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ABSTRACT

The objectives of this paper were to 1) develop an empirical method for selecting relevant attributes for
modelling drought and 2) select the most relevant attribute for drought modelling and predictions in the
Greater Horn of Africa (GHA). Twenty four attributes from different domain areas were used for this
experimental analysis. Two attribute selection algorithms were used for the current study: Principal
Component Analysis (PCA) and correlation-based attribute selection (CAS). Using the PCA and CAS
algorithms, the 24 attributes were ranked by their merit value. Accordingly, 15 attributes were selected for
modelling drought in GHA. The average merit values for the selected attributes ranged from 0.5 to 0.9. The
methodology developed here helps to avoid the uncertainty of domain experts’ attribute selection
challenges, which are unsystematic and dominated by somewhat arbitrary trial. Future research may
evaluate the developed methodology using relevant classification techniques and quantify the actual
information gain from the developed approach.
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1. INTRODUCTION

Attribute selection is the process of identifying relevant information and removing as much of the
irrelevant and redundant information as possible [1]. Attribute selection is also defined as “the
process of finding a best subset of features, from the original set of features in a given data set,
optimal according to the defined goal and criterion of feature selection (a feature goodness
criterion)” [2]. In this paper, attribute selection is the process of selecting relevant drought
variables for constructing drought prediction models in space-time dimensions. The attribute
selection approach here is focused on identifying and selecting the most relevant drought
descriptor variables from different sources and removing the irrelevant attributes without loss of
information. In the context of the current research, redundant or irrelevant features are two
distinct notions, since one relevant feature may be redundant in the presence of another relevant
feature with which it is strongly correlated [3].

Attribute selection techniques can be categorized according to a number of criteria. One popular
categorization has coined the terms filter and wrapper to describe the nature of the metric used to
evaluate the worth of attributes [4]. Wrappers evaluate attributes by using accuracy estimates
provided by the actual target learning algorithm. Filters, on the other hand, use general
characteristics of the data to evaluate attributes and operate independently of any learning
algorithm [1].
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The assumption in machine learning and data mining models is that the attributes used for
training are relevant to the target attribute being explained and the learning algorithms are
designed to learn with the most appropriate attributes to use for making their decisions [5]. In
addition to this, there should not be duplication of information in the attributes being used for the
modelling experiment [1, 6].

In the past, the issue of attribute selection for developing data mining models was found to be
unsystematic and dominated by arbitrary trial [7]. This is the major cause of model uncertainties
[8, 9] and challenges for converting the theoretical models into practical real world problem
solving applications [8]. It is also important to note that one of the most important tasks in data
mining experiments is attribute selection [10]. This is because the output of a data mining
experiment is highly dependent on the input attributes and their data values [8, 9]. For instance,
one of the challenges in nearest neighbour data mining models is that the models are adversely
affected by the presence of irrelevant attributes. All attributes are taken into account when
evaluating the similarity of two cases, and irrelevant attributes introduce a random factor into this
measurement. As a result, composite models are most effective when the numbers of attributes
are relatively small and all attributes are relevant to the prediction task [11].

Witten et al. [5] indicated that decision tree methods choose the most promising attribute to split
on at each point and should in theory never select irrelevant or unhelpful attributes. Contrary to
this, adding irrelevant or distracting attributes to a dataset often confuses machine learning
systems. Experiments with a decision tree learner (C4.5) have shown that adding to standard
datasets a random binary attribute generated by tossing an unbiased coin impacts classification
performance, causing it to deteriorate (typically by 5-10% in the situations tested). Specifically,
instance-based learners are very susceptible to irrelevant attributes because they always work in
local neighbourhoods, taking just a few training instances into account for each decision [5].

