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Abstract. Any organization engaged in trading aims to maximize earnings while maintaining costs at
their bare minimum. One of the inexpensive ways to accomplish this objective is through sales forecasting.
Evidence from empirical literature has shown that sales forecasting frequently results in better customer
service, fewer returns of goods, less dead stock, and effective production scheduling. Successful sales fore-
casting systems are essential for the food sector because of the limited shelf life of food goods and the
significance of product quality. In this paper, we generated sales of forecasts for a perishable dairy drink
using the famous ARIMA approach. We identified the ARIMA (0, 1, 1)(0, 1, 1)12 as the proper model for
modeling the daily sales forecast of the perishable drink. After performing model diagnostics, the model
satisfied all the model assumptions, and a strong positive linear relationship (R2 > 0.9) was observed when
the actual daily sales were regressed against the forecasted values.

Keywords: Sales forecasting, ARIMA, Model Diagnostics, R2- value.

1 Introduction

One of the critical ingredients in decision-making and business planning is forecasting.
Demand forecasting is the process of predicting the most likely demand for a product in
the future. [1] defines demand forecasting as a process of predicting expected demand,
supply, and pricing for products based on historical data. Literature has shown that the
main objective of forecasting is to minimize risk in decision-making. Some scholars argue
that forecasting is the starting point in planning. According to [2], the success of a busi-
ness depends on getting the correct forecasts. The author goes on to state that forecasting
techniques can be split into two broad categories: qualitative and quantitative. Qualita-
tive forecasting is mainly based on personal experience and opinion, while quantitative
forecasting heavily relies on historical data.

Recent advancements in technology have seen authors like [3] using artificial intelligence
to forecast the demand for horticultural products and concluding that machine learn-
ing outperforms classical forecasting on horticultural sales. However, classical forecasting
methods such as the Auto-regressive Integrated Moving Average (ARIMA) and Exponen-
tial Smoothing (ES) are still heavily relied on in industry and academia as they form
a baseline for these new methodologies. Despite their simple design, classical techniques
have frequently demonstrated competitive performance.([4],[5], [6]).

[7] states that reliable forecasts are essential for a company to survive and grow. In a man-
ufacturing environment, management must forecast the future demands for its products
and provide the materials, labor, and capacity to fulfill these needs. These resources are
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secured before the customers place demands for the products on the firm. Forecasting is
the heart and blood of any inventory control system. A firm with hundreds or thousands of
items must anticipate the demand for its products in advance to match what is required
and what it can supply to avoid the costs associated with overstocking or understock-
ing. Management must plan several months for its inventory because of procurement lead
times from suppliers. Hence, forecasts play a pivotal role in planning for inventory months
ahead. Consequently, forecasts are used to assess whether or not to place an order with
the supplier and the size of the order.

The arguments above show that any distribution company aims to determine an optimal
supply of its products that minimizes costs and maximizes returns in the face of uncer-
tainty. This paper is primarily concerned with quantitative forecasting using time series
analysis. In this context, the time series represents the demands recorded over past time
intervals. The forecasts are estimates of what is required over future time intervals and
are generated using the flow of demands from the past. This paper proceeds as follows.
Section 2 gives the literature review, some theoretical structures for exponential smooth-
ing models, and autoregressive integrated moving average (ARIMA) models. Section 3
includes comprehensive empirical results and an analysis of orange drink circulation and
results. Section 4 is the discussion and conclusion

2 Time Series Analysis and Modelling Strategy

Predicting future values of a time series is of great significance in multiple disciplines.
Trend, cyclical, seasonal, and random components naturally appear in economic and com-
mercial time series. Methods have been developed to capture these components by specify-
ing and estimating statistical models. These methods comprise; log transformation, square
root transformation exponential smoothing, and ARIMA, which are described by [9] and
[10]. The authors demonstrate that, while requiring substantially more work, ARIMA pro-
vides, on average, more accurate out-of-sample forecasts than other smoothing approaches.

