
International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.3, No.6, November 2013

DOI : 10.5121/ijdkp.2013.3605 73

AN APRIORI BASED ALGORITHM TO MINE

ASSOCIATION RULES WITH INTER ITEMSET

DISTANCE

Pankaj Kumar Deva Sarma
1
 and Anjana Kakoti Mahanta

2

1
Associate Professor, Department of Computer Science,

Assam University, Silchar, Assam, India, PIN-780011
2
Professor, Department of Computer Science,

Gauhati University, Guwahati, Assam, India, PIN- 781014

ABSTRACT

Association rules discovered from transaction databases can be large in number. Reduction of association

rules is an issue in recent times. Conventionally by varying support and confidence number of rules can be

increased and decreased. By combining additional constraint with support number of frequent itemsets can

be reduced and it leads to generation of less number of rules. Average inter itemset distance(IID) or

Spread, which is the intervening separation of itemsets in the transactions has been used as a measure of

interestingness for association rules with a view to reduce the number of association rules. In this paper by

using average Inter Itemset Distance a complete algorithm based on the apriori is designed and

implemented with a view to reduce the number of frequent itemsets and the association rules and also to

find the distribution pattern of the association rules in terms of the number of transactions of non

occurrences of the frequent itemsets. Further the apriori algorithm is also implemented and results are

compared. The theoretical concepts related to inter itemset distance are also put forward.

KEYWORDS

Association rules, frequent itemsets, support, confidence, inter itemset distance, spread, data mining.

1. INTRODUCTION

Association rule mining, put forward by Agrawal, Imielinsky & Swami [1] is a technique for rule

discovery from frequent patterns. Let I = {i1, i2, i3, … …. …. im} be a set of literals called items

or attributes over the binary domain {0,1} and D be a database of transactions, where each

transaction T is a set of items such that T I. A set of items X I is called an itemset. Given an

itemset X I, a transaction T contains X if and only if X T. Each transaction T is a tuple of the

database D and is represented by identifying the attributes with value 1. A unique identifier called

TID is associated with each transaction. Thus a transaction T contains an itemset X if X T.

An association rule is an implication of the form X => Y, where X and Y are itemsets such that X

I, Y I and X∩Y = Φ. The rule X=>Y holds in the transaction database D with confidence c if

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.3, No.6, November 2013

74

c% of the transactions in D that contain X also contain Y. The rule X=>Y has support s in the

transaction database D if s% of transactions in D contains X UY. The support of the rule is

denoted by σ(X U Y) and its confidence is given by σ(X U Y)/σ(X). In other words confidence of

the association rule X=>Y is the conditional probability that a transaction contains Y, given that it

contains X. A rule is said to be confident if its confidence is not less than user specified minimum

confidence (minconf). Confidence denotes the strength of implication and support indicates the

frequencies of the occurring patterns in the rule. In this definition of association rules, negation or

missing items are not considered to be of interest. Given a set of transactions D, it is required to

generate all association rules that satisfy certain user specified minimum thresholds for support

(minsup) and confidence (minconf). An itemset with k-items is called a k-itemset. Support count,

denoted by σ(X) is the frequency of occurrence of an itemset X in the transactions of the

database. Support of an itemset X is also expressed as percentage of transactions in the database

D.

An itemset X is said to be large or frequent if its support is not less than minsup. That is an

itemset is called frequent if it occurs at least in some pre specified number of transactions of the

database called minimum support (minsup). A frequent itemset is said to be a maximal frequent

itemset if it is a frequent itemset and no superset of this is a frequent itemset. Discovery of

frequent itemsets from large transaction database has been a central component for mining

association rules [2] [3]. Apriori [2] is one of the prominent algorithms for mining association

rules. The task of mining association rules consists of two sub problems [1] [4]:

Step 1: Find all the large or frequent itemsets with respect to a pre specified minimum support.

This step is computationally and I/O intensive. Given m items, there can be potentially 2
m

itemsets, m ϵ Integer and m > 0. Efficient methods are needed to traverse this exponential itemset

search space to enumerate all the frequent itemsets.

Step 2: Generate the association rules which are confident from the large itemsets discovered.

This step is relatively straight forward. Rules of the form X\Y=>Y are generated for all the

frequent itemsets X, where Y X subject to the condition that the rules have at least minimum

confidence.

The performance of the mining association rules is determined by the efficiency of the method to

solve the first problem in step 1 [2]. Research issues related to association rules include measures

of interestingness and reduction of huge number of discovered rules. Support and confidence are

two widely used measures of interestingness. Other parameters include correlation (or lift or

interest) and conviction [5].

With average inter itemset distance association rules are reinforced with additional meaning. The

constraints support, confidence and average inter itemset distance are used conjunctively to

reduce the number of association rules. In this paper a detail algorithm based on apriori algorithm

is designed and implemented to calculate average inter itemset distance and discover the

association rules with thresholds on average inter itemset distance along with support and

confidence without scanning the database further. The apriori algorithm is also implemented and

the results of both the methods are compared. Moreover, the necessary theoretical foundation for

the calculation of average inter itemset distance is also put forward. The proposed algorithm

applies a level wise approach of scanning like the apriori algorithm in which frequent n – itemsets

become the seeds for generating the candidates for the next i. e. (n +1)
th
 pass of the database and

so on until no higher order itemset are found.

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.3, No.6, November 2013

75

1.1 Inter Itemset Distance (IID)

Inter itemset distance (IID) of an itemset is the length of separation or gap within the lifespan of

occurrence of an itemset in terms of the number of intervening transactions of non occurrence of

the itemset between two successive occurrences of the same itemset in the transactions of the

database. For an itemset with a solitary occurrence in the whole database, inter itemset distance

cannot be defined. The minimum value of inter itemset distance of an itemset is zero if the

itemset has occurred in two consecutive transactions and otherwise it is non zero. Since the

occurrences of an itemset in the transactions of the database is random therefore, the lengths of

various gaps between occurrences (i.e. the inter itemset distances) of an itemset are not identical

between every pair of its occurrences in its lifespan. Therefore, the total inter itemset distance of

an itemset is calculated. The average inter itemset distance of an itemset is calculated by dividing

the total inter itemset distance of an itemset by the number of gaps of non occurrences of the

itemset in its lifespan.

Average Inter Itemset Distance (IID) or Spread indicates how closely or sparsely an itemset

occurs in the database within its lifespan. It gives insight about the distribution pattern of

occurrence of an itemset across the database. Frequent itemset discovery algorithms have not

considered this and the lifespan of occurrence of an itemset while counting support. The rules are

generated without any information about such pattern of occurrences. Based on preliminary level

of experimentation, this approach helped to reduce the number of association rules but a detail

algorithm is not incorporated in [6]. Itemsets with identical support may not have the same

Average Inter Itemset Distance. Together with support, Average Inter Itemset Distance or Spread

is used as another measure for quality for association rules. The smaller the threshold for Average

Inter Itemset Distance the closer will be the spacing between the successive occurrences of an

itemset.

