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ABSTRACT 
 

 This article explores the utilization of the Hadoop ecosystem as a polyglot big data processing platform, 

focusing on the integration of diverse computation and storage technologies and their potential advantages 
in certain computational contexts. It delves into the potential of this ecosystem as a unified platform 

highlighting its architectural foundations and their comple mentary strengths in distributed storage, 

processing efficiency and realtime analytics. The article explores potential use cases within domains such 

as Smart Cities and Social Networks, illustrating how the platform’s diverse components can be 

orchestrated in a polyglot manner and how these fields can benefit from the ecosystem’s capabilities. 

Finally, the article concludes by showcasing alternatives for future research, including specialized 

architectural aspects of the ecosystem to advance the polyglot paradigm. 

 

1. INTRODUCTION 
 

Processing large volumes of data has become a critical issue for organizations across all 

industries. With the proliferation of digital technologies and the advent of the internet era, 
businesses are inundated with vast amounts of data streaming in from various sources such as 

customer interactions, transactions, sensors, social media and more. Effectively harnessing this 

data holds immense importance for organizations as it provides valuable insights that can drive 

informed decision-making and strategic planning. From capturing and storing information to 
processing and analyzing it, organizations face the challenge of managing the velocity, volume 

and variety of data - concepts often used to define the term Big Data. 

 
Over the past two decades, the Hadoop ecosystem has evolved significantly from its initial use as 

a solution for distributed web page indexing to its current role as a comprehensive platform. This 

transformation has seen Hadoop become a foundational frame- work for constructing data lakes, 

adept at handling structured, semi-structured and unstructured data one of the main reasons not to 
use traditional database management systems. The ecosystem initially relied on the technologies 

HDFS and Map Reduce; however, with the integration of Spark, it substantially improved its 

processing prowess, notably in managing large and intricate data sets. Additionally, the evolution 
of various components, such as the data warehousing framework Hive and the NoSQL database 

HBase, has enhanced the ecosystem’s proficiency in effectively managing and processing queries 

from a multitude of sources. 
 

Big data analysis presents unique challenges due to its diverse nature and massive scale. One key 

aspect is the need to accommodate various file formats and processing characteristics. Unlike 

traditional data processing, where structured data in relational databases predominates, big data 
encompasses a wide array of data types and requires different approaches to load and to process 

the data. 
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For instance, processing log files and IoT sensor data presents distinct challenges due to 
differences in data structure, volume and velocity. Log files are semistructured and generated at a 

consistent rate, primarily serve monitoring and incident analysis purposes. In contrast, IoT sensor 

data is highly diverse, generated at a higher velocity, and often requires real-time processing to 

facilitate immediate decision-making or actions. Whereas the analysis of log files can typically be 
conducted in batches and is retrospective in nature, IoT data processing demands more dynamic, 

often edgebased, realtime analytics and storage solutions to handle the continuous and 

voluminous stream of data from various sensors. 
 

In this work, we show that Polyglot Big Data Processing, a mixture of polyglot computing and 

polyglot persistence, is a versatile approach in big data analysis that uses multiple processing 
engines and data stores to efficiently handle different types of data and processing needs. In 

environments like Hadoop and Spark, it allows for the use of specialized building blocks, such as 

Apache Pig for data flow scripting, Apache HBase for NoSQL data storage and retrieval, and 

Apache Kafka for realtime data stream processing. The aim of this study is to discern the present 
components of the Hadoop ecosystem that can be used in conjunction to process large volumes of 

data, in a polyglot data processing approach. By confronting the tasks related to industry’s needs 

with the specificities of the ecosystem components, we can conclude about which of them are 
more suitable for one or another task, including a comparative analysis of these polyglot strategies 

against traditional, or monoglot, systems, thereby highlighting the relative advantages and 

limitations of utilizing the Hadoop ecosystem in contrast to conventional data processing systems. 
 

The paper is structured as follows. Section 2 presents an overview of the Hadoop ecosystem, 

detailing its core components and their roles in big data processing. Section 3 explores the concept 

of Polyglot Persistence and the types of Polyglot Data Stores. Section 4 delves into the Polyglot 
nature of the Hadoop ecosystem, discussing how it supports multiple data processing paradigms 

and storage systems to accommodate different data processing needs. Section 5 presents use 

cases related to Polyglot Big Data Processing implemented on the Hadoop ecosystem, illustrating 
practical applications and benefits of this approach. Related work is presented in Section 6. 

Finally, our conclusions and directions for future work are presented in Section 7. 

 

2. OVERVIEW OF THE HADOOP ECOSYSTEM 
 
Hadoop is an open source platform for distributed storage and processing of largescale datasets, 

inspired by the Google File System (GFS) [19] and MapReduce [14] papers published by Google. 

Hadoop was created by Doug Cutting and Mike Cafarella in 2005, while they were working at 
Yahoo. The name Hadoop comes from a toy elephant owned by Cutting’s son, which also served 

as the inspiration for the project’s logo. 

 

The main motivation for Hadoop was to address the challenges of processing and analyzing large-
scale datasets that were too big to fit on a single machine’s storage or memory. Initially, Hadoop 

consisted of two main components: Hadoop Distributed File System (HDFS) for distributed 

storage, and MapReduce for distributed processing. Over the years, Hadoop has evolved 
significantly, with the addition of new components, such as Yarn, which became the default 

cluster management tool in Hadoop 2.0, and a range of complementary tools and frameworks 

[16]. Nowadays, the Hadoop ecosystem has become a critical part of the big data technology 
stack, enabling organizations to store, process and conduct data oriented analysis of large scale 

datasets that facilitate the generation of insights and the realization of business value. Figure 1 

shows some of the most popular building blocks of this ecosystem. 
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Figure 1. Hadoop ecosystem 

 
In addition, Hadoop’s open-source nature allowed for widespread adoption, leading to a vibrant 
and active community of developers contributing to its ongoing development and evolution. The 

Apache Software Foundation, which stewards the Hadoop project, plays a pivotal role in 

coordinating the development efforts and ensuring that Hadoop remains a high-quality, reliable 
framework for big data processing. Major technology companies such as Facebook (now Meta), 

Twitter and Netflix have also been instrumental in Hadoop’s growth, not only by using the 

framework at scale within their operations but also by contributing code, sharing use cases and 
participating in the ecosystem’s expansion. Facebook, for instance, has developed and contributed 

several projects that integrate with Hadoop, like [7], while Twitter and Netflix have shared 

experiences, tools and libraries that enhance Hadoop’s capabilities and ease of use, like [32]. 

These contributions from various entities have significantly enriched the Hadoop ecosystem, 
fostering innovations that benefit a wide array of users and applications across industries over the 

last decade. 