Practical machine learning algorithms (including top-down induction of decision tree algorithms
such as CART and instance-based algorithms) such as instance-based learner (IBL) [12] are
known to degrade in performance (prediction accuracy) when faced with many features that are
not necessary for predicting the desired output [12]. On the other hand, algorithms such as Naive
Bayes [12] are robust with respect to irrelevant features (i.e., their performance degrades very
slowly as more irrelevant features are added), but their performance may degrade quickly if
correlated attributes are added (if there is duplication of information), even if the attributes are
relevant [5, 12]. In the past, in addition to relevancy of the attributes for modelling experiments,
the redundancy of the attributes due to their high intercorrelation is not checked [2, 8, 9]. Because
of the redundancy of the attributes, most of the classification algorithms suffer from extensive
computation time, decrease in accuracy, and uncertainty in the interpretations of the model
outputs [2].

It was also confirmed that in a given database, if too much irrelevant and redundant information is
present then learning during the training phase is more difficult, and at the same time the
redundant data directly lead to the problem of overfitting; as a consequence, the overall
performance of the system will degrade [13].

The goal of this study was to develop an attribute selection method with special emphasis on
drought modelling and prediction. The specific objectives of the paper were to: 1) develop an
empirical method for selecting relevant attributes for modelling drought and 2) select the most
relevant attribute for drought modelling and predictions in the GHA. In this paper, we focus on
attribute selection techniques that produce ranked lists of attributes. These methods are useful for
improving the performance of learning algorithms, and the rankings they produce can also
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provide the data miner with insight into their data by clearly demonstrating the relative merit of
individual attributes [1]. Materials and methods for attribute selection approaches (principal
components analysis and correlation-based attribute selection) are presented in detail in section 2.
Section 3 discusses the major findings, and section 4 presents the conclusions.

2. MATERIALS AND METHODS
2.1 DATA SOURCE

The experimental dataset for this research was extracted from the Greater Horn of Africa (GHA),
which is geographically located between -12.34°S to 35.7°N latitude and 21.1° to 51.5°E
longitude. Administratively, the study area includes Burundi, Djibouti, Eritrea, Ethiopia, Kenya,
Rwanda, Somalia, South Sudan, Sudan, Tanzania, and Uganda [14] (Figure 1). The region is
known to have highly diversified topography and ecosystems [15]. The data extracted from this
region is assumed to represent the diversified topography and ecosystems.

A total 24 different attributes from different domain areas were used for this experimental
analysis. Most of the attributes were obtained from the National Oceanic and Atmospheric
Administration (NOAA) data portal (https://www.esrl.noaa.gov/psd/data/climateindices/list/)
[16]. The remaining attributes were obtained from the United States Geological Survey (USGS)
[17], European Space Agency (ESA) [18], International Soil Reference and Information Centre
(ISRIC)-World Soil Information [19], Climate Hazards Group Infrared Precipitation with
Stations (CHIRPS) [20], EROS Moderate Resolution Imaging Spectroradiometer (eMODIS) [21],
National Aeronautics and Space Administration (NASA) EARTHDAT [22], and The Nature
Conservancy's (TNC) GIS data portal [23]. Table 1 presents the attributes, data types, and sources
of the data for each attribute. The domain explanations, detailed attribute descriptions, and data
preparation is available in the references listed. From each of the attributes listed in Table 1, time
series data from 2001 to 2015 were extracted and used in the experimental analysis.

Study Area Spatial Location in Africa

@ Legend
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Figure 1: Location of the study area in Africa. The background map in this figure is elevation in meters.
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Table 1. Attributes used for the experimental analysis.

Attribute Acronym | Type Source and references

Digital Elevation Model DEM Biophysical USGS [17]

Land Cover LC Biophysical ESA [18]

‘Water Holding Capacity of the Soil WHC Biophysical ISRIC - World Soil Information [19]

Normalized Precipitation N_Precip | Climate Climate Hazards Group Infrared Precipitation
with Stations (CHIEPS) [20]

Standardized Seasonal Greenness 535G Satellite eMODIS [21]

Soil Moisture SM Biophysical NASA EARTHDAT [22]

Ecoregion EC Biophysical The Nature Conservancy’s (TNC) GIS data
portal [23]

Atlantic Meridional Mode AMM Oceanic / Atmospheric NOAATL6]