1.2 Outline of the Paper

The paper is divided into five sections excluding the introduction section in which the concept of

association rule mining and average inter itemset distance is presented. In the “Related Works”

section leading algorithms for association rule mining particularly the apriori algorithm and its

improvisations are presented. Further, various recent works and techniques concerning reduction

of association rules are studied and discussed. In section, “Theoretical Formulation of Inter

Itemset Distance” the concepts related to average inter itemset distance or spread are defined and

their mathematical formalisms are presented. The minimum and the maximum limits of the

Average Inter itemset Distance (IID) are derived in this section. In the next section the detail

algorithm is presented and explained for the mining association rules with average inter itemset

distance along with support and confidence. In Implementation section, the results of the

implementation of the proposed algorithm and the apriori algorithm are described and compared.

The paper ends with concluding remarks.

2. RELATED WORKS

The Apriori algorithm [2] proceeds in a level wise manner in the itemset lattice with a candidate

generation technique in which only the frequent itemsets found at a level are used to construct

candidate itemsets for the next level. Over the last decade and a half many improvisations and

incremental development of the apriori algorithm including parallel algorithms have been

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.3, No.6, November 2013

76

reported in the literature with a view to improve the computational performance. The partition

algorithm [7] is one such algorithm which minimizes the database scans to only two by

partitioning the database into small partitions so that each can be accommodated in the main

memory. In the FP-growth algorithm [8] a pattern-growth approach for mining frequent

itemsets without candidate generation was proposed. Tan, Kumar, & Srivastava discussed about

selecting right interesting measures for association rules in [9]. Hilderman & Hamilton described

various interesting measures in [10]. Alternative interesting measures for mining association rules

are proposed in [11]. Various quality measures of data mining and related issues are discussed in

[12].

Reduction of huge number of discovered association rules has been undertaken in various recent

works. The number of association rules is reduced by two standard methods namely by increasing

the minimum confidence parameter and by increasing the minimum antecedent support

parameter. Recent research focused on finding other methods to reduce the rules either by

adjusting the rule induction algorithm or by pruning the rule set [13] [14] [15]. In [16], a

technique for removing overlapping rules for reducing the size of the rule sets with an extension

of the apriori algorithm is presented.

Vo & Le [17], proposed a method for mining minimal non – redundant association rules. A

concept of δ – tolerance ARs is used to eliminate redundancy in the set of association rules and to

obtain concise mining results in [18]. In [19] a concise representation called reliable approximate

basis for representing non redundant association rules is given for the purpose of reducing the

number of association rules. Use of visualization techniques is discussed in [20] to deal with large

number of discovered association rules. The notion of goodness of a rule set is quantified for

reduction in the size of the association rule collection in [21]. In [22] an improved apriori

algorithm is proposed to minimize the number of candidate sets based on evaluation of

quantitative information associated with each attribute in a transaction. Occurrence of false

positives and errors in pattern of enumeration of a large number of association rules are

controlled through multiple testing correlation approaches in [23]. An approach to prune and filter

enormous number of discovered association rules is proposed based on ontological relational

weights by Radhika & Vidya in [24]. In [25] the problem of usefulness of association rules due to

huge number of discovered association rules is analyzed and an interactive approach is proposed

to prune and filter discovered rules using ontologies. A two step pruning method is proposed in

[26] for reducing uninteresting spatial association rules.

Techniques for mining compressed sets of frequent patterns are developed to reduce the huge set

of frequent patterns generated. Mining closed patterns can be viewed as lossless compression of

frequent patterns. Lossy compression of patterns includes studies of top-k patterns [27]. In [28] k

– itemsets are used to cover a collection of frequent itemsets. A profile based approach [29] and a

clustering-based approach [30] are proposed for frequent itemset compression. Bayesian network

is used to identify subjectively interesting patterns [30]. In [32] association rules are mined with

non uniform minimum support. Method for selective generation of association rules is developed

in [33].

A class of tough constraints called Loose anti – monotone constraints is introduced as a super

class of convertible anti monotone constraints and used in a level wise apriori like computation

by means of a data reduction technique. [34]

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.3, No.6, November 2013

77

3. THEORETICAL FORMULATION FOR INTER ITEMSET DISTANCE

In this section, a theoretical formulation for mining association rules with average inter itemset

distance or spread is developed.

3.1 Basic Definitions

Some basic definitions in connection with average inter itemset distance for frequent itemsets are

given below.

Definition1: Inter Itemset Distance (IID) of an itemset: The Inter Itemset Distance (IID) or

Spread of an itemset is defined as the number of intervening transactions in which the itemset is

not present between two successive occurrences of the itemset.

Definition2: Total Inter Itemset Distance (IID) of an itemset: The Total Inter Itemset Distance

(IID) of an itemset among all successive occurrences of an itemset is defined as the sum of the

number of all the intervening transactions in which the itemset is not present between every two

successive occurrences of the itemset within the lifespan of the itemset.

Definition3: Lifespan of an itemset (ls): The life span (ls) of an itemset is the number of

transactions, starting with the first occurrence (TIDfirst) to the last occurrence of the itemset

(TIDlast) (inclusive of both the transactions of first and the last occurrences). It is assumed that the

TIDs are numbered serially without any break. Thus,

 ls = TIDlast – TIDfirst + 1

 i.e. ls = nl - ni + 1, nl > ni (1)

Where for an itemset, ni is the TID of its first occurrence and nl is the TID of its last occurrence.

Ex. Let for an itemset ni = 51, nl = 87

then, ls = 87 - 51 + 1 = 37.

Definition4: Average Inter Itemset Distance (IID) or Spread of an itemset: The Average

Inter Itemset Distance (IID) or Spread of an itemset among all successive occurrences of an

itemset is defined as the sum of the number of all the intervening transactions in which the

itemset is not present between every successive occurrences of the itemset within the lifespan of

the itemset divided by the number of gaps of non occurrences of the itemset.

Definition5: Gap of non occurrences of an itemset: A gap of non occurrence consists of all the

transactions in which the itemset has not occurred between any two of its successive occurrences.

The length of a gap of non occurrence of an itemset is 0 (zero) when the itemset has occurred in

two consecutive transactions and it is non zero when there is at least one transaction in which the

itemset has not occurred between two successive occurrences of the itemset in its life span. A gap

of non occurrence cannot be defined for an itemset whose support count is either 0 or 1. The total

number of gaps of non occurrences of an itemset is one less than the support count of the itemset.

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.3, No.6, November 2013

78

3.2 Range of Values for Average Inter Itemset Distance (IID) or Spread of an

Itemset

Let n = |D| be the number of transactions in D and σ, the Specified support threshold in

percentage. The support count (c) of an itemset is converted to percentage support (σ) by doing

(c/|D|) * 100 i.e. (c/n) * 100. Therefore, range for percentage support (σ) is 0 ≤ σ ≤ 100

Similarly the range of Average IID or spread of an itemset X, denoted by Average IID (X) or

spread (X) is given by

0 ≤ Average IID (X) ≤ (n – nσ)/(nσ – 1) (2)

The lower limit on average IID or spread of an itemset is zero.

 i. e. (average IID or spread)min = 0 (3)

This happens when all the occurrences of an itemset are in consecutive transactions in its life

span. The upper limit on average IID or spread of an itemset is defined based on the maximum

life span and the input percentage support threshold (σ). In a transaction database of size | D| = n,

the maximum lifespan of an item set is from TID = 1 to TID=n.Thus

(������� ��	
� �����
)���

=
(Total number of transactions in D i. e. | D| − Input support count threshold i. e. σ| D|)

(Input support count threshold (i. e. σ| D|) – 1)

i.e. (������� ��	
� �����
)��� =
(- – -.)

