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ABSTRACT 

 
Data mining can be evaluated as a strategic tool to determine the customer profiles in order to learn 

customer expectations and requirements. Airline customers have different characteristics and if passenger 

reviews about their trip experiences are correctly analyzed, companies can increase customer satisfaction 

by improving provided services. In this study, we investigate customer review data for in-flight services of 

airline companies and draw customer models with respect to such data. In this sense, we apply two 

approaches as feature-based and clustering-based modelling. In feature-based modelling, customers are 

grouped into categories based on features such as cabin flown types, experienced airline companies. In 

clustering-based modelling, customers are first clustered via k-means clustering and then modeled. We 

apply multivariate regression analysis to model customer groups in both cases. During this, we try to 

understand how customers evaluate the given services and what dominant characteristics of in-flight 

services can be from the customer viewpoint.  
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1. INTRODUCTION 

 
Data mining covers a variety of techniques to discover inherent but meaningful patterns from 

huge amount of data. Using such patterns, some models can be constructed to facilitate business 

processes such as decision-making, investment planning, marketing strategy development and so 

on. Airline companies in current competitive business environment can improve suitable 

strategies to maintain the highest level of customer satisfaction and provide high quality service. 

To achieve such quality service, first of all, what passengers, ‘customers’ preferred for that term 

along this text regard to management sciences, expect from airline services are need to be 

analyzed and specified. In this study, we want to answer “what factors are dominantly essential 

while customers are rating the services provided by company?” We investigate ratings given by 

customers after their flight experiences. Over given a couple of ratings for each flight, we try to 

understand what factors are more important in the view of customers. We group the customers 

and draw models for each group. By the way, we demonstrate extensive empirical analysis results 

on real customer review data. 
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The paper is organized as follows: Section 2 provides a brief survey of the related studies in the 

area while In Section 3; we introduce data analysis and modelling methodology used in this 

work. In Section 4, after introducing airline customer review data, we exhibit our empirical 

findings using our methodology. Finally, we draw conclusions and give future research directions 

in the last section. 

 

2. RELATED WORK 

 
Data mining techniques can effectively be used by airlines for developing strategies about 

customers through marketing strategy. In this process, fundamentally these topics can be listed 

under four issues as customer value measurement, customer retention, customer growth and 

customer acquisition [1]. There are several studies concerning about such issues for promoting 

airline services with higher level of customer satisfaction. In this context, Liou and Tzeng [2] 

explore customer behavior in the Taiwan airline market in the context of questionnaire responses 

for single and multiple-choice answers. Then they evaluate customer response with rough set-

based classification and they find that two criteria dominate customer decision-making: safety 

and price. Miranda and Henriques [3] point out that companies need to different customer 

segmentation framework in order to define different campaign strategy after analyzing the airline 

customer data by clustering. The authors evaluate three different clustering algorithms as of k-

means, SOM and HSOM performance evaluated. According to analyze results based on data with 

demographic, flight preferences and history features belong to 20,000 customers. They concluded 

k-means is the best where SOM technique gives similar results. Our study can be considered 

similar to so mentioned ones in clustering customers based on personal data. 

 

There are some studies investigating frequent flyer passengers through improvement for airline 

customer relation management. Maalouf and Mansour [1] use frequent flyer passenger data from 

over 1 million passenger activity records taken from about 80,000 passengers for 6 year periods. 

They evaluate such records using clustering and association rules to develop marketing and 

management strategies to improve customer relationships. Yan et al [4] use ID3 classification 

algorithm in order to analyze airport passenger survey data. They indicate that airlines desiring to 

develop customer process have to form marketing strategies considering frequent flyer 

passengers in both present and future. In this study, our concentration is to understand customer 

priorities about in-flight services. By analyzing customer priorities on their reviews, we model 

their attitudes using regression analysis to improve customer relationship management and 

develop marketing strategies. 