 

2.1. Storage 
 

The Hadoop ecosystem offers a variety of storage options tailored to different needs and data 
types, providing a flexible and robust environment for handling big data. At the core is the Hadoop 

Distributed File System (HDFS), designed for reliable and scalable storage of large datasets across 

clusters of commodity hardware. Beyond HDFS, Hadoop integrates with other storage systems to 
cater to diverse requirements. Cloud storage options like Amazon S3 or Google Cloud Storage 

can be seamlessly integrated with Hadoop, providing flexibility and scalability while optimizing 

costs. 

 
HDFS is the main choice for storage in Hadoop ecosystems. It is a distributed file system that 

provides a solution to the problem of storing data across multiple machines in a cluster. Its design 

has a master/slave architecture with a single Name Node as the master server which manages the 
file system namespace and regulates access to files by clients. The slaves are a number of Data 

Nodes, usually one per node in the cluster, which manage storage attached to the nodes that they 

run on [28]. The system is designed to ensure fault tolerance, scalability and efficient storage and 
retrieval of large-scale datasets. 

 

In HDFS, data is stored in the form of blocks or chunks, which are typically large and set to a 

default size of 128 MB in Hadoop 2.x and 3.x. By default, each block is replicated three times, 
though this configuration can be customized on a per file basis. These replicas are then distributed 

across nodes in the Hadoop cluster, as shown in figure 2, which ensures both fault tolerance and 

efficient processing of data. The HDFS Name Node keeps track of the location of these chunks 
and is responsible for managing file system namespace operations. When a client application 

requests location information from the Name node, it responds with the relevant chunk handle and 

chunk locations. If a certain location is unavailable, the client automatically selects the next 
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available location and retries the request. This behavior is critical in maintaining fault tolerance in 
HDFS. 
 

 

Figure 2. HDFS architecture  

[23] 

 

Further enhancing this replication scheme is HDFS’s rack-awareness feature, an intelligent data 
placement strategy that extends beyond mere node level redundancy. Rack awareness considers the 

physical configuration of the cluster, ensuring that data replicas are not only distributed across 

different nodes but also across different racks. This spatial dispersion of data helps mitigate the 
risk of data unavailability or loss during rack-level failures, enhancing the overall resilience of the 

system. Moreover, the rack awareness capability can be extended to encompass multiple data 

centers, enabling HDFS to support a geo-distributed architecture [23]. By distributing replicas 

across different data centers, HDFS can provide a robust disaster recovery solution, enabling 
HDFS to continue operations even if an entire data center goes offline and significantly reducing 

the dependency on traditional backup mechanisms. 

 
There are alternatives to HDFS. Alluxio, known as a virtual distributed storage system, acts as a 

layer between computation frameworks and storage systems, enabling faster data access by 

abstracting the underlying storage and providing data in memory 
 

[33], which is particularly beneficial in big data and machine learning scenarios. Lustre, widely 

adopted in high-performance computing (HPC), is a scalable file system that sup- ports large-

scale, high bandwidth storage environments, making it suitable for intensive data processing tasks 
[49]. Ceph offers a highly reliable and scalable storage solution, supporting object, block and file 

storage under one whole system [2], ideal for cloud storage and big data applications due to its 

fault tolerance and self healing capabilities. 
 

XtreemFS is a distributed file system designed to support fault tolerance, replication and 

scalability, allowing for flexible data access across geographically distributed networks, making it 

well-suited for grid and cloud based applications [26]. Lastly, GlusterFS stands out for its ease of 
use and configurability, offering a scalable network file system that excellently serves applications 

requiring high capacity storage and high speed access to data [13]. 

 

2.2. Resource Manager 
 

In the Hadoop ecosystem, resource management is crucial for orchestrating and optimiz- ing the 
utilization of computational resources across clusters. YARN (Yet Another Resource Negotiator) 

stands out as the primary resource manager within Hadoop, designed to efficiently allocate 

resources for various applications, thereby enhancing the system’s overall performance and 
scalability. It separates the job scheduling and resource management functions from the data 

processing component, allowing for a more versatile and robust processing environment. Yarn 
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achieves this by introducing a master daemon known as the Resource Manager, which handles the 
allocation of computational resources among all the applications in the system, and a per-

application Application Master that manages the application’s lifecycle and resource needs within 

the framework [62]. 

 
Besides YARN, Apache Mesos is another notable resource manager, known for its fine grained 

sharing capabilities and ability to run Hadoop alongside other applications. As stated by [39], a 

framework running on top of Mesos consists of two components: a scheduler that registers with 
the master to be offered resources and an executor process that is launched on agent nodes to run 

the framework’s tasks. While the master determines how many resources are offered to each 

framework, the frameworks’ schedulers select which of the offered resources to use. When a 
framework accepts offered resources, it passes to Mesos a description of the tasks it wants to run 

on them. In turn, Mesos launches the tasks on the corresponding agents. According to [24], a 

framework can reject resources that do not satisfy its constraints in order to wait for ones that do. 

Thus, the rejection mechanism enables frameworks to support arbitrarily complex resource 
constraints while keeping Mesos simple and scalable. 

 

While not traditionally part of Hadoop, Docker Swarm,  and specially Kubernetes, have emerged 
as powerful platforms for container orchestration, capable of managing Hadoop containers and 

enabling more dynamic resource allocation and scaling. 

 

2.3. Distributed Processing 
 

MapReduce is a programming model and software framework that enables the distributed 
processing of large data sets on clusters of computers. As the large datasets are divided into 

smaller pieces in HDFS, tasks can then be processed in parallel on the different Data Nodes. 

 
Map Reduce consists of two primary operations: map and reduce. The map operation takes a set 

of input data and produces an intermediate set of key value pairs. The reduce operation then takes 

these intermediate key value pairs and combines them to produce a final set of output values. The 

map and reduce operations are both designed to be highly parallelizable, which makes Map 
Reduce well suited for distributed computing environments. 
 

 

Figure 3. Distributed Processing with MapReduce 

 [60] 

 

As illustrated in figure 3, the input comprises three lines which are partitioned into three parts 

during the Splitting phase and forwarded to individual Map type tasks. During the Mapping phase, 

each Map task operates on its respective input on a cluster node and generates a key value 
structure. In the specific example, the Map task returns the word count. Subsequently, in the 

Shuffling phase, data is transferred from the Mappers nodes to the Reducers nodes. Prior to the 

transfer, a sort is performed on all the keys, which ensures that the same keys are transferred to the 
same Reducer. The Reduce phase aggregates the data. In the example, this aggregation is the 

summation of the values associated with each key, which results in the number of occurrences of 
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each word in the original input. Finally, the outputs of each Reducer are combined to generate the 
ultimate result. 