(-. – /)
 (4)

The range of average IID for an itemset with input percentage support threshold σ is

[0, (n – nσ)/(nσ – 1)].

The range for an average IID is specifiable at the beginning of the algorithm and based on this,

the user input threshold for average IID or spread can be specified. At first all the frequent 1-

itemsets having support higher than the input support threshold and which are also closely spaced

are discovered.

Case1. For constant | D|=n as σ increases, (n – nσ) decreases much faster in comparison to

(nσ – 1). Thus for higher value of percentage support (σ), (nσ – 1) is approximately equal to nσ.

i.e. (average IID or spread)max

 = (n – nσ)/nσ = (1/σ) – 1 (5)

Ex.1. If σ = 50% then (average IID or spread)max = (1/50%) – 1 = 1. This is true, since σ =

50% means average IID = 1 always under the full life span of an itemset. (i.e. full life span = n).

If calculated exclusively, then for σ = 50%, (average IID or spread)max = (n – nσ)/(nσ – 1) = 1/

(1– 2/n). If n is large, then 2/n → 0 and hence (average IID or spread)max = 1. Thus the

proposition is consistent. This proposition is based on the fact that if an itemset has support =

50%, then the itemset is not present in 50% of the transactions. Calculating exclusively for such

an itemset, we get the same result. (Average IID or spread)max = (n – nσ)/(nσ – 1) = (n – n/2)/

(n/2 – 1) = (n/2)/ (n/2 – 1). For n = 100, (average IID/average spread)max = (100/2)/ (100/2 – 1) =

1.024 ≈ 1.

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.3, No.6, November 2013

79

Ex.2. If σ = 0%, i.e. when there is no presence of an itemset in the database, then (average IID or

spread)max = (n – nσ)/(nσ – 1) = –n. This is undefined since –n does not have any significance and

hence the concept of inter itemset distance IID does not arise.

Ex.3. If σ = 100% [σ = 100% =1], that is when the itemset is present in all the transactions of the

database, then the value of (average IID or spread)max is zero since there is no gap among the

occurrences of the itemset. Thus (average IID or spread)max = (n – nσ)/(nσ – 1) = (n – n)/ (n – 1)

= 0.

Average IID/Average spread in terms of lifespan of an itemset: For an itemset with given

percentage support (σ) in a database of n transactions

Average IID or spread

 = ((| TIDlast| - | TIDfirst| +1) – nσ)/(nσ -1)

 = (LifeSpan – nσ)/(nσ -1)

 = (ls – nσ)/(nσ -1) (6)

Here, nσ is the support count.

Ex.4. Let nl = 67, ni = 11 and σ = 40%, n = 100. Average IID or spread = (ls – nσ)/(nσ -1) = 17/39

= 0.45.

3.3 Closely Spaced – n Itemsets and Closely Spaced Frequent or Large – n Itemsets

The itemsets which satisfy input threshold for both support and Average Inter Itemset Distance or

Spread are called Closely Spaced Frequent Itemsets (CSFI) or Closely Spaced Large Itemsets

(CSLI). The itemsets of cardinality n which satisfy the input threshold for Average Inter Itemset

Distance or Spread are called closely spaced n - itemsets. For Closely spaced n – itemsets the

average inter itemset distance is less than or equal to the specified threshold.

Definition 6: Closely Spaced –n Itemset:

Let I = {i1, i2, i3, … …. …. im} be a set of literals called items and D be a database of transactions,

where each transaction T is a set of items such that T I. Given an itemset X I, a transaction

T contains X if and only if X T. An itemset X of cardinality n (n is an integer) is said to be

closely spaced n – itemset in its lifespan if its average IID or spread is less than or equal to the

user specified threshold value for maximum average IID or spread (d). Thus for a closely spaced

n – itemset

Average IID (X) or Spread (X) ≤ d (7)

Where, d is the user specified threshold value for maximum average IID or spread for an itemset.

Definition 7: Closely Spaced Frequent or Large n – Itemset:

Let I = {i1, i2, i3, … …. …. im } be a set of literals called items and D be a database of

transactions, where each transaction T is a set of items such that T I. Given an itemset X I, a

transaction T contains X if and only if X T. An itemset X of cardinality n (n is an integer) is

said to be Closely Spaced Frequent or Large n – Itemset in its lifespan if it is closely spaced with

respect to specified threshold for average inter itemset distance or spread and also frequent or

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.3, No.6, November 2013

80

large at the same time with respect to specified threshold for support. Thus for a Closely Spaced

Frequent or Large n – Itemset X

 Supp(X) ≥ σ

 and

 Average IID or Spread (X) ≤ d (8)

Where, σ is the threshold for minimum support and d is the threshold value for maximum average

IID or spread for the itemset X. The range of d is given by (2) above.

When average inter itemset distance or spread is used as a measure of interestingness along with

support for the discovery of closely spaced frequent itemsets, then threshold values must be

provided as input for both the parameters. An itemset X of the database D may be closely spaced

based on the user specified value of average inter itemset distance d without being frequent. Such

closely spaced itemsets has other significance. Such an itemset though not frequent in the context

of the whole database but occurs due to sudden event related to the concerned domain of the

database. However, this problem needs to be studied differently. Discovering all closely spaced

itemsets along with their average inter itemset distances and all the closely spaced frequent

itemsets along with their supports and average inter itemset distances is a non trivial problem if

the cardinality of I, the set of all the items of the database of transactions D is large. The problem

is to identify which of the subsets of I are frequent and closely spaced.

3.4 Calculation of Average Inter itemset Distance (IID) or Spread

Average Inter itemset Distance (IID) or Spread of an itemset is the average separation of the

occurrences of the same itemset in its lifespan. If an itemset occurs in consecutive transactions

then for each such pair of occurrence the length of the gap is zero. Thus each occurrence of every

itemset in the database has to be kept track off and their separation in terms of the number of

intervening transactions has to be calculated and stored and the same has to be progressively

updated till the end of scanning the last transaction in the database. Thus,

Average Inter Itemset Distance or spread (d)

=

Sum of the lengths of all the gaps of occurrences of an itemset within its lifespan in terms
of the number of transactions of non occurrence

(Support of the itemset – 1)

i.e.
 =
5 67,79:

;<:
7=:

(>?@)
 (9)

Where, m is the TID of the transaction in which the itemset has its last appearance. The apriori

algorithm is modified for the calculation of d and di, i+1. The lifespan of a frequent and closely

spaced itemset is discovered without making any additional scan of the database. It is also

observed that itemsets with same support and same size does not necessarily have the same

average inter itemset distance or spread.

