometric FRI measures 

 

Next, the uncertainties calculated using information measure (3.4) for fuzzy rough values of 

example 4.1 are given below: 

 

0

0.2

0.4

0.6

0.8

1

1.2

Uncertainties Using Trigonometric Information Measures

c1 c2 c3 c4 c5 c6



International Journal of Computational Science and Information Technology (IJCSITY) Vol. 9, No. 4, November 2021 

 

15 
 

Table 6.2: Uncertainty Using FRI Measure (3.4) 

 
         C 

R 
𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6 

𝑒𝑙𝑜𝑔(𝑟1) 0.678072 0.678072 0.678072 𝟎. 𝟒𝟖𝟓𝟒𝟐𝟕 0.678072 0.847997 

𝑒𝑙𝑜𝑔(𝑟2) 0.584963 0.584963 0.584963 0.678072 0.926 𝟎. 𝟒𝟖𝟓𝟒𝟐𝟕 

𝑒𝑙𝑜𝑔(𝑟3) 0.678072 0.847997 0.847997 0.584963 0.847997 𝟎. 𝟓𝟖𝟒𝟗𝟔𝟑 

𝑒𝑙𝑜𝑔(𝑟4) 0.847997 0.678072 0.584963 0.678072 𝟎. 𝟒𝟖𝟓𝟒𝟐𝟕 0.765535 

𝑒𝑙𝑜𝑔(𝑟5)  0.847997 0.847997 0.847997 𝟎. 𝟒𝟖𝟓𝟒𝟐𝟕 0.926 0.926 

 

Now, uncertainty computed by information measure (4.1) for fuzzy rough set is𝐸𝑙𝑜𝑔(𝑅: 𝐶) =

0.626786. 

 

 
 

Fig 3: Uncertainties Using fuzzy rough Information Measure (3.4) 

 

From the table 6.1 and 6.2 and from the graphs it may be noted that the uncertainties calculated 

on applying information measure (3.4) are much less than that of sine and cosine trigonometric 

information measures studied by Sharma and Gupta [21]. Thus, our information measure is more 

useful and simple than the trigonometric information measures. However, the uncertainty 

calculated using sine and cosine measures are almost same.  

 

7. CONCLUSION  
 

As we know a right decision can change one’s life, so it is important to study decision making 

methods for solving the problems of our daily life and fuzzy rough set theory is one of the 

choices. Fuzzy rough set is the hybridization of rough set and fuzzy set which had been widely 

used to deals with complex data containing different types of uncertainties. In this paper a 

logarithmic information measure for fuzzy rough values is proposed and verified axiomatically. 

Logarithmic information measure for fuzzy rough set and weighted logarithmic fuzzy rough 

information measure are also defined with their application in decision making problem. The 

Proposed fuzzy rough information measure is compared with other existing trigonometric fuzzy 

rough information measures and it is proved that our information measure is better and simple.  
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The research on application of fuzzy rough set theory can be extended in studying data dimension 

reduction technique and decision making in design of experiment. A new form of rough set that is 

hyper rough set can be defined. Hyper rough set is completely a new idea in the area of rough set 

theory. In future researchers can put their attention towards defining new information measures 

by combining logarithmic and trigonometric functions as combination of two functions overcome 

the shortcoming of one another and provide better result than single one. 
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