 

2.3.1. Spark 

 
MapReduce jobs can be really complex and require many linked Map and Reduce tasks, so many 

files will have to be generated at runtime. As these files are generated on disk, processing 

becomes I/O intensive and the cost of complex operations becomes high enough that processing 
performance is degraded. Spark was created to solve this performance degradation problem in 

MapReduce, replacing disk structures with distributed memory structures, and eliminating the I/O 

cost associated with multiple disk reads and writes. 
 

The memory structures were called Resilient Distributed Datasets in the seminal article [64], but 

today they are called just Data frames. As we can see in Figure 4, the intermediary files 

generated by Map and Reduce tasks are placed in memory. 
 

Therefore, the conventional method of updating files on disk has been replaced in Spark with in-

memory updates distributed across the nodes of the cluster. This feature enables the Map and 
Reduce tasks to directly access the intermediate processing data in the memory of the cluster 

nodes, leading to a significant improvement in the performance 

 

 

 
Figure 4. Apache Spark Resilient Distributed Datasets 

[55] 

 
of the previously inefficient MapReduce jobs. Besides the superior utilization of memory for 
processing operations instead of disk, one of the distinctive attributes of Spark is its capability to 

execute interactive applications, such as SQL queries. Spark is considered an extension of 

MapReduce, which is confined to batch applications, and it provides support for interactive 

applications including Machine Learning, Streaming, SQL queries and Graph processing. 
 

2.4. Distributed Programming 
 

Distributed programming in the Hadoop ecosystem is a fundamental concept that enables the 

processing of large data sets across clusters of computers using simple programming models. It is 

designed to scale up from a single server to thousands of machines, each offering local 
computation and storage. Key components like Hadoop MapReduce and Apache Spark facilitate 

distributed programming by abstracting the complexity of under- lying network communication, 

data distribution and fault tolerance. Both frameworks support writing applications in various 
languages, such as Java, Python and Scala, enabling developers to leverage distributed 

programming to process vast amounts of data efficiently. 
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This capability is crucial in the Hadoop ecosystem, allowing it to serve as a back bone for big data 
processing and analytics, enabling batch-based parallelized work to be performed on a cluster of 

multiple nodes [25], enabling insights and decisions based on massive datasets that would be 

infeasible to process on a single machine. Java, being the language Hadoop itself is written in, 

offers the most direct access to Hadoop’s APIs and is widely used for MapReduce programming. 
It provides strong integration, performance, and control over the Hadoop ecosystem components, 

making it a preferred choice for developers seeking deep customization and optimization in their 

Hadoop applications. 
 

Python is another popular choice in the Hadoop ecosystem, largely due to its simplicity and the 

extensive availability of data processing and machine learning libraries. Tools like PySpark, the 
Python API for Spark, and Hadoop Streaming, which allows writing MapReduce programs in any 

language that can read from stdin and write to stdout (like Python), have made Python a powerful 

and flexible language for distributed data processing in Hadoop. Python’s readability and ease of 

use make it an attractive option for data scientists and analysts who may not have a deep 
programming background but need to work with large data sets. Scala, on the other hand, has 

gained popularity in the Hadoop ecosystem primarily due to Apache Spark, which is written in 

Scala. This language offers concise syntax and functional programming capabilities, making it 
ideal for data processing tasks. Scala’s seamless integration with Spark allows developers to write 

more readable and concise code, which is particularly beneficial for complex data trans- 

formation and analysis tasks. Additionally, Scala’s interoperability with Java means that 
developers can easily integrate Scala based Spark applications with existing Java-based Hadoop 

components. 

 

2.5. SQL-Based Engines 
 

Hive, Impala and Presto are all SQL based engines that allow for querying data stored in 
distributed systems, but they differ significantly in their architecture and performance 

characteristics. While they can interact with SQL meta stores (like the Hive meta store), they are 

not SQL meta stores themselves. Instead, they are query engines that can utilize metadata from a 

meta store to execute queries. 
 

Hive allows users to execute SQL-like commands, known as HiveQL, to analyze data stored in 

Hadoop’s HDFS or other compatible storage systems. Hive translates SQL queries into 
MapReduce jobs, which can be slower due to the overhead of MapReduce. However, it also 

supports execution engines like Tez and Spark for faster processing. It is typically used for 

batch processing tasks and data warehousing applications where high latency is acceptable. One 

key aspect of Hive is that it provides two types of table structures: external and internal 
(managed) tables, each serving distinct purposes and use cases within data processing workflows. 

Internal tables are managed entirely by Hive, meaning that Hive controls the data lifecycle, 

including storage and metadata. When an internal table is deleted, Hive deletes both the table 
schema and the data itself. This tight coupling between Hive and the data makes internal tables a 

suitable choice when full data management is needed within the Hive ecosystem. 
 

 
Figure 5. Apache Hive internal and external tables 
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On the other hand, as shown in figure 5, external tables allow Hive to access data that is stored 
outside of Hive’s purview, typically in a location specified by the user in the HDFS or other file 

system. When an external table is deleted, Hive only removes the schema and leaves the data 

untouched [53]. This feature is particularly useful when the data needs to be shared across 

different applications or when there is a need to maintain the data independently of Hive’s 
management lifecycle. For example, a Hive external table can be created to map to a CSV file 

stored in HDFS, allowing users to execute a SELECT statement to query the data as if it were in a 

traditional table, while the same CSV file can concurrently be accessed by a MapReduce job for 
other data processing tasks. 

 

Impala and Presto are designed for interactive SQL queries. Impala was developed by Cloudera and 
is a massively parallel processing (MPP) SQL query engine that bypasses MapReduce, directly 

accessing the data stored in HDFS, HBase or Amazon S3, which allows for faster query 

execution compared to Hive. Presto was developed by Facebook and operates in memory, without 

relying on MapReduce or HDFS. It can query data from multiple sources, including Hive, HBase, 
relational databases and even proprietary data stores [52]. Both Impala and Presto can integrate 

with the Hive metastore for metadata, but is not limited to Hadoop-based data sources. 
 

As part of the efforts to improve Apache Hive, the feature LLAP (Live Long and Process) became 
available as part of Hive 2.0, which was released in early 2016. It is an addition to Apache Hive 

that significantly enhances its capabilities for interactive SQL queries, making it more competitive 

with tools like Impala and Presto, which are designed for lowlatency SQL querying on Hadoop 
data. LLAP introduces a daemon service that enables in-memory caching, which helps to avoid 

reading data from disk on repeated queries [34]. This persistent service holds data in memory and 

processes across queries, which drastically reduces query latency by eliminating the need to read 

data from disk for every query. 
 

2.6. Nosql Data Stores 
 

In the Hadoop ecosystem, NoSQL databases, often referred to as NoSQL data stores, play a 

crucial role in managing and processing vast amounts of unstructured or semi structured data. 