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.3, No.6, November 2013

81

4. AN ALGORITHM FOR MINING ASSOCIATION RULES WITH

AVERAGE INTER ITEMSET DISTANCE

Mining association rules with average inter itemset distance, support and confidence further

refines the association rules discovered with support and confidence. An algorithm is designed

based on the level wise approach of the apriori algorithm and is described below. We call the

association rules which satisfy the pre specified values of support, confidence and average inter

itemset distance as the closely spaced association rules to distinguish them from the conventional

association rules.

4.1 Problem Decomposition

The problem of mining association rules with average inter itemset distance, support and

confidence is decomposed into three broad steps:

(i) Step 1: Find all the frequent itemsets having support greater than or equal to the user specified

minimum support threshold σ.

(ii) Step 2: Find the average inter itemset distance or spread (d) for each of the frequent itemsets

discovered in step 1.

The actions of these two steps are performed in the same pass of the algorithm for each scan of

the database. This process is continued till all the frequent n – itemsets and all the closely spaced

frequent n – itemsets are discovered. This takes n scans over the database, the same as the number

of scans in the apriori algorithm. The frequent n – itemsets and closely spaced n – itemsets are

stored along with their support and average inter itemset distance.

(iii) Step 3: Use the frequent and closely spaced itemsets to generate the association rules with

respect to the pre specified threshold values. An algorithm by modifying the apriori algorithm is

proposed below.

4.2 Proposed Algorithm

Based on the above problem decomposition, the proposed algorithm has the following segments:

(i) Mining Closely Spaced Large – 1 Itemsets (SL1).

(ii) Mining Closely Spaced Large – k Itemsets (SLk).

(iii) Generating Candidate k – Itemsets (SCk) from the large (k – 1) - itemsets (Lk-1) discovered in

every previous pass using the function Generate Candidate Itemsets (Lk-1).

(iv) Prune Candidate k – Itemsets (SCk)

(v) Mining Closely Spaced Large Itemsets (SL) of all the sizes.

(vi) Generate closely spaced association rules from closely spaced large Itemsets (SL).

These segments are presented below.

(i) Mining Closely Spaced Large – 1 Itemsets (SL1): Modified Algorithm to compute the

Large 1-Itemsets (L1) and Closely Spaced 1-Itemsets (S1) and then to compute Closely

Spaced Large 1 – Itemsets (CSLI1) by the operation L1∩S1.

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.3, No.6, November 2013

82

Let us denote Closely Spaced Large 1 – Itemsets (CSLI1) by SL1 and Closely Spaced Large k –

Itemsets (CSLIk) by SLk. Thus SL1 = L1∩S1

 and SLk = Lk∩Sk. In the following, a method to scan

the database to count the support (σ) and the Inter Itemset Distance (IID) denoted by d for the

Closely Spaced Candidate 1 – Itemsets is given. By using the specified input values for support

and Inter Itemset Distance in the method the Large 1 – Itemsets (L1) and the Closely Spaced 1 –

itemsets (S1) are found. Now, the Closely Spaced Large 1 – Itemsets (CSLI1) denoted by SL1 are

found by using SL1 = L1∩S1 (In general, SLn = Ln ∩ Sn). Let C1 = Candidate 1 – itemsets.

Initially, C1 includes all the single element subsets of the set of items I. And SC1 = Closely

Spaced Candidate – 1 Itemsets. Initially, this also consists of all the single element subsets of the

set of items I. Since, before the beginning of the scan, support (σ) and the average Inter Itemset

Distance (IID) d is not calculated and therefore, all the single element subsets of I are potentially

frequent and also closely spaced. The algorithm is stated below.

[1] Algorithm: GenerateCloselySpacedLargeOneItemset()

Inputs:

D // Database of Transactions

I // Items: Set of all Items

σ // Input threshold for Support in percentage

l // Input threshold for Average Inter Itemset Distance (IID)

Outputs:

 SC1 // Closely Spaced Candidate 1– Itemsets

 L1 // Large 1 – Itemsets

 S1 // Closely Spaced 1 – Itemsets

 SL1 // Closely Spaced Large 1 – Itemsets

Steps:

1. Start

2. Initialize k= 0;

3. int n; // n is the total number of transactions in the database

4. int LastTID = n;

5. L1 = Φ; // Initially L1 is empty

6. S1= Φ; // Initially S1 is empty

7. SL1 = Φ; // Initially SL1 is empty

8. SC1 = I; // The itemset I is assigned to the Closely Spaced Candidate

 //1– itemsets SC1.

9. Input σ; // σ is the input support threshold in percentage

10. float l =Average IID threshold; // Input average IID threshold as pre specified value;

11. for (i =1; i ≤ m; i++) // m is the total number of elements in SC1

12.{ // Loop for initialization.

13. int ci = 0; // Initially the support count for each element of SC1 is zero.

14. int di = 0; // Initially the IID = 0 for each element. d == IID.

15. int ti = 0; // ti stores the TID of recent occurrence of element i.

16. int Ti = 0; // Ti stores the TID of recent nonoccurrence of element i.

17. float IIDi = 0; // IIDi == IID value for each element of SC1.

18. }; // End ‘for’, the Loop for initialization.

19. for each transaction tj ϵ D do // j: Transaction No. j = 1, 2, …….., n

20. {

21. for each ici ϵ SC1 do //ici represents the single element itemsets of SC1 i =1,2,.…., m.

22. {

23. if ici ϵ tj then

24. {

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.3, No.6, November 2013

83

25. ci := ci + 1; // Increment the support count by 1. ci: support count of 1- itemset.

26. ti = tj; // stores the TID of the recent occurrences of the element ici in ti.

27. }

28. if ((ci > 0) and (ici ϵ tj)) then

29. {

30. di := di + 1; // increment the IID value by 1.

31. Ti = tj; // stores the TID of the recent non occurrences of the element ici in Ti.

32. }

33. if (Ti ≠ LastTID) then

34. {IIDi = di – (Ti - ti);}

35. else

36. {IIDi = di;}

37. if (ci > 1) then

38. Average IIDi = IIDi/(ci – 1);

39. else

40. Average IIDi = l +1;

41. } // End inner ‘for’

42.} // End outer ‘for’ i.e. 2 level nesting ends here.

43. for each ici ϵ SC1 do

44. {

45. if ((ici ≥ (σ X | D|)) then

46. {L1 = L1 U ici;} // Large 1-Itemsets

47. if ((Average IID) ≤ l) then

48. {S1 = S1 U ici;} // Closely Spaced 1–Itemsets

49.} // End for

50. SL1 = L1∩S1 // Closely Spaced Large 1–Itemsets

51. Output L1; // Large 1–Itemsets

52. Output S1; // Closely Spaced 1–Itemsets

53. Output SL1;

54. End.

(ii) Mining Closely Spaced Large – k Itemsets (SLk)

The modified apriori algorithm to mine Closely Spaced Large k – Itemsets from transaction

databases and to generate corresponding association rules with respect to thresholds for support,

Average Inter Itemset Distance (IID) and Confidence from the discovered Closely Spaced Large

Itemsets is given below. It contains algorithms to mine Closely Spaced Large k – Itemsets,

Closely Spaced Large 1 – Itemsets [as in (i) above], to generate Candidate k – itemsets from

Large (k-1) – itemsets, to prune Candidate-k itemsets (same as in apriori), and then to generate

the Closely Spaced Large k – itemsets and finally to generate the association rules from the

Closely Spaced Large k – itemsets.