Dipole Mode Index DA Oceanic / Atmospheric NOAA/ESEL [24]

Multivariate ENSO Index MEI Oceanic /| Atmospheric NOAATLG

Oceanic Nifio Index ONI Oceanic /| Atmospheric NOAATLG

Pacific Decadal Oscillation PDO Oceanic /| Atmospheric NOAATLG

Trans-Nifio Index TNIL Oceanic /| Atmospheric NOAA[16]

Tropical Northern Atlantic Index TNA Oceanic / Atmospheric NOAATLS

Tropical Southern Atlantic Index TSA Oceanic / Atmospheric NOAAT[L6

(Quasi-Biennial Oscillation QBO Oceanic / Atmospheric NOAATLG

Solar Flux (10.7cm) SFLUX Oceanic / Atmospheric NOAATLG

Central Tropical Pacific 35T Nino 4 Oceanic /| Atmospheric NOAATLG

East Central Tropical Pacific 55T Nino 3.4 Oceanic /| Atmospheric NOAATLG

Bivariate ENSO Timeseries BEST Oceanic /| Atmospheric NOAATLS

Atlantic Multidecadal Oscillation AMO Oceanic /| Atmospheric NOAATLG

North Atlantic Oscillation NAO Oceanic / Atmospheric NOAATL6

Pacific North American Index PNA Oceanic / Atmospheric NOAAT[L6

Southern Oscillation Index S0L Oceanic / Atmospheric NOAATLG

2.2 ATTRIBUTE SELECTION APPROACHES

Our experiment for the best attributes selection involved searching through all possible
combinations of attributes in the data to find which subset of attributes works best for the drought
prediction. This process was done in two steps: 1) set up an attribute evaluator, and 2) determine
the relevant search method. Setting up the evaluator determines the type of method to be used to
assign a worth to each subset of attributes, and the search method determines what style of search
is performed [25].

For the experimental analysis, we used Weka2 (Waikato Environment for Knowledge Analysis)
[26], a powerful open-source Java-based machine learning workbench that can be run on any
computer that has a Java runtime environment installed [1]. Weka has several machine learning
algorithms and tools under a common framework with an intuitive graphical user interface. For
this study, two modules in Weka were used: a data exploration module and attribute selection
module [26].

Four attribute selection algorithms were considered for the current study: CAS, PCA, ReliefF
feature selection algorithm, and wrapper (WrapperSubsetEval) [5]. These four algorithms were
found to have better performances than other classic algorithms, such as the information gain
algorithm [1]. In addition, these four algorithms were found to be able to handle a continuous
dataset, which helped us not to discretize the data for our experiment analysis.

During the experimental analysis, the ReliefF feature selection algorithm and WrapperSubsetEval
algorithms were found to be slow to handle the 24 attributes with huge datasets (about 519,000
records). Other research [1, 6] also noted that these two algorithms are too slow to execute on
huge datasets and are not recommended for huge dataset manipulations. Specifically, Hall and
Holmes [1] indicated that if the training dataset is large, the application of the wrapper approach
may be unrealistic because of the enormous computation time required. Therefore, due to the
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intensive computations and very long time needed to get the outputs of the analysis, the ReliefF
and WrapperSubsetEval algorithms were not used in the current research. The details for the PCA
and CAS attributes selection approaches are presented in the following subsections.

2.2.1 Principal Component Analysis (PCA)

The PCA is a technique that uses a linear transformation to form a simplified dataset retaining the
characteristics of the original dataset [27-29]. If the original data matrix contains d dimensions
and n observations, it is required to reduce the dimensionality into a k dimensional subspace. This
transformation (equation 1) [27] is given by:

Y=E, X, (1)

where Y is a matrix of principal components, E", ., is the matrix of standardized observational
data (the projection matrix that contains k eigenvectors corresponds to the k highest eigenvalues),
and X, , , is matrix of eigenvectors (a mean-centered data matrix). Detailed descriptions of the
theoretical and applications of PCA are presented in [27].