These databases are designed to overcome the limitations of traditional relational databases, 
particularly in terms of scalability, flexibility and performance when dealing with big data. HBase, 

Giraph and Cassandra are prominent examples within this ecosystem. 

 
Apache HBase is a distributed, scalable, big data store built on top of the Hadoop Distributed File 

System (HDFS). It is a column oriented NoSQL database that is designed for quick read/write 

access to large datasets. HBase shines in scenarios where real time read/write access and high 

throughput are required, making it a popular choice for big data applications that need to handle 

massive amounts of data across thousands of nodes [21]. It supports row keyed data, which 
allows for easy retrieval of rows by key, and it’s often used for storing sparse data sets where 

many columns are empty. Besides, there’s an integration between Hive and HBase, which 

supports originally HiveQL statements to access HBase tables for both read and write. It is even 

possible to combine access to HBase tables with native Hive tables via joins and unions [22]. 
 

Although not exclusively part of the Hadoop ecosystem, Apache Cassandra is a highly scalable 

NoSQL database that can integrate with Hadoop for big data processing. Cassandra provides 
robust support for clusters spanning multiple datacenters, with asynchronous master less 

replication allowing low latency operations for all clients. Its data model offers the convenience 

of column indexes with the performance of log-structured updates, strong support for 
denormalization and powerful builtin caching. According to [9], in relational databases, data is 

placed in normalized tables with foreign keys used to reference related data in other tables. 
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Queries that the application will make are driven by the structure of the tables and related data are 
queried as table joins. In Cassandra, data modeling is query driven. The data access patterns and 

application queries determine the structure and organization of data which then used to design the 

database tables. 

 
Neo4j, a prominent graph database, is designed to handle highly connected data and complex 

queries with agility. Unlike traditional databases, which may struggle with deep join operations, 

Neo4j excels in exploring relationships within data, making it ideal for use cases like social 
networks, recommendation engines and fraud detection. Its graph model allows for data to be stored 

in nodes and relationships, facilitating efficient traversal and querying of connected structures. 

Neo4j’s Cypher query language provides an intuitive way to express graph patterns and retrieve 
data, enhancing the database’s usability and performance in graph related computations. 

According to [42], Neo4j is engineered to capitalize on the advantages of graph processing, 

offering significant improvements in speed and flexibility for applications that require the analysis 

of interconnected data. This capability underscores Neo4j’s suitability for scenarios where 
relational databases might not provide optimal performance or where the data’s relational aspects 

are critical to the application’s core functionality. 
 

Within the Hadoop ecosystem, a variety of NoSQL databases offer specialized functionalities that 
enhance big data processing capabilities. MongoDB and Couchbase, both document-oriented 

databases, integrate seamlessly with Hadoop, enabling data synchronization and analytics with 

their flexible schema and efficient querying. Accumulo, built on Hadoop, provides a secure key 
value store with fine-grained access control, ideal for sensitive data handling. Similarly, Redis, 

primarily an in-memory data store, complements Hadoop’s processing power by caching results 

for faster access, whereas Riak offers distributed storage solutions with high availability and fault 

tolerance. 
 

On the other hand, Aerospike, known for its high performance, serves as a key value store that 

supports real-time data processing, making it suitable for applications requiring rapid data access 
and analytics. These NoSQL data stores, when integrated with Hadoop, provide robust solutions 

for managing and analyzing diverse data sets, ranging from structured to unstructured data. They 

cater to various industry needs, from real-time bidding systems to secure data management, 
demonstrating the flexibility and scalability essential for contemporary big data ecosystems. 

 

Finally, Elasticsearch, often recognized for its powerful search and analytics capabilities, also 

functions effectively as a NoSQL database. It manages and stores data in a schema less fashion 
using JSON documents, a characteristic that aligns with the NoSQL paradigm. This feature 

enables Elasticsearch to handle vast volumes of unstructured and semi-structured data efficiently, 

providing scalability and flexibility in data indexing and search operations. Its distributed nature 
allows for high availability and resilience, facilitating rapid data retrieval and real-time analytics 

across large datasets. According to [58], Elasticsearch’s capability to perform complex searches 

and analytics at scale, coupled with its document-oriented storage mechanism, exemplifies its role 
as a NoSQL database, addressing use cases that traditional relational databases may find 

challenging. This dual functionality as both a search engine and a NoSQL data store makes 

Elasticsearch a versatile tool in the realm of big data and real-time analytics applications. 

 

3. POLYGLOT PERSISTENCE 
 

Polyglot persistence refers to the practice of using different data storage technologies to 

handle varied data storage needs within the same application. Instead of trying to fit all data 
into a single storage model, developers choose the best storage solution for each workload or 

application, such as using a document store for JSON data, a graph database for interconnected 
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data, and a relational database for a transactional system. According to [29], polyglot persistence 
refers to the use of different types of databases in one application system, instead of forcing all 

data to fit into only one database type. 

 

For example, [31] shows that an e-commerce solution may use a document store to manage 
orders data due to its flexible schema for semi-structured data. Simultaneously, a graph database 

could be employed to analyze and recommend products based on user relationships and 

interactions, while a key value store for session management and shopping cart data. 
Additionally, a relational database could be used for transaction processing, where ACID 

properties are crucial, like money balance data. This setup ensures that each aspect of the e-

commerce platform leverages the most suitable data storage and retrieval mechanisms, as 
illustrated in Figure 6. 
 

 
Figure 6. Polyglot persistence in E-commerce application 

[31] 

 
While polyglot persistence offers flexibility, it typically requires the application layer to manage 

the integration and interaction between these diverse data stores. One explicit option is for the 

application itself to orchestrate these interactions, meaning the application code directly handles 
the logic for when and how to interact with each data store, as well as how to integrate and 

process the data from different sources. This approach provides granular control but can increase 

the complexity of the application code and tightly couple it with the data layer. 
 

On the other hand, using mediator systems or middleware can abstract away the complexities of 

direct interaction between the application and the data stores. Middle ware solutions can provide 

a unified interface or communication layer that sits between the application and the databases, 
handling the necessary translations and data transformations. [48] Proposes a Polyglot Persistence 

Mediator (PPM), which allows for runtime decisions on routing data to different backends 

according to schema-based annotations. As the authors state, PPM acts as a broker between 
applications and backend databases. Applications use a defined interface to issue queries, CRUD 

operations, transactions, and other operations to the mediator in a database-agnostic fashion. 

Based on the routing model, the mediator selects the appropriate database and transforms the 
incoming operation to database-specific operations. 