[2] Modified Apriori Algorithm:

//The modified a priori algorithm for mining Closely Spaced Large/Frequent k – itemsets based on average Inter

//Itemset Distance (IID), support and confidence.

1. Algorithm: Modified a priori

// Initialize k = 1; int k;

Inputs:

D // Data base of Transactions

T // Set of all Transactions

I // Set of all Items

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.3, No.6, November 2013

84

σ // Input threshold for Support

c // Input threshold for Confidence

l // Input threshold for Average Inter Itemset Distance (IID)

SC1 // Closely Spaced Candidate – 1 Itemsets

SL1 // Closely Spaced Large– 1 Itemsets

Outputs:

 SCk // Closely Spaced Candidate k – Itemsets (k ≥ 2)

 SLk // Closely Spaced Large k – Itemsets (k ≥ 1)

 SL // Closely Spaced Large Itemsets of all sizes

Lk // Large k–Itemsets

 Sk // Closely Spaced k–Itemsets

 L // Set of all Large Itemsets

 S // Set of all Closely Spaced Itemsets

Steps:

1. int k;

2. Initialize k =1;

3. int n;

4. int Last TID =n;

5. L = Φ;

6. S = Φ;

7. SL = Φ;

8. float s;

9. Input σ;

10. float l;

11. l = Average threshold IID;

12. int ci =0; //ci: Support count for i
th
 itemset

13. float di = 0;

14. SC1 = I;

//Initially all the itemsets of size -1 are candidate itemsets (SC1). Scan the database of transactions D

//to count the support and the Average Inter Itemset Distance (IID) of each element of SC1 to

//determine L1, S1 and SL1. L1 = Large/frequent 1–itemsets; S1 = Closely Spaced 1–itemsets; SL1=

//Closely Spaced Large 1–itemsets. For these L1, S1 and SL1 call Algorithm

//GenerateCloselySpacedLargeOneItemsets (SC1) with SC1 = I, the set of all items.

15. (a) L1= GenerateCloselySpacedLargeOneItemsets (SC1);

// Store the set of Large 1–Itemsets generated by the function

// GenerateCloselySpacedLargeOneItemsets (SC1) in L1 as a file;

15. (b) S1= GenerateCloselySpacedLargeOneItemsets (SC1);

//Store the set of Closely Spaced 1- Itemsets generated by the function

Generate //Closely Spaced LargeOneItemsets (SC1) in S1 // as a file;

15. (c) SL1= GenerateCloselySpacedLargeOneItemsets (SC1);

//Store the set of Closely Spaced Large 1- Itemsets generated by the function

//Generate Closely Spaced LargeOneItemsets (SC1) in L1 as a file; Function

Call: //the function: GenerateCloselySpacedLargeOneItemsets (I) is called

with I = SC1..

16. Initialize k: = 2; // k represents the pass number

17. while (Lk-1 ≠ Φ) do // begin while

18. {

19. Lk = Φ;

20. Sk = Φ;

21. SLk = Φ;

22. SCk = GenerateCandidateItemset (Lk-1); //SCk = GenerateCandidateItemset with the Lk-1

//found in the previous pass i.e. SC2 =

//GenerateCandidateItemset(L1) in the first pass // of

this loop.

23. SCk = Prune (SCk);

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.3, No.6, November 2013

85

24. for each Ii ϵ SCk do

25. {

26. ci = 0; //Small ci = 0 i.e. Initial support counts for each itemset is zero

27. di = 0; //Initial IID = 0 for each itemsets.

28. } //End for

//Now for all transactions tj ϵ T do: Increment the counts for all candidates in SCk that are

contained //in transaction ti and increment the Inter Itemset Distance (IID) of all candidates by

adding 1 to the //Inter Itemset Distance (IID) count of all candidates in SCk whenever the

itemset is not contained // in tj.

29. for each tj ϵ T do // T: Transaction database

30. {

31. for each Ii ϵ SCk do // Here i is not any variable, Ii denotes each itemset of SCk

32. {

33. if Ii ϵ tj then

34. {

35. ci = ci + 1;

36. tis = tj; // Stores the TID of the recent occurrence in tis,

 // which is just a subscripted variable.

37. } // End if

38. if ((ci > 0) and (Ii ϵ tj)) then

39. {

40. di = di +1; // increment IID by 1

41. tid = tj; // Stores the TID of recent non occurrence in

 // the subscripted variable tid

42. } // End if

43. if (tid ≠ Last TID) then

44. {IID = di – (tid – tis);}

45. else

46. {IID = di;}

47. if (ci > 1) then

48. Average IID = IID/(ci – 1);

49. else

50. Average IID = l + 1;

51. } // end for (inner loop) began in line no.31

52. } // end for (outer loop) began in line no.29

53. for each Ii ϵ SCk do

54. {

55. if ((ci ≥ (σ X | D|)) then // X is multiplication

56. Lk = Lk U Ii; // Large – k Itemsets

57. if ((Average IID) ≤ (Threshold average IID)) then

58. Sk = Sk U Ii; // Closely Spaced – k Itemsets

59. } // end for

60. SLk = Lk U Sk; // Closely Spaced Large – k Itemsets

61. k: = k + 1; // Increment the pass number

62. } // End while loop began on line no. 17

63. L= L1 U Lk; // Set of all large itemsets

64. S=S1 U Sk; // Set of all closely spaced itemsets

65. SL = SL1 U SLk; // Set of all closely spaced large itemsets

66. Output L;

67. Output S;

68. Output SL;

69. End.

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.3, No.6, November 2013

86

(iii) Generating Candidate k–Itemsets (SCk) from the large (k – 1) – itemsets (Lk-1) using the

function GenerateCandidateItemsets (Lk-1).

[3] Algorithm: GenerateCandidateItemsets (Lk-1)

Input: Lk-1, the Large (k – 1)–itemsets (for k ≥ 2).

Output: SCk, the closely spaced candidate sets of size k which are actually candidate itemsets of size k for

becoming large itemsets of size k (Lk) and closely spaced itemsets of size k (Sk) (k ≥ 2). From these candidate

itemsets, the large k – itemsets Lk based on input values of support (σ) and the closely spaced k – itemsets i.e. Sk

(k ≥ 2) based on the input values of Average Inter Itemset Distance (d) are discovered. Therefore, these candidate

sets are called Closely Spaced Candidate k – itemsets (k ≥ 2) and denoted by SCk.

Steps:

1. SCk = Φ;

2. For each I ϵ Lk-1 do // k ≥ 2

3. {

4. For each J ≠I ϵ Lk-1 do

5. {

6. if (k – 2) of the elements in I and J are equal then

7. SCk = SCk U ({I U J};

8. }

9. }

10. Return (SCk);

11. END.

(iv) Prune Candidate k – Itemsets (SCk): Algorithm to Prune Candidate Itemsets (SCk)

generated in [3] above is as follows.