 

3. METHODOLOGY: DATA ANALYSIS AND MODELLING 
 

In this section, we introduce how to model passenger attitudes based on given review about 

airline in-flight services. In our study, customers are modelled in two different approaches as 

seen from Figure 1.  Our first approach is based on dividing users having the same features in the 

same group. Feature can be one of airline travelled, cabin flown either economy or business and, 

so on. After selecting which feature is proper, then customer review data are grouped according 

to such feature values of customer. In our second approach, we apply clustering to group of users 

before drawing regression models. Since clustering especially k-means clustering which we are 

going to use is very effective with principal component analysis [5]. We apply such method 

before clustering customers. 
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Figure 1.Model generation based on two different approaches 

 

3.1. Principle Component Analysis 

 
Principal component analysis (PCA) is one of the most popular multivariate statistical techniques 

and it is a well-known dimensionality reduction procedure [6]. Since focusing on to preserve 

correlation and variance between attributes[7], PCA is also effective for getting rid of noise 

effects on data. The superiority of PCA can be summarized as extracting the most important 

information from dataset, compressing the size of the dataset by keeping only this important 

information, simplifying the description of the dataset which enables low dimensional 

visualizations, analyzing the structure of the observations and the variables.   

 

Six general steps for performing a principal component analysis can be listed as  

 

Input: Whole dataset D consisting of n-dimensional samples 

Output: Reduced dataset W with p dimensions 

Step 1: Take the ignoring the class labels. 

Step 2: Compute the n-dimensional mean vector 

Step 3: Compute the scatter matrix of the whole dataset 

Step 4: Compute eigenvectors and corresponding eigenvalues 

Step 5: Sort the eigenvectors by decreasing eigenvalues and choose p eigenvectors with 

the largest eigenvalues to form a d x p dimensional matrix W  

Step 6: Use W matrix to transform the samples onto the new subspace. 

 

The input matrix D has m rows (entities) and n columns (features) where n>p. In our data model 

entities are customers and features are review values in n dimension. After applying PCA, the 

output matrix is D’=DW
T
 having m rows and p columns where superscript T stands for transpose 

of a matrix. By the way, n features are reduced to p features which are effectively represent the 

original data features. We prefer to apply PCA before clustering analysis since not only recent 

results shows that PCA provides effective results with k-means but also but also visualize our 

findings on two-dimensional space [5, 8]. 

 

3.2 Clustering 
 

Clustering is an unsupervised learning method decomposing a given set of objects into subgroups 

(i.e. clusters) based on object similarities[ 9]. The objective is to divide the data set in such a way 

that objects belonging to the same cluster are as similar as possible whereas objects belonging to 

different clusters are as dissimilar as possible[10]. k-means is one of the simplest and most 

commonly used unsupervised learning algorithm that solve the clustering problem in the first 

approach[10]. Algorithmic steps for k-means clustering for our case where entities are customers 

and k reduced features of reviews can be shown below: 
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Input: W, k 

Output: Cluster indices of n customers 

Step 1: Randomly select k cluster centers. 

Step 2: Calculate the distance between each customer and cluster centers using Euclidean 

distance. 

Step 3: Assign each customer to the cluster center so that there is minimum distance 

between the customer and the cluster center.  

Step 4: Recalculate new cluster centers. 

Step 5: Recalculate the distance between each customer and new obtained cluster  

centers. 

Step 6: If no data point is reassigned then stop, otherwise repeat Step 3-5. 

 

3.3 Regression Analysis 

Regression analysis is widely used for prediction and also understand the estimating the 

relationships among variables. Variables are divided into two as dependent and independent 

variables while there are single and multivariate regression analyses. If data is going to be 

analyzed using a single independent variable, it is called one variable regression; otherwise it is 

called multivariate regression analysis [10]. Multivariate regression analysis is divided into two 

as standard and hierarchical regression analysis. We used standard multivariate regression 

analysis because we had more than one independent variable for our study. Our goal is to perform 

multivariate regression analysis on relationships between independent and dependent variables. 

Multivariate regression analysis formula can be given below: 

   

� = � + �� +���	�



���
.                                 

 

 

(1) 

where  xj, y, βj and Ɛ are independent values, dependent values, parameters. The estimated y 

value is calculated by the values obtained from the regression results and error term (Ɛ) obtained 

by finding absolute values of difference of the actual y values from the estimated y values. n 

value is number of independent values. 