 

Other implementations of mediators include data virtualization platforms and data management 

frameworks, providing an abstraction layer over heterogeneous data sources and allowing users to 
access and query data without needing to know where and how the data is stored. Data 

virtualization tools often provide capabilities to federate queries, cache results for performance, 
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and translate queries between different query languages. For example, [8] offers a set of tools that 
include a SQL parser, an optimizer, and a query execution engine that can interpret, optimize, and 

execute queries across a wide array of underlying data sources, such as Cassandra, MongoDB, 

and Redis. According to [20], Calcite represents its queries via a relational operator tree, 

implementing the base SQL language with a subset of extensions and supporting heterogeneous 
data models. 

 

3.1. Polyglot Data Stores 
 

Polyglot Data Stores have emerged as a sophisticated approach to data management, aimed at 

utilizing the most effective data storage technology for different data types and use cases within 
the same application. The term polyglot persistence, coined by Martin Fowler [38], encapsulates 

the notion of applying multiple data storage technologies as dictated by the specific needs of each 

data model within an application. According to [46], the polyglot approach leverages the strengths 
of various storage technologies, such as the document model’s flexibility, the wide column store’s 

scalability, the key-value store’s speed, and the graph database’s connected data efficiency. By 

strategically employing these diverse technologies, polyglot data stores enable applications to 
meet complex and varied data persistence demands more effectively than a one-size-fits-all 

solution. 

 

Often called Polystores, they can be categorized based on their architecture, the supported data 
models, the nature of their data integration, and the level of transparency they offer to end-users 

in handling heterogeneous data sources. Based on their architecture, polystores can be integrated 

or federated. In the integrated approach, different data models are integrated into a single system 
that manages the data in a unified manner. This approach aims to provide a seamless experience 

across different data models. The federated approach involves a collection of disparate data 

management systems, each supporting different data models, but interconnected through a 
federated layer that allows for integrated query processing and data retrieval. 

 

Based on the supported data models, a multimodel data store supports multiple data models but 

might not offer full flexibility or optimization for each model. On the other hand, hybrid 
polystores are optimized to support two or more specific data models, offering specialized 

functionalities and optimizations for each supported model. 

 
[20] indicates four polystores categories: Federated Systems, Polylingual Systems, Multistore 

Systems, and Polystore Systems. Federated and Polylingual Systems use a homogeneous set of 

data stores beneath their mediation layer, whereas Multistore and Polystore systems rely on 

heterogeneous ones. Furthermore, Federated and Multi store Systems only offer one query 
interface, while Polylingual and Polystore Systems provide many interfaces. It’s important to 

note that these categories are not universally agreed upon in the literature, and many different 

classifications exist. However, all approaches attempt to distinguish between homogeneous and 
heterogeneous data sources and the tools available for data retrieval. 

 

Federated Systems, such as Apache Calcite [8], allow querying across multiple databases 
without moving data, treating them as if they were a single entity. Despite the underlying 

databases being homogeneous, the federated system abstracts their complexities to offer a unified 

query interface. On the other hand, Polylingual Systems support multiple query languages or data 

models within the same system, catering to a homogeneous set of data stores. An example could 
be a database that supports both SQL for relational data and CQL for columnar data, like 

ScyllaDB [50]. 
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Multistore Systems involve heterogeneous data stores and provide a single query interface to 
access them. An example is Presto, which can query data from HDFS, S3, Cassandra, MySQL, 

and many other sources through a single SQL like interface. Poly store Systems integrate 

heterogeneous data sources and offer multiple query interfaces to suit the data models of the 

integrated stores. An example is Polybase, which allows SQL Server to execute queries that 
combine data from SQL Server and Hadoop or from other databases like Oracle or Teradata. 

 

3.2. CAP Theorem 
 

The relationship between Polyglot Persistence and the CAP Theorem becomes partic- ularly 

salient in the context of distributed data stores, as the theorem provides a crucial framework for 
understanding the inherent tradeoffs in such systems. In a polyglot persistence setup leveraging 

distributed data stores, each system may prioritize different aspects of the CAP theorem - 

Consistency, Availability or Partition Tolerance-based on its design principles and operational 
characteristics. This prioritization is pivotal when selecting and integrating multiple data storage 

technologies to cater to specific use cases or data types within a distributed environment. 

Understanding these tradeoffs is essential for architects to design a polyglot architecture that aligns 
with the application’s requirements, ensuring that data is managed, accessed and synchronized 

effectively across distributed stores. By carefully choosing data stores that align with the desired 

CAP properties, architects can construct a resilient and adaptable polyglot persistence framework, 

enabling the applica- tion to efficiently handle diverse data demands and enhance overall system 
performance in a distributed setting. 

 

According to [29], The CAP (Consistency, Availability, Partition Tolerant) conjecture explains 
why SQL is not sufficient for a distributed system. Since the ACID characteristics are difficult to 

fulfill in a distributed manner, many researchers are considering new types of database systems 

with relaxed characteristics for implementation in distributed systems. Indeed, as [20] states, the 
architecture of polyglot systems can be classified according to the CAP theorem. Since they can 

choose and set up their underlying data stores according to the user’s current needs, they can 

theoretically be CA, CP and AP at the same time - never all at once for the same application. 

 

4. POLYGLOT NATURE OF THE HADOOP ECOSYSTEM 
 
While not polystores in the strictest sense, data lakes can function in a polystore like manner by 

storing raw data in various formats and enabling diverse analytical and processing tools to operate 

on this data. In such platforms, the data lake serves as a centralized repository, from which data can 
be directed to the most suitable data store. Various engines and tools can then query and process the 

data as needed. This setup exemplifies both polyglot persistence, by accommodating raw data in 

numerous formats, and polyglot processing, by allowing a diverse array of analytical and 
processing tools to interact with the data. 

 

The Hadoop ecosystem is increasingly utilized as a foundational technology for data lakes, 

especially within public cloud environments, where its ability to handle vast amounts of diverse 
data shines. Major cloud providers, such as Amazon Web Services (AWS), Microsoft Azure and 

Google Cloud Platform (GCP), offer Hadoop based services that simplify setting up data lakes. 

Amazon Web Services (AWS) offers Amazon Elastic MapReduce (EMR), a cloud-native big data 
platform that allows processing vast amounts of data quickly and cost effectively across resizable 

Hadoop clusters. Microsoft Azure provides Azure HDInsight, a fully managed cloud service that 

makes it easy, fast and cost-effective to process massive amounts of data. It supports a broad 

range of Hadoop ecosystem components, including Apache Spark, HBase and Kafka. Google 
Cloud Plat- form (GCP) offers Cloud Dataproc, a fast, easy-to-use, fully managed cloud service 

for running Apache Spark and Apache Hadoop clusters. Oracle offers Big Data Service, which is 
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a Hadoop-based service designed to provide a comprehensive and secure big data platform. Users 
can manage their Hadoop and Spark workloads with scalable clusters, integrated with OCI’s 

storage and database services. IBM’s Analytics Engine is a service that combines Apache 

Hadoop and Apache Spark to offer a powerful environment for analyzing and processing vast 

datasets. It simplifies the process of managing hardware and software resources, allowing users to 
focus on data analysis and application development. And Cloudera, one of the original Hadoop 

distribution companies, offers its services on various cloud platforms. Cloudera Data Platform 

(CDP) can be deployed on AWS, Azure and GCP, providing a unified, secure and open data 
platform that covers the entire data lifecycle. 