[4] Algorithm: prune (SCk)

Input: SCk, (k≥ 2), the set of closely spaced candidate k itemsets

Output: SCk, (k≥ 2), the pruned closely spaced candidate itemsets of size k

Steps:

1. For each c ϵ SCk

2. {

3. For each (k – 1) subsets d of c do

4. {

5. if d ϵ Lk-1 then

6. SCk = SCk {c}

7. }

8. }

9. Return (SCk);

(v) Generate closely spaced association rules from closely spaced large Itemsets (SL):

Algorithm to generate closely spaced association rules from closely spaced large Itemsets (SL).

[5] Algorithm: AprioriRuleGeneration (SL)

Input:

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.3, No.6, November 2013

87

D // Data base of transactions

I // Set of Items

SL // Set of all closely Spaced Large Itemsets

σ // support

c // Confidence

 Average IID // Average Inter Itemset Distance (IID) or Spread

Output:

 R // SET of all Association rules satisfying σ, c and average IID or spread

 // called closely spaced association rules.

Steps:

1. R = Φ; // Initially the set of rules R is empty

2. for each I ϵ SL do

3. {

4. for each x ϵ I such that x ≠ Φ do

5. {

6. If (support (I)/support (x)) ≥ c then

7. R = R U {x → (I – x)};

8. }

9. }

10. OUTPUT (R)

11. END

4.3 Analysis of the Algorithm

The computational complexity of the proposed modified algorithm depends upon support

threshold, number of items, number of transactions and the average width of the transactions in

the dataset. The value of the Average Inter Itemset Distance threshold will not affect the

computational complexity of the proposed algorithm since it is not required to make any extra

pass of the dataset while counting the value of the Average Inter Itemset Distance of each

candidate itemset.

Time Complexity of the Proposed Algorithm

(a) Generation of Frequent -1 and Closely Spaced – 1 Itemsets: These two tasks are

performed in the same loop of the algorithm and hence no extra scan of the database is required to

calculate the Average Inter Itemset Distances of the Candidate – 1 itemsets. In this step the

frequent -1 (L1) and Closely Spaced – 1 (S1) Itemsets are determined. Thereafter, the set of

Closely Spaced Frequent -1 Itemsets are found by the intersection of L1 and S1. If w is the

average transaction width and n is the total number of transactions in the database then this

operation requires O(nw) time.

(b) Candidate Generation: To generate candidate k–itemsets, pairs of frequent (k – 1)–itemsets

are merged to determine whether they have at least k – 2 common elements. Each merging

operations requires at most k – 2 equality comparisons. In the best case, every merging step

produces a viable candidate k–itemset. In the worst case scenario, the algorithm must merge

every pair of frequent (k – 1)–itemsets found in the previous iteration. Therefore, the overall cost

of merging frequent itemsets is

∑
w

k=2 (k – 2) |Ck| < Cost of Merging < ∑
w

k=2 (k – 2)|Fk – 1 |
2

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.3, No.6, November 2013

88

During candidate generation a hash tree is also constructed to store the candidate itemsets. The

cost for populating the hash tree with candidate itemsets is O(∑
w

k=2 k | Ck|), where k is the

maximum depth of the tree.

During candidate pruning, we need to verify that the (k – 2) subsets of every candidate k –

itemset are frequent. Since the cost for looking up a candidate in a hash tree is O(k), the candidate

pruning step requires O (∑
w

k=2 k(k – 2) |Ck|) time.

(c) Support Counting: The number of itemsets of size k produced by a transaction of length |t| is
|t|
Ck and the number of hash tree traversals required for each transaction is also equal to

|t|
Ck. If w

is the maximum transaction width and σk is the cost of updating the support count of a candidate

k – itemset in the hash tree, then the cost of support counting is O(N∑k (
w
Ck σk)). Since, for

counting the Average Inter Itemset Distances of the itemstes no additional loop is employed and

it is done in the same loop used for support counting, therefore the cost of calculating the Average

Inter Itemset Distances of the itemstes is O(N∑k (
w
Ck dk)), where dk is the cost of updating the

Average Inter Itemset Distance of a candidate k – itemset in the hash tree. Therefore, the total

cost of support counting and calculating the Average Inter Itemset Distances is O(N∑k (
w
Ck (σk

+dk))).

(d) Rule Generation: A closely spaced large k – itemset can produce up to (2
k
 – 2) association

rules excluding the rules which have empty antecedents (Φ=>Y) and empty consequents (Y=>

Φ). The calculation of confidence of a closely spaced association rule does not require

additional scans of the transaction database since it can be calculated by using the supports of the

itemsets (X U Y) and X of the rule X=>Y in the ratio sup(X U Y)/sup(X).

5. IMPLEMENTATION AND RESULTS

The apriori and the modified apriori algorithms are implemented in Java with windows XP

operating system in a PC with Intel Core2 Duo Processor and 512MB of RAM. The data set used

is the retail dataset of size 4.2MB available in the UCI repositories. The significance of Average

Inter Itemset Distance is: the lesser the value of Average Inter Itemset Distance of an itemset, the

nearer are the occurrences of the itemset in the transactions of the dataset. A closely spaced large

itemset has to fulfill the two threshold values viz. the minimum support threshold and the

maximum Average Inter Itemset Distance threshold. As a result, the number of qualified itemsets

for rule generation reduces and hence the number of generated rules also reduces with the added

meaning obtained from the Average Inter Itemset Distance for the rule. The quantity of reduction

of frequent itemsets as compared to the conventional a priori approach depends on the threshold

values of both the parameters. In the case of high support and small value of Average Inter

Itemset Distance, the number of frequent sets discovered will be less as compared to low support

and high value of Average Inter Itemset Distance.

(1)The following (table1) shows that the number of discovered large itemsets and the

corresponding association rules in the modified version of the algorithm is reduced.

Table1: Number of Rules with apriori algorithm (min_ sup (2%) and min_conf (20%)) and modified

apriori algorithm (min_ sup (2%) and min_conf (20%) and AverageIID=20.0).

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.3, No.6, November 2013

89

Size No. of

Transa

ctions

Support

count

at min_

sup

(2%)

Apriori Algorithm

min_ sup (2%), min_conf

(20%)

Modified Apriori Algorithm

min_ sup (2%), min_conf (20%),

AverageIID=20.0

LI:

No. of

Large

Itemse

ts

No. of

Rules

Execution

Time

(Sec)

No. of

Closely

Spaced

Large

Itemsets

No. of

Rules

Execution

Time

(Sec)

100 kB 1804 36 110 140 87.69 24 44 85.27

200 kB 4077 81 78 100 217.82 18 34 217.96

300 kB 6283 125 69 85 388.23 18 32 379.25

400 kB 8459 169 67 84 593.83 18 32 665.29

500 kB 10786 215 65 87 709.99 18 32 800.31

600 kB 13064 261 63 85 951.009 18 34 1018.04

700 kB 15745 314 60 82 1179.191 19 34 1254.274

800 kB 17441 348 59 83 1455.389 18 32 1422.941

900 kB 20009 400 59 89 1863.744 18 34 1724.895

1000k

B

21857 437 60 89 1856.57 18 34 1810.383

Figure1: The number of association rules discovered from the apriori algorithm and the modified apriori

algorithm with support threshold = 2%, confidence threshold = 20% and Average IID threshold = 20.0 and

by varying the dataset sizes.