4. MODELLING PASSENGERS ACCORDING TO IN-FLIGHT REVIEWS 

In this section, first of all we introduce customer review dataset then model the customers with 

respect to given methodology in the previous section. 

 

4.1 Customer Review Data 

 
Skytrax, a consultancy firm located in London, United Kingdom, conducts research and 

consultancy mostly within the aviation sector [11]. This company conducts research for airlines 

to find the best cabin staff, airport, airline, airline lounge, in-flight entertainment, on board-

catering and several other elements of air travel. Based on conducted survey and their evaluation 

methodology, they give world airline awards and announce annual airline rankings every year. In 

this study, we use Skytrax’s airline rankings which are publicly available in Skytrax’s interactive 

web site, www.airlinequality.com. There are latest travel reviews and customer trip ratings use 

for 681 airlines and 728 airports across the world. In our study, we use customer review data for 

selected airlines. Example of customer review data is demonstrated in Figure 2 and there are 
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comments about experienced travel and numerical ratings represented either with stars from 1 to 

5 or bar from 1 to 10.  

 

 

Figure 2. Customer reviews about the in-flight services. 

Our study concentrates such numerical ratings with other data given in left-side of Figure 2 rather 

than comments in the right. Such ratings are also useful information that customer has been flown 

in economy, premium economy or business class and whether customer recommend or not 

recommend the airline company to potential customer audience. Considering huge amount of 

reviews in Skytrax, we want to reduce input data selecting a convenient subset consisting of Star 

Alliance largest members. To minimize the variations due to different airlines, we prefer to use 

data related to airlines from the same alliance. Airline alliance is an agreement between two or 

more airlines to cooperate on a substantial level. When an airline joins an alliance, the reliability 

of its services offered to customers not only depends on the flights the airline operates, but also 

on the operations of the rest of the alliance members [12]. Airlines which are members of the 

same alliance, they usually handle same standards and they have similar characteristics. Choosing 

the airlines from same alliance is important for this reason. Star Alliance is the global airline 

network with the highest number of airlines, daily flights, destinations and countries flown to [13, 

14]. In this study, input data is costumer review data given from 1 January 2014 to 31 December 

2014 and the reviews are about 5 airline companies that member of star alliance. These airlines 

are United, Lufthansa, Air China, Turkish, All Nippon Airways (ANA).  Chosen airlines are the 

star alliance’s largest members according to number of passengers carried per year [13]. These 

airlines are from different regions such as North America (United from USA), Europe (Lufthansa 

from Germany), Middle East (Turkish from Turkey), and Far East (Air China from China and 

ANA from Japan). Customers from different regions of world may reflect worldwide and regional 

characteristics of customer behavior. Now, we are going to model customers with the hypothesis 

that rating value given by customer is dependent to sub-rating values such as value for money, 

seat comfort, staff service, catering and entertainment. Based on that hypothesis, there are a 

dependent variable (y) as a rating and 5 independent variables (xjs) as sub-ratings according to 

(1). Consequently in our models, βj values represent value for money (j=1), seat comfort (j=2), 

staff service (j=3), catering (j=4), and entertainment (j=5), respectively. As a minor issue to 

regulate the ranges, we doubled sub-ratings in from 5 unit interval to 10 unit interval as ratings 

ranging from 1 to 10. 

4.2 Feature-based Modelling 

In feature-based modeling, we group customers according to features such as cabin flown and 

airlines traveled. In this subsection, we demonstrate obtained models from such feature-based 
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data grouping. In the first case, we group customer data into three groups as business, economy 

and premium economy in which there are 381, 1002 and 111 customers, respectively. After 

performing regression analysis for each group, we obtain βj values as given in Table 1. Then we 

plot such values in Figure 3 and upcoming figures discarding β0 values since our concentration is 

the relation with ratings and sub-ratings. According to Figure 3, we observed that for all flown 

class value of money is the most important factor. Looking all flown class together, staff service 

can be considered second important factor after value of money. Obviously, seat comfort is not 

essential factor for premium economy class, while it has nearly the same effect business and 

economy class customers. About Figure 3, we can also say that business class customer’s 

catering expectation is higher than others but entertainment expectation is lower than other 

classes. Figure 3 also shows that premium economy class customers give entertainment more 

importance than other customers uses other cabin flown and even it is prior to seat comfort in 

contrast to other customers. β0 values which we found regression operation did not show on the 

graph because β0 values are too small enough to affect the result. 