The goal of PCA is to extract the important information from the data table and express this
information as a set of new orthogonal variables called principal components [27-29]. PCA also
represents the pattern of similarity of the observations and variables by displaying them as points
in maps [27]. The PCA algorithm was found to be useful in looking at the subset of attributes for
capturing the variance in the identified principal axis, which helped us to see the associations of
the attributes in explaining the target attribute (the SSG in the current experimental analysis).

2.2.2. Correlation-based Attribute Selection (CAS)

CAS is one of the most popular attribute subset selection methods [1, 6, 30]. The main objective
of CAS is to obtain a highly relevant subset of features that are uncorrelated to each other [6]. In
this way, the dimensionality of datasets can be drastically reduced and the performance of
learning algorithms can be improved. CAS employs heuristic evaluation of the worth or merit of a
subset of features. The merit function considers the usability of individual features for predicting
the class label, along with the level of intercorrelation among them [6, 30] (equation 2).

CAS uses a correlation-based heuristic to evaluate the worth of attributes in a given model. This
heuristic takes into account the usefulness of individual attributes for predicting the class label
along with the level of intercorrelation among them [30]. Hall [30] indicated that the hypothesis
on which the heuristic is based is “good feature subsets contain features highly correlated with the
class, yet uncorrelated with each other.” The workflow for the CAS attribute selection process is
presented in Figure 2.

The algorithm was found to be fast to execute in a huge dataset (with 24 attributes and 519,000
records for each attribute) and was found to be helpful for managing the different attributes with
519,000 records. Compared to PCA, CAS was found to be much faster in our experimental
analysis. CAS has a ranking approach using a GreedyStepwise search method [26, 30], which is
suitable for selecting our drought attributes for the practical drought monitoring applications.
CAS filters correlation-based attribute selection scores by rewarding them for containing
attributes that are highly correlated with the dependent variable and penalizing subsets for having
attributes that are highly correlated among each other. A higher merit score represents a better
subset [30].
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Figure 2. The process of a correlation-based attribute selection approach: A;represents attributes, and SSG
is the standardized seasonal greenness dependent attribute (adapted from Hall [6]).

The CAS attribute selection algorithm uses a correlation-based measure to evaluate the worth of
attribute subsets. This works with the principle that if a feature subset S contains k features, the
evaluation measure for S is calculated as in equation 2 [2, 30].

kr.f @
Vk+k(k=1)r,

where Mer ilf is the heuristic merit of attribute subsets S containing k attributes, 7, is the

Merit ; =

average feature class correlation, and 7y is the average feature-feature intercorrelation. Equation

2 is further described by Hall [30] for continuous data analysis. Equation 2 is, in fact, Pearson’s
correlation, where all variables have been standardized. The numerator can be thought of as
giving an indication of how predictive a group of attributes are; the denominator can be
considered an indicator of how much redundancy there is among them. The heuristic handles
irrelevant features because they will be poor predictors of the class. Redundant attributes are
discriminated against because they will be highly correlated with one or more of the other
attributes. Hence, the merit function will have larger values for attribute subsets that have
attributes with strong class—attribute correlation and weak attribute—attribute correlation.
However, even if a set of attributes has strong class—attribute correlation, if there is strong
attribute—attribute correlation, the merit value will be degraded [31].

The CAS algorithm treats continuous and discrete attributes differently. For continuous class
data, the obvious measure for estimating the correlation between attributes is as in equation 2 [2,
30], which is a standard linear (Pearson’s) correlation (equation 3) [30].

X2 3

Xy
' no.o,
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where ry, is correlation values, n is number of attributes, o is standard deviation value, and X
and Y are two continuous variables expressed in terms of deviations.

When one attribute is continuous and the other is discrete, a weighted Person’s correlation is
calculated, as shown in equation 4 [30]. Specifically for discrete attribute X and a continuous
attribute Y , if X has k values, then k binary attributes are correlated with Y . Each of the

" value of X occurs and O for all other

i=1,...,k binary attributes takes value 1 when the i
values. Each of the i =1,..., k correlations calculated is weighted by the prior probability that X

takes value i .
k
ry =2 . p(X =x)ry, )
i=1

where ryy is correlation values, X »i is a binary attribute that takes value 1 when X has value X;

and O otherwise.