Figure2: Comparison of Execution Time required for the apriori algorithm and the modified algorithm

with support threshold of 2%, confidence threshold of 20% and Average IID threshold of 20.0 and by

varying the size of the dataset.

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.3, No.6, November 2013

90

As shown in the graph the modified algorithm efficiently reduces the number of association rules

and the execution time required are comparable.

2. Behaviour with variation in minimum confidence threshold at constant minimum support and

AverageIID: The following results are obtained as a result of comparison of the effect of varying

minimum confidence on both the apriori and the modified apriori algorithms with fixed minimum

support and fixed averageIID for a dataset of size 100kB(Table2).

Table 2: comparison of the effect of varying minimum confidence on both the apriori and the modified

apriori algorithms with fixed minimum support (1%) and fixed averageIID=25.0 for a dataset of size

100kB.

Minimum

confidence

(min_conf)

(%)

Support

Count at

Minimum

support

(1%)

(min_sup)

Apriori Algorithm: min_sup

(1%)

(dataset of 100kB,1804

Transactions)

Modified Apriori Algorithm: min_sup

(1%) and AverageIID=25.0 (dataset of

100kB, 1804 Transactions)

No. of

LI:

Large

Itemsets

No.

of

Rules

Execution

Time

(Sec)

No. of Closely

Spaced Large

itemsets(CSLI)

No. of

Rules

Execution

Time (Sec)

0% 18 440 1242 337.46 35 92 213.907

10% 18 440 737 335.401 35 86 213.408

20% 18 440 646 339.067 35 64 214.001

30% 18 440 567 339.737 35 48 212.956

40% 18 440 502 343.024 35 41 215.64

50% 18 440 408 345.821 35 33 215.596

60% 18 440 303 341.0484 35 22 214.446

70% 18 440 170 342.681 35 08 214.048

80% 18 440 84 339.082 35 04 214.953

90% 18 440 25 338.146 35 0 213.533

100% 18 440 0 333.777 35 0 213.019

It is observed that in the case of apriori algorithm the number of rules decreases more rapidly

with respect to different minimum confidence threshold as compared to the modified algorithm

(Figure 3). Further, the execution time and their difference remain nearly constant for both the

apriori and the modified algorithm for different minimum confidence threshold values (Figure 4).

Figure3: Comparison of the association rules discovered with the apriori algorithm and the modified

algorithm by varying the minimum confidence threshold at constant minimum support threshold.

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.3, No.6, November 2013

91

Figure 4: Comparison of the Execution time required for the apriori algorithm and the modified algorithm

by varying Minimum Confidence threshold at constant minimum support threshold and fixed averageIID.

3. The effect of varying averageIID with the Modified Algorithm at constant minimum support

threshold (1%) and minimum confidence (20%) for a dataset of size 100kB is shown below

(Table 3).

Table 3: Effect of varying averageIID with the modified algorithm at constant thresholds for minimum

support (1%) and minimum confidence (20%) for a dataset of size 100kB.

Average

IID

Support

Count at

minimum

support

(1%)

No. of Large

Itemsets (LI)

Discovered

No. of Closely

Spaced Large

Itemsets

(CSLI)

Discovered

No. of

Rules

Execution

Time (Sec)

0 18 440 0 0 218.759

1 18 440 1 0 243.323

2 18 440 2 0 216.169

3 18 440 4 2 217.916

4 18 440 5 4 217.988

5 18 440 7 6 214.529

10 18 440 12 16 215.545

15 18 440 19 28 245.576

20 18 440 26 44 231.099

25 18 440 35 64 214.61

30 18 440 48 73 222.581

35 18 440 62 84 237.243

40 18 440 83 99 238.197

45 18 440 104 132 229.305

50 18 440 125 166 215.95

55 18 440 154 210 215.015

60 18 440 185 269 217.059

65 18 440 222 331 218.808

70 18 440 257 404 217.652

75 18 440 285 431 237.276

80 18 440 320 462 213.762

85 18 440 356 517 217.157

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.3, No.6, November 2013

92

90 18 440 390 560 211.646

95 18 440 408 593 212.972

100 18 440 434 637 233.853

104.81 18 440 440 646 213.705

 Figure 5: Association Rules discovered with the modified algorithm by varying the AverageIID for for

a dataset of size 100kB at constant minimum support (1%) and minimum confidence (20%).

Figure6: Execution time Required for the modified algorithm versus AverageIID for a dataset of size

100kB at constant minimum support (1%) and minimum confidence (20%).

Comparative Performance: The comparison of the conventional and the modified apriori

algorithms shows that the number of discovered large itemsets and the association rules in the

modified version of the algorithm is reduced with the introduction of the average inter itemset

distance as a new measure of interestingness. We are calling such rules as the closely spaced

association rules as these are discovered from the closely spaced large itemsets.

6. CONCLUSION

In this paper, a detail algorithm based on apriori algorithm is designed to discover frequent

itemsets and association rules with Average Inter Itemset Distance along with support and

confidence. A theoretical formulation is provided for Inter Itemset Distance and a range for

values of Average Inter Itemset Distance for an itemset is worked out. Then both the algorithms

are implemented and their results are compared while mining closely spaced frequent itemsets

and the corresponding closely spaced association rules with average inter itemset distance along

with the conventional measures of support and confidence. The results show that the number of

generated rules is reduced in comparison to the conventional apriori algorithm. As future scope of

work, the modified approach shall be extended to mine association rules integrated in database

environment by using inter itemset distance.

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.3, No.6, November 2013

93

REFERENCES

[1] R. Agrawal, T. Imielinsky and A. Swami. Mining Association Rules between Sets of Items in Large Database,

Proceedings of ACM SIGMOD Conference on Management of Data, Washington DC, pp. 207 – 216, 1993.

[2] R. Agrawal and R. Srikant. Fast Algorithms for Mining Association Rules in Large Databases, Proceedings of

20th International Conference on Very Large Data Bases (VLDB), Santiago, Chile, pp. 487 – 499, 1994.

[3] R. Agrawal and J. Shafer. Parallel Mining of Association Rules, IEEE Transactions on Knowledge and Data

Engineering, 8(6), pp. 962 –969, 1996.

[4] R. Agrawal, H. Mannila, R. Srikant H. Toivonen, and A. I. Verkamo. Fast Discovery of Association Rules,

Advances in Knowledge Discovery and Data Mining, U. Fayyad and et. el. (Ed.) pp. 307 – 328, Menlo Park,

California: AAAI Press, 1996.

[5] S. Brin, R. Motwani and C. Silverstein. Beyond Market Baskets: Generalizing Association Rules to Correlations,

Proceedings of the ACM International Conference on Management of Data, pp. 265 – 276, 1997.