Table 1. The Distribution of Beta Values to Each Cluster 

     β0 β1 β2 β3 β4 β5 

Sub-rating    - Value of 

Money 

Seat 

Comfort 

Staff 

Service 

Catering Entertain. 

Business -0.2349 0.9803 0.1227 0.3696 0.3895 -0.0119 

Economy -0.3042 0.8985 0.1082 0.5839 0.0725 0.0960 

Prem. Eco. -0.2762 1.0415 -0.4260 0.6712 0.2390 0.2666 

 

 

Figure 3. Relation between cabin flown and model parameters. 

Our second case is to group users with respect to airline traveled. In sampled review data, there 

are 545 United, 434 Lufthansa, 98 Air China, 341 Turkish, and 76 ANA passengers and our 

groups consisting of such passengers. After applying regression analysis, we give our models in 

Figure 4. According to such figure, again value of money is the considerably essential factor 

according to all groups. Value of money has the most effect for United passengers in comparison 

to other airline passengers and but for them seat comfort has the most little effects both in their 

overall and in contrast to other airline passengers. According to the Figure 4, we can say that 
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Lufthansa passengers’ sub-rating weights are all closer except entertainment. The outstanding 

feature of Lufthansa group, overall rating is based on sub-ratings in significantly balanced way. 

Interestingly from Figure 4, passengers who traveled with Air China and Turkish Airlines have 

similar tendencies about their reviews except entertainment factor. Entertainment is more 

important for Air China passengers than those of Turkish (THY). Looking at Figure 4, we can 

remark that for ANA passengers the most important factor is seat comfort even slightly better 

than value of money. Unlike other airline companies, for ANA staff service has fewer effects on 

overall ratings. Thus, staff service importance are lower for Japanese which may cause from that 

the Japanese typically demand much higher levels and quality of service than expected elsewhere 

in the worldwide as stated in [14] and service is default must for Japanese passengers. From 

Figure 4, we can also note that for ANA passengers, catering has also significant effect in overall.  

 

Figure 4. Relationship between airlines traveled and model parameters. 

4.3 Clustering-based Modelling 

As we mentioned in Section 3, initially we reduced our data with six-parameters (5 sub-ratings + 

1 rating) into 2-dimensional by using PCA. Then we applied k-means with regression analysis to 

identify how many cluster would be appropriate for us. For this reason, we select k values from 1 

to 10 to obtain regression errors (ε) and repeated this process 100 times. Note that along those 

trials, we evaluate such errors in context of mean absolute errors as used in [8]. We display 

obtained average ε values in y-axis corresponding k values in x-axis in Figure 5. The figure shows 

that there are local minimum at k=2 and it seems errors get decrease with increasing values after 

k=6. We prefer to use k=6, since we can consider there is acceptable regression error and 6 

clusters are feasible to visualize and discuss effectively. There is less regression with k=2 

comparing to k=6 but less representative clusters and for higher k values, effective analysis, 

modelling and discussion may be complex. Hence, for the sake of simplicity and acceptable 

modelling accuracy, we prefer to 6 clusters to model customers.  

 

After determining proper cluster number, there is still one issue to fix up to achieve stable results 

and repeatability of results. While initial cluster centers can be randomly determined, they can be 

selected proper values. We consider latter case and determine six center points; the four of them 

are the rectangular corners consisting of combinations of maximum and minimum values of each 

column of reduced data while the remaining two points are quarter distance points when the 

corners grouped in pairs. As a result center points which we have already selected are {(7, 9), (-
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14, 9), (7, -7), (-3.5, -3), (-3.5, 5), (-14, -7)}. Then, after setting up initial parameter, we execute 

k-means algorithm then obtain results as pictured in Figure 6. According to this figure, there are 

distributed points each representing a customer within six clusters with final center points shown 

with cross sign (×). 

