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ABSTRACT 
 

This paper presents results on the output regulation of a single-input multi-output (SIMO) rotational-

translational actuator (RTAC) system. The results focus primarily on stability and robustness, which are 

studied in light of the presence of externally generated exogenous input signals. Two exosystem types were 

investigated and tested. Obtained results answers the question of asymptotic stabilization and tracking of a 
desired trajectory in the presence of a dynamic exosystem. The results confirmed the working theory of 

robust stabilization using output feedback techniques, borne out of differential-geometric observer design 

principles. The utilized design showed good stability results which compares favourably with existing 

works on RTAC stabilization. 
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1. INTRODUCTION 
 

The RTAC system finds applicability in systems such as dual-spin stabilized spacecraft, drill-type 
systems which require stabilization in the presence of moving platforms. The RTAC system has 
also been used as a benchmark system for testing various control law designs. Stabilization of the 
RTAC benchmark system has been done using different approaches some of which include; 

output feedback techniques [1], [2], backstepping approaches such as feedback linearization [3], 
input-output feedback linearization [4], integrator backstepping [5], cascade control with 
coordinate changes [6], energy and entropy based hybrid framework [7] amongst others.  
 
Output regulation-based control is defined by tracking and stabilization goals [8] [9]. This control 
paradigm targets the convergence of all or selected system states of the system towards a suitably 
defined equilibrium (zero or otherwise) as time goes to infinity [10] [11]. Some of the standard 
techniques which exist for output regulated systems include the use of observers as internal 

model, application of separation principle and certainty principle [8] [12]. Usually, the 
specification on the system to be regulated is made in presence of external disturbances and other 
uncertainties which the output regulation technique defines by considering and incorporating an 
external system (exosystem) to be the generator of these external signals (references and 
disturbances) to be tracked or rejected. The problem can further be cast as either a reference input 
tracking or disturbance input rejection problem [8] [13] [14]. 
 

In this paper, consideration has been made of two different exosystem structures, such as constant 
and oscillator type signal generators. The exosystem signals are of either reference or disturbance 
inputs which are modelled as part of the system and should be tracked or rejected in accordance 
with the problem specification being either a disturbance rejection problem or a tracking problem 
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[13][15]. Exosystems could also in practice be known or unknown, they could also have constant 
or oscillator type signal profiles [16]. This variability in types of potentially realistic disturbance 

and reference signal profiles, add to the difficulty in developing nonlinear output feedback 
controllers for dynamic systems [17][18].  
 
This difficulty is encountered as part of the solution process for rejecting the exogenous signal 
disturbances or tracking the reference signals from the exosystem in practice but in theory this 
difficulty is in finding a closed form solution to the regulator (or Francis-Byrnes-Isidori) 
equations [12] [19] for different system structures such as linear or nonlinear, square or 

nonsquare, minimum or non-minimum phase, regular or non-regular [14] [20].     
  
This work considers the RTAC system as a strictly SIMO model in all simulation experiments. 
Focus is placed on the stabilization via output feedback regulation of the nonlinear RTAC 
dynamic system that remains an actively researched benchmark system within the control 
community. The results for the two tested exosystem structures is also presented.  
 

The organization of the rest of the paper is as follows: Section 2 introduces the RTAC system and 
the mathematical model, section 3 summarizes the output feedback problem for nonlinear system. 

Section 4 addresses the exosystem structure, section 5 treats the output regulator in detail, section 
6 touches on the stable regulator or controller design, section 7 presents the important results and 
section 8 concludes. 
 

2. THE RTAC SYSTEM 
 
Practical research interest in the RTAC system stems from the fact that it is an underactuated 
coupled nonlinear system with four states and a single input. This paper treats the RTAC as a 
SIMO system under observer based output regulation. It focuses on the internal model component 
and observer estimator. The main contribution was in the regulator formulation without squaring 
the plant. Figure 1 shows the structure of the RTAC and some of its parameters. 
 

 
 

Fig. 1: RTAC System 

 

The pendulum is the actuated member while the proof mass is driven forward and backward. This 
pendulum position is determined by the designed controller while the proof mass is placed at 
specific positions with the influence of disturbances on the proof mass taken into account. 
 