 

These cloud-based data lakes leverage Hadoop’s robust ecosystem, including storage options like 
HDFS or cloud object storage (S3 on AWS, Blob Storage on Azure and Cloud Storage on GCP) 

and processing frameworks like MapReduce and Spark. The elasticity of the cloud allows 

organizations to scale their data lakes up or down based on demand, optimizing costs and 

performance. Additionally, cloud providers integrate Hadoop with various analytics and machine 
learning services, enhancing the data lake’s capabilities and making it a central hub for data 

ingestion, storage, processing and analysis. This seamless integration in the cloud enables 

businesses to harness the power of big data analytics more efficiently, driving insights and 
innovation while leveraging Hadoop’s proven scalability and flexibility. 

 

Figure 7 shows a diagram related to a Polyglot Big Data processing architecture based on 
Hadoop. Starting with the Ingestion Phase, data enters the system and is first deposited in the 

Landing Zone. This is a preliminary staging area where raw data is collected before any 

processing. It serves as an initial checkpoint where data can be quickly captured and stored in its 

native format. From the Landing Zone, if necessary, data undergoes a transformation process to 
become more structured and usable; it is then moved to the Enriched Zone. This zone represents 

an intermediate layer where data has been cleansed, enriched and possibly reformatted to ensure 

higher quality and readiness for analysis. This transformation may be crucial for preparing the 
data for efficient querying and processing. 

 

In the Storage Phase, data is routed to distinct storage systems based on its characteristics and the 

intended use. In this instance, the storage options utilized are Hive external tables, Hive internal 
tables and HBase tables. Progressing to the final stage of the 
 

 
 

Figure 7. Polyglot Architecture 

 

work flow, Tasks 1, 2 and 3 each represent specific analytical or processing jobs within the 

platform. The data store chosen for each task is based on its compatibility with the task’s 

requirements. Task 1 might interact directly with an enriched JSON file stored on HDFS, ideal for 
analytical and querying tasks that do not alter the raw data. Task 2 could necessitate access to 
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multiple data stores, combining data retrieved from these varied sources. Meanwhile, Task 3 is 
likely to capitalize on HBase, particularly for real-time process- ing and applications that demand 

rapid data access, merging data sourced straight from HDFS. 

 

Polyglot Data Processing in this context involves using various data stores and processing 
technologies suited to different data types, from structured data in relational databases to 

unstructured data in NoSQL systems. It combines multiple programming languages and tools for 

diverse data management, all centralized around HDFS. This approach allows for efficient and 
scalable data processing, especially in complex areas like healthcare and social network analysis. 

Moreover, it provides the flexibility to use specific storage solutions like HBase for certain tasks, 

thereby optimizing the data processing pipeline for both depth of analysis and efficiency. 
 

5. USE CASES 
 

In this section, we provide real-world examples or case studies that illustrate the effective use of the 

polyglot approach using the Hadoop ecosystem, showcasing how different tools may be combined 
to solve specific problems in big data processing. 

 

5.1. Healthcare 
 

Consider a healthcare analytics platform designed to provide comprehensive insights into patient 

care, treatment outcomes and operational efficiency for a network of hospitals, as shown in 
figure 8. This platform could greatly benefit from using several storage and processing 

techniques within the Hadoop ecosystem to handle various data types and analysis needs. 

 
To ingest real-time data from IoT devices used in patient monitoring, such as heart rate monitors 

and blood glucose sensors, Kafka can handle the high-throughput data streams these devices 

generate. The data can then be processed using Apache Storm or Spark Streaming to detect 

anomalies or critical conditions in real-time, triggering alerts for immediate medical intervention. 
Use HBase for storing patient records and clinical data. HBase’s columnar storage model is well-

suited for this kind of data, allowing for efficient read/write operations and easy scalability. It can 

store vast amounts of structured and semi-structured data, making it ideal for handling electronic 
health records (EHRs), lab results and imaging data. 

 

To create a data warehouse that consolidates various data sources, providing a unified view for 
more complex analytics, Hive allows for querying this data using SQL like queries, making it 

accessible for data analysts and decision makers to generate reports, conduct trend analysis and 

support strategic planning. Additionally, the solution may use MapReduce and Spark for batch 

processing and analysis of historical data. This could involve analyzing treatment outcomes over 
time, patient recovery rates, or the effectiveness of different medications. The results can inform 

future treatment plans and healthcare policies. 

 

 
Figure 8. Healthcare Polyglot Data Processing 
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As a complement, the solution may leverage Spark’s MLlib for machine learning tasks, such as 
predicting patient readmission risks or identifying potential outbreaks of hospital acquired 

infections. By training models on historical data, the platform can provide predictive insights that 

help improve patient care and operational efficiency. By integrating these diverse storage and 

processing technologies, the healthcare analytics platform can provide real-time monitoring, in-
depth analysis and predictive insights, enhancing patient care and operational decision-making 

across the hospital network. 

 

5.2. Stock Market 
 

In order to process real-time stock market data feeds, one possible solution would lever age 
Apache Storm, utilizing its capabilities for fast, distributed and fault-tolerant stream processing to 

analyze market dynamics like ticks, trades and quotes instantaneously. This real time analysis 

enables the platform to deliver prompt insights and alerts reflective of the current market 
conditions. Integrate Apache Flume to gather, aggregate and transport substantial volumes of log 

data, such as trade executions and order books, into HDFS, ensuring reliable and distributed data 

capture for subsequent processing, as shown in figure 9. 
 

To enhance the platform’s data handling and integration capabilities, we may use Apache NiFi, 

which facilitates data flow automation and management, allowing for the enrichment of real-time 

and historical market data by assimilating external data sources- news feeds, economic indicators 
or social media insights that could impact stock valuations. For processing and indepth analysis 

of historical stock market data, employ Apache Spark to leverage its in-memory processing for 

swift computations on data stored in HDFS, aiding in trend analysis, volatility studies and the 
back-testing of trading strategies. 