According to [11], Robert G. Brown developed exponential smoothing while working as an
OR analyst for the US Navy in World War Two. [12] identifies that the more sophisticated
exponential smoothing methods seek to isolate trends or seasonality from irregular varia-
tion. Where such patterns are found, the more advanced methods identify and model these
patterns. The models can then incorporate those patterns into the forecast. Exponential
smoothing uses weighted averages of past observations for forecasting. The effect of past
observations is expected to decline exponentially over time[13] states that the exponential
smoothing methods are relatively simple but robust approaches to forecasting. They are
frequently used in business for forecasting demand for inventories. Three basic variations
of exponential smoothing are simple exponential smoothing, trend-corrected exponential
smoothing, and the Holt-Winters method. [14] states that the ARIMA method developed
by [15] is one of the most noted models for time series data prediction and is often used
in econometric research.

The ARIMA method stems from the autoregressive (AR) model and the moving average
(MA) model, and the combination of the two gives the ARMA model. Evaluated against
the early AR, MA, and ARMA models, the ARIMA model is more flexible in application
and more accurate in the quality of the simulative or predictive results. [?] points out that
in the ARIMA analysis, an identified underlying process is generated based on observations
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to a time series for generating a good model which shows the process-generating mechanism
precisely. [17] and [18] states that the only problem with ARIMA modeling is that it is
sophisticated in theory and requires a good understanding of mathematics. In other words,
building an ARIMA model is not a trivial task as it needs training in statistical analysis,
a good grasp of the field of application, and the availability of an easy-to-use but versatile
specialized computer program. The Box-Jenkins method for modeling and forecasting time
series data is amongst the large family of quantitative forecasting approaches established in
the fields of operations research, statistics, and management science. Box-Jenkins models
are also known as ”ARIMA” models, the acronym for Autoregressive Integrated Moving
Average. This terminology is made clear in the following sections.

Exponential smoothing, linear regression, Bayesian forecasting, and generalized adaptive
filtering are some of the other techniques which are termed ”extrapolative” forecasting
[6] All the methods mentioned above have common elements, the first being they use
historical data to try and explain what might occur in the future. Secondly, they use a
single variable to predict the future values of the same variable, and they are referred to
as univariate models.

2.1 ARIMA Model

The ARIMA model is an extension of the ARMA modelling the sense that by including
auto-regression and moving average it has an extra function for differencing the time
series. If a dataset exhibits long-term variations such as trends, seasonality and cyclic
components, differencing a dataset in ARIMA allows the model to deal with them. Two
common processes of ARIMA for identifying patterns in time-series data and forecasting
are auto-regression and moving average.

2.2 Autoregressive Process

Most time series consist of elements that are serially dependent in the sense that one
can estimate a coefficient or a set of coefficients that describe consecutive elements of the
series from specific, time-lagged (previous) elements. Each observation of the time series
is made up of random error components (random shock; at) and a linear combination of
prior observations.

2.3 Moving Average Process

Independent from the autoregressive process, each element in the series can also be affected
by the past errors (or random shock) that cannot be accounted for by the autoregressive
component. Each observation of the time series is made up of a random error component
(random shock, ϵ) and a linear combination of prior random shocks.

2.4 Autoregressive Integrated Moving Average Process, ARIMA (p, d, q)

A series Xt is called an autoregressive integrated moving average process of orders p, d, q,
ARIMA(p, d, q), if Wt = ∇dXt, where Wt is the differenced time series.
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We may define the difference operator ∇ as ∇Xt = Xt −Xt−1. Differencing a time series

{Xt} of length n produces a new time series {Wt} =
{
∇dXt

}
of length n − d. If {Zt}

is a purely random process with mean zero and variance σ2
z , the general autoregressive

integrated moving average process is of the form

Wt = ϕ1Wt−1 + ϕ2Wt−2 + . . .+ ϕpWt−p + Zt + θ1Zt−1 + . . .+ θqZt−q

In terms of the backward shift operator, the ARIMA(p, d, q) process is

Φp(B)Wt = Θq(B)Zt

Remark: The autoregressive integrated moving average process is specifically for non-
stationary time series. The differencing transformation is useful in reducing a non-stationary
time series to a stationary one.