 

 
 

Figure 5. Regression errors with respect to varying cluster numbers 

Based on clusters in depicted in Figure 6, we plot regression parameters belong to clusters in 

Figure 7. We also find and give useful details about customers in each cluster in Table 2. Note 

that we prefer to label recommended user as satisfied users as in last column in Table 2 since 

customer satisfaction is the determinant of intention to recommend [15].According to Table 2, 

first of all about Cluster1, we can say that percentage of business class passengers is have the 

largest in this cluster than the other clusters while it is the most crowded cluster with 25.4% of all 

customers investigated. This cluster has the highest overall rating value with 6.58 and there are 

about 70% of satisfied customers. From Figure 7, Cluster 1 has closer weighted sub-ratings effect 

on the overall effect which is similar to Lufthansa passengers. According to Figure 7, we can say 

about Cluster 2 passengers similar attitudes towards ratings with Cluster 5. Considering average 

overall ratings in Table 2 with the figure, difference between two graphs is shift due to average 

overall ratings rather than model-oriented difference. There are 25.3% of total customer by 

summing customers in Cluster 2 and 5; however business customer rate of both is half of 

Customer 1. Customers in this combined cluster have priorities ordered value of money, staff 

service and entertainment and the other factors are not essential for such kind of customers. 

According to Figure 7, Cluster 3 costumers give importance to staff service and catering at least 

as much as value of money. For Cluster 3, the staff service makes sense but they do not care 

about entertainment when evaluating overall performance of given service. According to Table 2, 

the percentage of Cluster 3 population is 13.7% of overall.  One outstanding cluster is number 4 

where there are customers caring about entertainment as much as value of money and the other 

factors are not so vital for them during in-flight services. However, looking at Table 2, only 53% 

of satisfied users of that cluster and they are 11.8% of all customers. Finally, as shown in Table 2, 

Cluster 6 is the one of most crowded clusters which takes individually about 23.8% of all 

customers. Its tendencies are similar with unsatisfied customers depicted in Figure 5 which can 

be supported with just 34.8% of recommended customers in Cluster 6 given in Table 2, as well.  
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Figure 6. The distribution of the clusters. 

 
Figure 7. Model parameters of each cluster 

Table 2. Cluster Statistics 

Cluster # Total 

No. 

Pasngr 

No. of 

Busns 

No. of 

Econ. 

No. of 

Prem. 

Eco. 

Aver. 

Rating 

Satsf’d 

Cust. 

(%) 

 Clust. 1 379 149 213 17 6.58 69.7 

Clust. 2 206 41 150 15 5.85 62.6 

Clust. 3 204 55 135 14 6.29 71.1 

Clust. 4 177 50 111 16 5.10 53,1 

Clust. 5 172 29 132 11 4.94 48.8 

Clust. 6 356 57 261 38 3.86 34.8 

 

5. CONCLUDING REMARKS AND FUTURE WORKS 

It is critical for companies to collect customer data revealing hints about their attitudes about their 

sector and process such data in order to extract useful patterns worth to be considered during 
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strategy development especially for marketing and customer relations management. In this study, 

we show how to mine available Skytrax customer review data about in-flight services in the sense 

of customer perceptions. We show that some inferences can be captured to understand how 

customers are evaluating the given services when properly modelling customers. Based on our 

analysis, it can be stated that customers differently perceive sub-rating values and return overall 

ratings based on such perceptions. According to some customer groups, value of money is very 

essential and for some others, staff service is the dominant factor for service evaluation. 

 

This study offers data analysis and modelling framework for promoting airline in-flight services 

with the discussion of current outcomes. There are still issues to be examined in future studies. 

For example, initially we select smaller sample of reviews. However, different data selection can 

be realized in order to reach outcomes reflecting some other features. Another issue is that there 

are many data mining and regression techniques in addition to k-means clustering and 

multivariate regression analysis. Exploiting other clustering algorithm may present different 

grouping of customers worth to be analyzed. We believe that there will be fruitful discussions 

through different kind of data mining applications for this data. 
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