 

In the storage layer, we use Apache Cassandra to manage the influx of real-time data and HBase 
to manage the historical data, providing scalable and efficient storage solutions that support the 

platform’s analytical demands. for dynamic data exploration and visualization, utilize interactive 

tools like Apache Zeppelin or Jupyter, integrated with Spark, enabling analysts and data scientists 

to script in notebooks, conduct exploratory analysis, prototype models and visually represent 
stock market trends or anomalies. We may integrate Elasticsearch as an additional polystore 

component to enhance the platform’s search and analytics capabilities. Renowned for its powerful 

full-text search, near real time analytics and scalability, Elasticsearch can serve as an efficient tool 
for indexing and querying vast amounts of structured and unstructured data generated in the stock 

mar- ket. By storing time-series data, such as stock prices and trade volumes, in Elasticsearch, the 

platform can quickly perform complex queries, aggregate data and analyze trends over time. 
 

 
Figure 9. Stock Market Polyglot Data Processing 
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Further, harness Spark’s MLlib to develop and train machine learning models that predict stock 
price movements, discern market trends and evaluate risks by analyzing historical and real-time 

data, offering predictive insights to investors and traders for informed decision-making. Through 

these integrated technologies and strategic data storage solutions, the platform can achieve a 

comprehensive and nuanced understanding of market behaviors, facilitating advanced analytics 
for the financial sector. 

 

5.3. Social Networks 
 

Consider an application to analyse data that comes from a social network - Twitter, for example. 

to stream Twitter data in real-time using the Twitter API, we leverage Apache Kafka, which 
serves as the backbone for data ingestion, efficiently handling the high volume and high velocity 

data generated by Twitter users. It can capture tweets, retweets, 

 
likes and replies, ensuring a comprehensive dataset is available for analysis. We may use Apache 

Hive internal tables to store and manage this vast dataset in a structured format, as long as we may 

use Apache Hive external tables to consume data directly from HDFS, also in a structured view. 
Figure 10 shows a related diagram. 

 

Hive’s data warehousing capabilities allow the platform to organize Twitter data efficiently,  

enabling partitioning, indexing and querying of historical data. This organized data repository 
serves as the foundation for in depth analytics and trend analysis over time. Implement Presto for 

fast, interactive querying of the Twitter data stored in Hive. Presto’s distributed SQL query 

engine allows analysts and data scientists to perform exploratory data analysis, run ad-hoc queries 
and generate reports on various aspects of Twitter data, such as user engagement, hashtag 

popularity and sentiment trends, with low latency. 
 

 

 

Figure 10. Social Networks Polyglot Data Processing 

 

One frequent job in this scenario is to count the most frequent terms found in tweets, a job can be 
implemented using the MapReduce framework to process large datasets efficiently. Initially, the 

MapReduce job would tokenize each tweet into words in the map phase and then count each 

occurrence in the reduce phase, providing a distributed mechanism to tally term frequencies across 
a vast collection of tweets. To enhance performance, this process can be further optimized by 

integrating Apache Spark, specifically leveraging Resilient Distributed Datasets (RDDs). Spark’s 

RDDs offer a fault tolerant, parallelized way to handle data, allowing for in memory processing 
and reducing the need for disk I/O compared to traditional MapReduce. By utilizing Spark’s RDD 

transformations and actions, the job can efficiently process and aggregate word counts in 
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memory, significantly speeding up the analysis. This hybrid approach combines the robustness 
of MapReduce’s distributed computing model with the speed and agility of Spark’s in memory 

processing capabilities, providing a powerful solution for real-time analytics on social media data. 

 

Additionally, we integrate a graph processing framework, such as Apache Giraph or Neo4j, to 
model and analyze the Twitter network as a graph. In this graph, users can be represented as 

nodes and interactions such as follows, mentions and retweets as edges. This approach enables the 

platform to identify influential users, detect tightly-knit com- munities, understand the spread of 
information and uncover patterns in user interactions and content propagation. The platform can 

further employ machine learning models to perform sentiment analysis on tweet content, 

categorizing them into positive, negative or neutral sentiments. Combining sentiment data with 
community and interaction analysis, the platform can detect emerging trends, monitor brand 

perception and understand public reaction to events in real-time. The evaluation of the jobs 

related to this use case can be found in [1]. 

 

5.4. Smart Cities 
 
Imagine a smart city initiative that aims to integrate and analyze data from various sources to 

enhance urban living, optimize city services and support decision-making processes. The 

initiative utilizes Apache Calcite as a polyglot persistence framework and Apache Spark for 

processing streaming data, addressing diverse data management and analysis needs. 
 

Apache Spark is employed to process and analyze streaming data from various IoT devices and 

sensors deployed throughout the city. These devices continuously transmit data related to traffic 
conditions, public transportation, energy usage and environmental factors. Spark’s ability to 

handle large-scale data streams in real-time is crucial for the smart city to monitor its 

infrastructure dynamically, detect anomalies and respond to events as they occur. For instance, 
Spark can analyze traffic flow data to optimize traffic light timings, reducing congestion during 

peak hours. It can also process data from environmental sensors to monitor air quality and trigger 

alerts if pollution levels rise above safe thresholds. 

 
Apache Calcite acts as a unifying layer for various data storage systems within the smart city’s 

infrastructure. It provides a flexible framework that allows the city’s data engineers to query 

multiple data sources using a single SQL interface, regardless of the underlying data format or 
storage model. For example, Calcite can be used to integrate data from a relational store like 

Hive storing city taxes records, a NoSQL database like Mongo DB with handling of large 

volumes of data for a smart waste management system and a time-series database like Open 

TSDB holding real-time public transportation data. By offering a consistent query interface, 
Calcite simplifies data access and integration, enabling more efficient data analysis and 

management across the city’s diverse data ecosystem. 

 
As shown in figure 11, the smart city initiative uses Apache Calcite to create a unified view of its 

heterogeneous data landscape, allowing city analysts to perform comprehensive analyses using 

familiar SQL queries. At the same time, Apache Spark processes real time data streams to provide 
immediate insights and enable proactive management of city services. Together, these 

technologies empower the smart city to harness its diverse data sources effectively, turning raw 

data into actionable intelligence that enhances urban efficiency, sustainability and quality of life 

for its residents. 
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6. RELATED WORK 
 
Over recent years, numerous researches have been undertaken in the processing of social network 

data through the utilization of the Hadoop ecosystem, with the goal of gathering, storing and 

analyzing data to perform tasks such as sentiment analysis and misinformation investigation. By 

contrast, research in the field of polyglot data processing using the 
 

 
 

Figure 11. Smart Cities Polyglot Data Processing 
 

Hadoop ecosystem is an emerging area that addresses the complexities and challenges of 

managing diverse data types in large scale environments and harnessing the power of multiple 

programming languages, computational paradigms, frameworks and tools within the Hadoop-
Spark ecosystem to optimize data processing tasks. 