2.1. RTAC EQUATIONS 
 
The nonlinear RTAC model used by [21] was modified in [22] as follows 
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where M, is the translation or proof mass, m, the mass of pendulum bob, l, the length of the 
pendulum arm, I, mass moment of inertia of the pendulum arm, g, acceleration due to gravity, θ, 

the displacement angle from the vertical and x, is the translational displacement of M. The 
nonlinear equation (2) was rearranged into the following form: 
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Subsequent linearization of the above nonlinear equation was used for the initial analysis and 
design of the output feedback regulator. 
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also expressed in state space form as 
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The linearization was necessary to engage in any constructive development of the output 
feedback regulator. The working matrices were obtained from the RTAC structure in (4). 

 

3. OUTPUT REGULATION SETUP 
 

As presented in [23], the generalized nonlinear system for output regulation was given by 
 

                                 

( , , )
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                                                                                       (5) 

 
with analytic, input affine form given as 
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A particular linear equivalent of the setup in equation (6) can be taken as presented by [24] 
 

                                         

u wx Ax B u P v

v Sv

y Cx Du Qv

  



  

                                                                              (7) 

 
Equation (7) represent plant dynamics, exosystem and output respectively whose working 
parameters discernible from equation (4). The variables x, u, v in equation (7) are in general 
vector valued with sizes x ϵ Rn, u ϵ Rm and v ϵ Rq. While the matrices A ϵ Rnxn, B ϵ Rnxm , P ϵ Rnxq 
, S ϵ Rqxq , C ϵ Rpxn , D ϵ Rpxm , Q ϵ Rpxq. Here the exosystem plays the role of a signal generator, 
which encapsulates the possible class of reference and disturbance signals to be tracked or 
rejected by the system. In [24] the class of reference and disturbance signals generated with the 

different initial states of the exosystem were shown to depend on the operator S. This dependence 
of the system response on the exosystem structure will be explicitly shown in later part of this 
paper through analysis and results. 
 

3.1 OUTPUT FEEDBACK REGULATOR  FOR THE RTAC 
 

The RTAC analysis utilized the following parameters taken from Sun et al., (2016) [9] 
 

Table 1: Table of Parameters for the CIP. 

 

Parameter  Value  Unit 
Proof mass (M) 3.82  

 
Kg 

Pendulum mass (m)  0.5  Kg 
Pendulum length(l)  0.12  m 
Mass MOI (I)  0.0003186  Kg/m2 
Spring constant (ks)  427  

Acc. due Gravity (g)  9.81  m/s2 
 

3.2. STATE SPACE REALIZATION OF THE RTAC 
 

From the linear system given by equation (7), the working matrices for the values in Table 1 are 
derived as follows:  
 

                               

0 1 0 0

111.167 0 0 0

0 0 0 1

887.347 0 0 0

A

 
 
 
 
 
 

,

0

2.0781

0

149.623

B

 
 
 
 
 
 

 

 

                                              1 0 1 1C   

 
The uncertain disturbance term on the internal state dynamics and the output is captured by the 
matrices P and Q respectively 
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the disturbance P and Q are selected to be random noise terms with the requirement being that 

they must not be zero or sparse so as to avoid singular values or not-a-number (NaN) errors 
during simulation. 
 

4. EXOSYSTEM SELECTION 
 

The exosystem generates the reference signals and disturbances fed into the system. Certain 
conditions must however be satisfied for the exosystem to be acceptable as a signal generator for 
the output regulated setup. These conditions have been extensively discussed in the work of [24]. 
Generally, the selected exosystem must be antistable. One specific example of this antistable 
behaviour means the exosystem satisfies the Poisson stability criterion [10] [11]. However, other 

types of exosystem structures have been considered and used such as anti-Hurwitz stable (having 
non-negative real part for its eigenvalue) [25], non-negative real part with semi-simple map [26].  
 
An often utilized form of the exosystem employs a linear time invariant (LTI) dynamic system 
[27] 
 

                                         

0; (0)

ref

v Sv v v W

w Ev

y Fv

  


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                                                  (8) 

 

Where v  is the dynamic ODE representing the exosystem, w is the disturbance signal generated 

from the exosystem dynamic and yref is the reference signal generated accordingly. The system in 
(8) generates the reference signals and disturbances and have S, E and F appropriately sized. The 

exosystem map S, satisfies the condition given by Re( (S)) = 0 , being read as; the spectrum of 

the matrix S having all real parts equals zero. Implying, all eigenvalues of the chosen map S, must 
be Poisson stable or have their occurrence on the imaginary axis of the complex plane. 
  