2.5 Seasonal Auto-regressive Integrated Moving Average Process.

Let s, be the number of observations per season. Then the time series, Xt, is called a
seasonal autoregressive integrated moving average process of orders p, d, q, seasonal orders
P,D,Q and seasonal period s, if it satisfies;

ϕp(B)ΦP (Bs)∇d∇D
s Xt = θq(B)ΘQ (Bs)Zt

Where ∇D
s Xt =

D∑
j=0

(
D
j

)
Xt−js, and ϕp(B) and θq(B) are polynomials in B of order p

and q, that is ;

ϕq(B) =
(
1− θ1B − θ2B

2 − . . .− θqB
q
)

θp(B) = 1− ϕ1B − ϕ2B
2 − . . .− ϕpB

p

We identified the stationary component of a data set by performing the Ljung and Box
test. We tested this hypothesis by choosing a level of significance for the model adequacy
and compared the computed Chi-square

(
χ2

)
values with the

(
χ2

)
values obtained from

the table. If the calculated value is less than the actual
(
χ2

)
value, then the model is

adequate, otherwise not. The Q(r) statistic is calculated by thefollowing formula:

Q((r)) = n(n+ 2)
∑ r2(j)

n− j

where n is the number of observations in the series and r(j) is the estimated correlation
at lag j. Furthermore, we tested the data to specify the order of the regular and sea-
sonal autoregressive and moving average polynomials necessary to adequately represent
the time series model. For this purpose, model parameters were estimated using a maxi-
mum likelihood algorithm that minimized the sums of squared residuals and maximized
the likelihood (probability) of the observed series. The maximum likelihood estimation is
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generally the preferred least square technique. The major tools used in the identification
phase are plots of the series, correlograms (plots of autocorrelation and partial autocor-
relation verses lag) of the autocorrelation function (ACF) and the partial autocorrelation
function (PACF).The ACF and the PACF are the most important elements of time series
analysis and forecasting. The ACF measures the amount of linear dependence between
observations in a time series that are separated by a lag k. The PACF plot helps to
determine how many autoregressive terms are necessary to reveal one or more of the fol-
lowing characteristics:time lags where high correlations appear, seasonality of the series,
and trend either in the mean level or in the variance of the series. In diagnostic checking,
the residuals from the fitted model were examined against their adequacy. This is usually
done by correlation analysis through the residual ACF plots and by goodness-of-fit test
using means of Chi-square statistics. At the forecasting stage, the estimated parameters
were used to calculate new values of the time series with their confidence intervals for the
predicted values.

2.6 Performance valuation

To choose the best model among the class of plausible model, the estimated parameters
were tested for their validity using, ACF , PACF, Probability Plot and Histogram of
residuals, a time series plot of observed and fitted values and other error statistics such as
coefficient of determination( R2) were analysed.

2.7 Data Source

The data used in this research is historical data of monthly sales of cases of the perishable
drink from a small drink manufacturing company in Harare, Zimbabwe which among other
products manufactures the perishable dairy drink. Each case contains 24 bottles of the
drink. The company intends to minimise losses due to returns of the drinks as result of
reduced shelf life.
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3 Results and Analysis

Fig. 1: Time Series Plot Of Demand of Perishable Dairy Drink- Original Data

Visual inspection of the plot shows that the series is dynamic. So need is there to transform
the data so as to make it stationary.

Fig. 2: ACF Plot of Original Data

ACF of most lags are very high, there is evidence of positive and negative autocorrelation.
This is a typical ACF plot of a non stationery time series. Thus a model cannot be fitted
at this stage. This further affirms need to transform the data.
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Fig. 3: PACF plot of Original Data

The PACF plot shows a number of significant spikes, which is typical of a non stationary
series. Thus we have to transform the data to make it stationary.

Fig. 4: Time series plot of Differenced Data of Perishable Dairy Drink

Visual inspection of the plot reveals that the differenced series fluctuates around zero, thus
the data is now stationary
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Fig. 5: ACF plot of Differenced Data

The ACF shows a significant spike at lag 2 and there is evidence of negative dumped
oscillations with the rest of the ACF’s essentially zero, hence a seasonal ARIMA model is
suggested

Fig. 6: PACF plot of Differenced Data

PACF plot shows a significant spike at lag 2 which is seasonal and there is evidence of
negative dumped oscillations with the rest of the PACFs essentially zero, hence a seasonal
ARIMA model is also suggested.
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3.1 Parameter Estimation