 

In [20], the authors explore the concept of polyglot persistence, an approach increasingly 
recognized for its effectiveness in data management. As detailed in their work, polyglot persistence 

is strategically designed to combine the advantages of various data stores while avoiding their 

respective limitations. The article offers a comprehensive overview of polyglot persistence tools, 

such as Polybase, and delves into related systems like Apache Calcite, providing a thorough 
summary of these advanced data management solutions. 

 

Several works use the MapReduce programming model to implement social media data analysis. 
[54] proposes the use of Hadoop for processing Twitter data and MapReduce for sentence 

analysis, text mining, and multi label classification. [51] uses the Twit- ter streaming API to 

collect data and MapReduce to perform sentiment analysis over the collected data. In [40], the 
authors posit that utilizing JSON files with Hadoop offers benefits in that information is stored in a 

key-value format, which in turn is used as input by MapReduce. 

 

As [61] states, the design of data structure for social network analysis should be based on Hadoop 
massive datasets interface to meet the requirements of data processing under distributed 

development environment. The authors use MapReduce for raw data processing and iterative 

calculation of PageRank value. And in a comparison of data processing tools in Hadoop, such as 
MapReduce, Hive, and Pig, [45] conclude that, when it comes to unstructured data, MapReduce 

proves to be the most efficient tool. 

 
The prevalent approach employed in the related studies to accomplish their objectives is the 

utilization of the MapReduce paradigm. However, there exists a noticeable gap within the 

existing body of literature concerning the utilization of Apache Spark, an alternative distributed 

computing framework, conceived as a response to the performance limitations inherent in the 
MapReduce paradigm and holding particular significance in the domain of big data analytics, 

particularly when dealing with large-scale datasets such as those found in social networks. 
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According to [5], the adoption of in-memory buffers as a replacement for intermediate disk files 
is what contributes to Spark’s superior speed in comparison to Hadoop MapReduce. Indeed, Spark 

is particularly well suited for processing large datasets. Moreover, [17] state that Spark mitigates 

the need for frequent read and write cycles, resulting in a tenfold improvement in performance 

compared to Hadoop when processing applications on disk. Additionally, the retention of 
intermediate data in memory renders Spark a hundredfold faster in memory-intensive scenarios. 

 

Beyond the foundational works associated with the Hadoop ecosystem and the integration of 
Apache Spark, an emerging field of research is developing, centered on the concept of polyglot 

data processing. This area of study is dedicated to exploring the integration of multiple 

processing and storage components, aiming to provide efficient big data solutions, particularly for 
complex tasks like social network analysis. In parallel, the field is also investigating the strategic 

use of different storage systems, ranging from HDFS for handling massive datasets to NoSQL 

databases like HBase, which offer more agile management of unstructured and semi structured 

data. 
 

7. CONCLUSIONS AND FUTURE WORK 
 

In conclusion, the exploration of Polyglot Big Data Processing within the Hadoop ecosystem has 
underscored the ecosystem’s versatility and robustness in addressing a broad spectrum of data 

processing requirements and scenarios. By leveraging a polyglot approach, organizations can 

tailor their data architecture to utilize the most appropriate data stores and computing frameworks, 

thereby optimizing performance, scalability and efficiency. The Hadoop ecosystem, enriched 
with a variety of data stores such as HBase, Hive and integrations with systems like Neo4J, offers 

a comprehensive platform that can accommodate the diverse nature of big data. The adaptability 

of Hadoop to function seamlessly with these varied data stores, coupled with its innate ability to 
process massive datasets, positions it as a cornerstone in the realm of big data processing. 

 

Furthermore, the inclusion of computing frameworks like Apache Spark and Apache Storm within 
the Hadoop ecosystem enhances its capability to not only batch process vast amounts of data but 

also to perform real-time analytics and stream processing. This flexibility ensures that whether 

the task at hand involves analyzing historical data or processing real-time data streams, the 

Hadoop ecosystem is equipped to provide insightful, timely and actionable results. Through the 
use cases presented, ranging from healthcare analytics to social media analysis and financial 

market monitoring, it’s evident that a polyglot big data processing approach, underpinned by the 

Hadoop ecosystem, offers a potent solution to the complex challenges presented by the 
multifaceted nature of big data. This approach not only facilitates the efficient and effective 

analysis of data but also enables or- ganizations to harness the full potential of their data assets, 

driving innovation, enhancing decision-making and fostering a competitive edge in the data-

driven landscape. 
 

Future work should include executing comprehensive tests across the various do- mains cited in 

the article, such as healthcare, social media and financial markets. These tests will help in 
understanding the practical implications of implementing polyglot big data processing within 

these sectors, focusing on metrics like performance and scalability. Evaluating the Hadoop 

ecosystem’s adaptability and efficiency in real-world scenarios 
 

will provide valuable insights into its application in diverse industry contexts. Another crucial 

area of future research is the comparative analysis of different polystores within the Hadoop 

ecosystem. By systematically comparing the performance, ease of use and integration capabilities 
of various polystores, researchers can identify optimal strategies for data management and 

processing in polyglot environments. This analysis will help organizations make informed 
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decisions when architecting their big data solutions, ensuring they leverage the most suitable 
polystore options for their specific needs. Investigating the use of mediators to retrieve data from 

different data stores is essential for enhancing the efficiency of polyglot data architectures. 

Future work should explore the development and optimization of mediator systems that can 

seamlessly integrate with the Hadoop ecosystem, providing a unified query interface across 
diverse data models and stores. This research will contribute to simplifying data access and 

manipulation, enabling more flexible and powerful data analytics solutions. 

 
Innovation in the field of polyglot big data processing is pivotal for advancing the capabilities and 

applications of big data technologies. Future developments should focus on creating more 

cohesive and user friendly approaches to managing and processing data across varied data models 
within the Hadoop ecosystem. Efforts could include enhancing interoperability between different 

data stores, improving real-time data processing capabilities and developing advanced analytics 

tools that provide deeper insights. Innovations that offer a unified view of different data models 

and facilitate more efficient data integration and analysis will drive the next wave of 
advancements in big data processing, empowering organizations to unlock new levels of value 

from their data assets. The journey toward more integrated, efficient and versatile polyglot big 

data processing systems is ongoing. By addressing these areas of future work, the field can 
continue to evolve, offering increasingly sophisticated tools and methodologies that cater to the 

complex and dynamic nature of modern data landscapes. 
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[16] R. Elmasri, S. B. Navathe. Fundamentals of Database Systems 7th ed., 2016. 

[17] K. Garg, D. Kaur. Sentiment analysis on Twitter data using Apache Hadoop and performance 

evaluation on Hadoop MapReduce and Apache Spark. In: Proceedings on the International 

Conference on Artificial Intelligence (ICAI), p. 233â238, 2019. 
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