Although linear exosytems structures such as equation (8) are easier to work with and more 
tractable in solving the full system regulator equations [11], practical occurrences of the 
exosystem demand that nonlinear structures be also considered [28]. Also considered in certain 

implementations of the regulation problem is the availability or observability of the exosystem 
states under constrained conditions. The observed states usually used in feedforward arrangement 
[9] [25]. The current treatment has however investigated linear time invariant exosystem 
structures. 
 
This work tested two different exosystem structures. The first is a constant-type disturbance 
generator, the second was a 2x2 dimension disturbance generator model. The first exosystem 

candidate selected was 0w  
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w w
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                                                                          (9) 



International Journal of Control Theory and Computer Modeling (IJCTCM) Vol 9, No.1/2, April 2019 

6 

Here
0 0

0 0
exoS

 
  
 

, which has a constant matrix value. 

 
Another exosystem candidate has the oscillator of the form 

 

                                                  
1 2

2 1

w w

w w

 
 
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                                                                         (10) 

With
0 1

1 0
exoS

 
  
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. In both cases, the states

1w  and 
2w  can be used for the disturbance and 

reference signal profiles respectively to be injected into (8). 
 

5. OUTPUT FEEDBACK REGULATOR ANALYSIS 
 

A regulator was constructed having the output error feedback form. The synthesis requires the 
construction of a compensator of the form 
 

                                                      1 2z G z G e

u Kz

 


                                                                        (11) 

 
Where K = [Kx Kv]. The following set of parameters were designed for Kx, Kv, L1, L2, G1, G2, so 
that the following conditions hold: 
 
i.  The pair A, B is stabilizable by Kx s.t.  is Hurwitz 

 
ii. There exists a unique solution for X and U to the regulator equation pair 
 

                                              
0

exoXS AX Bu P

CX Q

  
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                                                       (12) 

 
Such that the disturbance feedback gain Kv was computable as: Kv=U-KxX 
 
iii. finally the internal model-based observer was synthesized using the parameters obtained from 

the regulator equations in equations (29) and the selected minimal subset of the matrix 
 

                                       

1 1

2 2

l

A L C P L Q
A

L C S L Q
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for a solution to L1, L2 and subsequently G1 and G2 for a complete solution to the controller 
design. 
 
iv. All the previous computations led to the closed loop system given by 
 

                                

2 1 2

0 0

xv
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S
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, from which we derived the subset matrices 
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and Sexo (for any selected exosystem structure) whose closed loop internal stability is deduced 

by checking the Hurwitz condition of (15) such that  spec Acllp C and   0

exospec S C . 

 

6. STABILITY ANALYSIS AND CONTROLLER DESIGN 
 

Considering the RTAC system as a SIMO model with target output selected as
1 3 4,  ,  ( )x x xy  , 

suitable generalized scalar Lyapunov function for the chosen outputs becomes 
 

                                  
1 1 3 3 4 4V(x)= x Px  +x Px x PxT T T                                                             (16)  

 
satisfying the Lyapunov equation PA+ATP+I=0, where P is a positive definite and symmetric 
(PDS) matrix, I is the identity matrix of suitable size and A, the stable transmission matrix from 
linearization of (2). However the RTAC system is considered a SIMO model with more specific 
Lyapunov function given by 
 

                           2 2 2

1 1 3 3 4 4

1 1 1
( , ) ( ) ( ) ( )

2 2 2
r r rV x t x x x x x x                                                 (17) 

 
Equation (17) met the following conditions for Lyapunov function construction in continuous 

time non-autonomous systems (CTNAS): 
 

1. 
0V(0,t ) = 0  

2. 
0V(x, t) > 0   x 0  D,  t t     

 
3. there exists class K functions α(.), β(.) and γ(.) which satisfy the inequality 

 

                            ,  , 0|| || || ||x V x t x t t      

 

4. and finally   ,  V x t satisfies the inequality 

 

V(x,t) - (||x||) < 0, t t0     

 
Equation (17) satisfied conditions (1)-(4) and satisfactorily generated desired control signals. 
 