Final Estimates of Parameters

Type Coef SE Coef T P

MA 1 0.9707 0.0321 30.21 0.000

SMA 12 0.6533 0.0660 9.90 0.000

Constant -0.00181 0.01501 -0.12 0.904

Lag 12 24 36 48

Chi-Square 99.2 232.2 326.0 405.3

DF 9 21 33 45

P-Value 0.000 0.000 0.000 0.000

Thus the fitted model is SARIMA(0, 1, 1)(0, 1, 1)12

3.2 Model Diagnostics

Fig. 7: Residual Plot for Differences

The normal probability plot is almost a straight line, an indication that the normality
assumption has not been violated. A plot of residuals against fitted values shows no pattern
and the histogram of residuals also indicates that the normality assumption has not been
violated. Hence the fitted model is good and thus can be used for forecasting.
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Fig. 8: ACF of residuals for Differences

Figure 8 ACF plot has no significant spikes suggesting that there might be no possible
additional parameters which may have been omitted in this model.

Fig. 9: PACF of residuals for Differences

Figure 9, The PACF plot of residuals refuses any significant spikes suggesting that there
might be no possible additional parameters that may have been omitted in this model.
Since the fitted model appears good enough, it can be used for forecasting future demand
of the perishable dairy drink.
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3.3 Inference Based on the Model

3.3.1 Forecasts from period 159

Period Forecast Lower Upper Actual

159 847.49 783.94 911.04 892.00

160 836.74 752.93 920.55 903.00

161 896.10 795.37 996.84 966.00

162 897.13 782.01 1012.25 937.00

163 881.36 753.45 1009.26 896.00

164 869.28 729.77 1008.80 858.00

165 831.16 683.39 983.87 817.00

166 808.89 670.91 991.40 827.00

167 826.39 639.32 978.55 797.00

168 828.86 639.23 1013.47

169 830.30 609.70 1024.07

170 831.37 591.24 1050.89

171 833.43 573.95 1072.51

172 834.99 557.99 1092.21

173 836.55 543.07 1111.99

174 838.11 529.03 1130.03

175 839.67 515.73 1147.19

176 841.23 503.09 1163.60

177 842.79 491.03 1179.36

178 842.79 479.47 1194.55

179 844.35 487.93 1209.23

180 845.91 468.36 1223.45

181 847.47 457.67 1236.26

Fig. 10: Time Series plot of Observed and Fitted Values

The fitted values compare well with the observed values, thus the fitted model is reliable.
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Fig. 11: Scatter plot of Fitted values against Observed Values

3.4 Regression Analysis: Fitted Values versus Sales

The scatter plot of fitted values against observed values suggests a positive linear relation-
ship.

Method

Rows unused 1

Analysis of variance

Source DF Adj SS Adj MS F-Value P-Value

Regression 1 150339 153391 1500.63 0.000

Error 165 165303 1002

Total 166 1668694

Model Summary

Analysis of variance Coefficients

R - Sq R-sq(adj) R-sq(pred)

90.09% 90.03% 89.84%

Regression Equation

Fitted Values = 48.4 + 0.9360× Sales
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Term Sales Se Coef T-Value P-Value

Constant 48.4 18.4 2.62 0.009

Sales 0.9360 0.0242 38.74 0.000

The coefficient of determination value is 90.09% indicates that the fitted model accounts
for about 91% of the variation in the fitted values. Thus the fitted seasonal ARIMA model
which generated the fitted values must me appropriate and hence can be used to forecast
sales values.

4 Discussions and Conclusions

This study demonstrates how ARIMA and Regression models are used to study and fore-
cast sales for a particular company. This paper illustrates how the ARIMA methodology
can be used to construct a model for sales forecasting. The ARIMA(0, 1, 1)(0, 1, 1)12 pre-
dicted the data considerably well and gave reliable forecasts. With reference to the data
presented, this model was the most appropriate in forecasting the demand, but could not
tell why the sales will contain outliers. The Time Series forecasting system helped construct
a model, the ARIMA time series, and the Regression, which is effective for forecasting and
can be applied to other businesses to plan their sales. However, it would be interesting
to do further research on the factors that influence the sales, such as the growth of the
population of consumers, the industrial growth in the region, immigration, and so on; this
would consolidate better this company’s planning. forecasting.
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