[6] P. K. D. Sarma, and A. K. Mahanta. Reduction of Number of Association Rules with Inter Itemset Distance in

Transaction Databases. International Journal of Database Management Systems (IJDMS), 4(5), pp. 61 – 82, 2012.

[7] A. Savasere, E. Omiecinsky, and S. Navathe. An Efficient Algorithm for Mining Association Rules in Large

Databases, Proceedings of 21st International Conference on Very Large Databases. Zurich, Switzerland, pp.432-

444, 1995.

[8] J. Han, J. Pei and Y. Yin. Mining Frequent Patterns without Candidate Generation. Proceedings of 2000 ACM-

SIGMOD International Conference on Management of Data, Dallas, USA, pp. 1–12, 2000.

[9] P. N. Tan, V. Kumar and J. Srivastava. Selecting the Right Interestingness Measure for Association Patterns,

Proceedings of ACM SIGKDD International Conference on Knowledge Discovery in Databases, Edmonton,

Canada, pp. 32–41, 2002.

[10] R. J. Hilderman, and H. J. Hamilton. Knowledge Discovery and Measures of Interest. Kluwer Academic

Publishers, 2001.

[11] E. Omiecinski. Alternative Interest Measures for Mining Associations, IEEE Trans. Knowledge and Data

Engineering, 15, 57–69, 2003.

[12] F. Guillet and H. Hamilton. Quality Measures in Data Mining. Springer, 2007.

[13] I.N.M. Shaharanee, F. Hadzic and T.S. Dillon. Interestingness measures for association rules based on statistical

validity. Knowledge-Based Systems, 24(3), pp. 386–392, 2011.

[14] Y. Xu, Y. Li, and G. Shaw. Reliable representations for association rules. Data & Knowledge Engineering, 70(6),

pp. 555–575, 2011.

[15] H. Liu, L. Liu and H. Zhang. A fast pruning redundant rule method using Galois connection. Applied Soft

Computing, 11(1), pp.130 – 137, 2011.

[16] J. Hills, A. Bagnall, B. Iglesia and G. Richards. Brute Suppression: a size reduction method for Apriori rule Sets, J

Intell Inf Syst, Springer Science+Business Media, New York, 2013.

[17] B. Vo and B. Le. A Frequent Closed Itemset Lattice based Approach for Mining Minimal Non- Redundant

Association Rules. International Journal of Database Theory and Applications, 4(2), pp. 23 – 34, 2011.

[18] J. Cheng, Y. Ke, and W. Ng. Effective elimination of redundant association rules. Data Mining Knowledge

Discovery. 16, pp. 221 – 249, 2008.

[19] Y. Xu, Y. Li and G. Shaw. A Reliable Basis for Approximate Assiciation Rules. IEEE Information Bulletin, 9(1),

pp. 25 – 31, 2008.

[20] M. Hashler, and S. Cellubonia. Visualizing Association Rules: Introduction to R – extension Package arulsViz,

pp. 1 – 27, 2011.

[21] W. Davis, P. Schwarz and E. Terzi. Finding Representative Association Rules from Large Rule Collection, SIAM,

pp. 521 -532, 2008.

[22] S. Prakash and R. M. S. Parvathi. An Enhanced Scaling Apriori for Association Rule Mining Efficiency,

European Journal of Scientific Research, 39(2), pp. 257 – 264, 2010.

[23] G. Liu, H. Zhang, and L. Wong. Controlling False Positives in Association Rule Mining, Proceedings of VLDB

Endowment, 5(2), pp. 145 – 156, 2011.

[24] N. Radhika, and K. Vidya. Association Rule Mining based on Ontological Relational Weights, International

Journal of Scientific and Research Publication, 2(1), pp. 1 – 5, 2012.

[25] C. Marinica, and F. Guillet. Knowledge Based Interactive Postmining of Association Rules using Ontologies.

IEEE transactions on Knowledge and Data Engineering, 22(8), pp. 784 – 797, 2010.

[26] V. Bogorny, B. Kuijpers and L. O. Alvares. Reducing Uninteresting Spatial Association Rules in Geographic

databases using Background Knowledge: A summary of Results. International Journal of Geographic Information

Science, Taylor & Francis, 22(4 – 5), pp. 361 – 386, 2008.

[27] J. Wang, J. Han, Y. Lu, and P. Tzvetkov. TFP: An Efficient Algorithm for Mining Top-k Frequent Closed

Itemsets, IEEE Transactions on Knowledge and Data Engineering, 17:652–664, 2005.

International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.3, No.6, November 2013

94

[28] F. N. Afrati A. Gionis and H. Mannila. Approximating a Collection of Frequent Sets, Proceedings of 2004 ACM

SIGKDD International Conference on Knowledge Discovery in Databases, Seattle, USA, pp. 2–19, 2004

[29] X. Yan, H. Cheng, D. Xin & J. Han. Summarizing Itemset Patterns: A Profile-based Approach, Proceedings of

ACM SIGKDD International Conference on Knowledge Discovery in Databases, Chicago, USA pp.314–323,

2005.

[30] D. Xin, J. Han, X. Yan, and H. Cheng. Mining Compressed Frequent-Pattern Sets, Proceedings of International

Conference on Very Large Data Bases (VLDB), Trondheim, Norway, pp. 709–720, 2005.

[31] S. Jaroszewics and D. Simovici. Interestingness of Frequent Itemsets Using Bayesian Networks and Background

Knowledge, Proceedings of 10th International Conference on Knowledge Discovery and Data Mining, Seattle,

USA, pp. 178 -186, 2004.

[32] M.C. Tseng, and W.Y. Lin. Efficient Mining of Generalized Association Rules With Non-uniform Minimum

Support, Data & Knowledge Engineering, Science Direct, 62, pp. 41–64, 2007.

[33] M. Hashler, C. Buchta and K. Hornik. Selective Association Rule Generation, Computational Statistic, Kluwer

Academic Publishers, 23(2), pp. 303-315, 2008.

[34] F. Bonchi and C. Lucchese. Pushing tougher constraints in frequent pattern mining, 2005.

AUTHORS

Pankaj Kumar Deva Sarma
He received the B.Sc (Honours) and M. Sc. Degrees in Physics from the University of Delhi, Delhi, India

before receiving the Post Graduate Diploma in Computer Application and the M. Tech degree in Computer

Science from New Delhi, India. He is currently an associate professor of Computer Science in the

University Department of Computer Science at the Assam University, Silchar, India. His primary research

interest is in algorithms, data base systems, data mining and knowledge discovery, parallel and distributed

computing, artificial intelligence and neural network. He was the former head of the department of

Computer Science of Assam University and was the organizing vice president of the national conference on

current trends in computer science organized at the Assam University in the year 2010.

Anjana Kakati Mahanta

She received the Bachelors and Masters Degrees in Mathematics from the Gauhati University, Guwahati,

India before receiving the Ph. D. in Computer Science from the same university. She is currently a

professor of Computer Science in the University Department of Computer Science at the Gauhati

University, Guwahati, India. Her primary research interest is in algorithms, data base systems, data mining

and knowledge discovery. She is presently the head of the department of Computer Science of Gauhati

University.