7. EXPERIMENTS AND RESULTS 
 

The computed feedback gain that stabilized the closed loop system A BF was obtained as F= 
[237.3198, 17.3309, 91e-003, 48.2e-003]. The FBI regulator equations were solved for X and U 
and the following results were obtained as solution to the FBI equations with the oscillator 
exosystem 
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0.0 0.0
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osc

e e
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 
 
  
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                                     oscU  = -1.1519e + 000 4.7416e + 000   

 

with the constant exosystem, U was obtained as 
 

 1.1577 4.7359constU    

 

these solutions were unique and proved the existence of the regulator. The computed solutions 
also made possible the computation of a unique value for the internal model gain Kv, which was 
obtained as Kv = [−111.2459 452.2505] when oscillator-type exosystem was used and Kv = 
[−111.2517 452.2448] when constant-type exosystem was applied. The input vector was formed 

as Kxv = [Kx Kv] in both cases. Other parameters computed include the dynamic output gain L1, 
L2, G1, G2, which for space constraint has been moved to the appendix. Simulated experiments 
were made to show the uncompensated, compensated and combined responses of the RTAC 
under initial perturbation. 
 
Starting with an initial condition, IC = (0.5 0 0.75 0), the unforced closed loop response was 
unstable.  This necessitated development of a feedback regulator.   
 

 
 

Fig. 2: Compensated Initial Response for IC = (0.5 0 0.75 0) 
 

Fig. 2, shows the compensated response with the feedback and output gains acting to make the 
internal model and plant stable. 
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Fig. 3: Combined Initial Response for IC = (0.5 0 0.75 0) 

 

Fig. 3, shows the combined compensated response with the internal model acting and all states 
stabilizing under 1.175sec. 
 
For IC = (1 0 − 0.5 0), a second experiment was made to test for internal stability of the designed 
controller.  

 
 

Fig. 4: Compensated Initial Response for IC = (1 0 − 0.5 0) 

 

Fig. 4 gives the initial response when the states were perturbed by (1.0m 0 π/4rad 0rad/s). 
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Fig. 5: Combined Initial Response for IC = (1.0m 0 π/4rad 0rad/s). 

 
Fig. 5 shows the combined plot of the initial perturbation response of the RTAC system showing 
relative settling times of the various states. 

 

 
 

Fig. 6: Compensated Initial Response for IC = (1.0m 0 π/4rad 0rad/s) 

 
Fig. 6 gives the initial response when the states were perturbed by (1.0m 0 π/4rad 0rad/s) 

 

 
 

Fig. 8: Angular Position Response for Two Exosystem Types 
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The effect of selecting either the oscillator or constant type exosystem is viewed through the 
angular response when an initial perturbation was applied. The oscillator type exosystem showed 

a slowly decaying behavior compared to the constant type exosystem response which converged 
faster from within a local region of the origin. Fig. 8, shows the angular response of the RTAC 
system from application of the two types of exosystem structures. The constant exosystem 
showed faster convergence to the equilibrium in 2.5sec. While the oscillator-type exosystem had 
a slow convergence profile which only settled to the equilibrium after 45sec in the experiments 
conducted. 
 

8. CONCLUSION 
 

The RTAC benchmark control system has been experimented with in simulation. An output 
feedback regulator stabilizer was synthesized and put in place to stabilize the system internal 
dynamics. It was seen that from any starting condition, the system settles down to its stable 
equilibrium within 1.175sec from start of the simulation. This stability has been achieved with the 
aid of carefully designed gains which utilized both pole placement and polynomial matching for 
its synthesis. The system was therefore made stable by output regulation. The effect of a constant 
and oscillator-type exosystem were also considered. The constant type exosystem in equation (9) 

settled down faster to its equilibrium in 2.5sec while the oscillator-type exosystem described in 
equation (10) settled down after 45sec. However both attained asymptotic stability in their 
response profiles. 
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APPENDIX A: INTERNAL MODEL GAINS 
 

The Luenberger observer parameters for the oscillator-type exosystem experiment is as given by 
the variables G1 and G2 
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While the corresponding Luenberger observer parameters for the constant-type exosystem 
experiment is as given by the variables G1c and G2c 
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