Since the data types were defined as continuous (such as DEM, SPI, etc.) and discrete (such as
landcover, ECO) (Figure 3), the CAS algorithm in Weka has properly produced the merit values
as correlation values.

Brelation GHA dekad 22 out0l

Battribute awc numeric

Battribute dem numeric

Battribute eco
{?,10085,10088,10085,10052,10093,10094,10056,10057,10108,10103,10
112,10113,10116,10118,10121,10122,10123,10125,10128,10125,10130,1
0131,10132,10133,10135,1013¢,10138,10142,10147,10151,10153,10159,
10161,10162,10167,10165,10174,10175,10176,10177,10179,10184,10185
»101590,10191,10154,10673,10695,106596,10698,10700,10702,17003}
Battribute landcover
{11,14,20,30,40,50,€0,50,110,120,130,140,150,160,180,190,200,?}
Battribute amm numeric

Battribute amo numeric

Battribute best numeric

Battribute dmi numeric

Battribute mei numeric

Battribute nao numeric

Battribute Nino34 numeric

Battribute Nino4 numeric

Battribute oni numeric

Battribute pdo numeric

Battribute pna numeric

Battribute gbo numeric

Battribute sflux numeric

Battribute soi numeric

Battribute tin numeric

Battribute tna numeric

Battribute tsa numeric

Battribute Zscore numeric

Battribute SM numeric

Battribute S5G_dek22 numeric

Battribute S5G_dek23 numeric

Gdata
?,599,10698,200,410,190,510,21652, 366, -220, 2688, 2505,-100,-770, -
140,-2167,1631,-700,-2846, 340,140,-332,?,-1610,-1486
?,599,10698,200,-1550,118, 1450, —

91815, 949,360, 2782, 2948, 300, 600, 610, 1060, 1839, -1600, -2001, -
50,10,-332,7?,-991,-557
?,599,10698,200,1370, 428,170, 11446, 267, -220, 2718, 2908, 200, 880, —
310,-2464,1221,200,-2412,5%0,4%0,-332,72,867,1300
?,5%9,106%98,200,3700,330,500,-39820, 665, -
740,2770,2937,700,850,1520,874,1110, -500,-3253, 680, 220, -
332,2,247,371

Figure 3. An excerpt from the data type definition for CAS in java api. The ? mark is the missing data for
the attributes’ values.

In CAS, there are two major components for selecting the relevant attributes and ranking them
according to their merits: attribute subset evaluation (CfsSubsetEval), and a search method. For
the subset evaluation, we used the CfsSubsetEval algorithm, and for the search, the
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GreedyStepwise [26]. The GreedyStepwise search algorithm was found to be best for our purpose
compared to the other two algorithms (BestFirst and ranker algorithms), since it has a ranking
order for selecting the most relevant attributes. CfsSubsetEval algorithm [6, 26] evaluates the
worth of a subset of attributes by considering the individual predictive ability of each feature
along with the degree of redundancy between them; the GreedyStepwise [26] performs a greedy
forward or backward search through the space of attribute subsets. The GreedyStepwise algorithm
starts with no/all attributes or from an arbitrary point in the space, and it stops when the
addition/deletion of any remaining attributes results in a decrease in evaluation. Finally, this
algorithm produces a ranked list of attributes by traversing the space from one side to the other
and recording the order that attributes are selected [5].

3. RESULTS AND DISCUSSIONS

The data used for the experiment have dekadal (10-day time interval) temporal resolutions. In a
year, there are 36 dekads (since there are 3 dekads in a month). Representing these 36 dekads, 3
dekads were used for the attribute selection experiment: dekad 7, 22, and 31. Dekad 7 is March
1-March 10, dekad 22 is August 1-August 10, and dekad 31 is November 1-November 10. These
dekads were selected systematically, representing the middle of the vegetation growth in the
GHA. The middle of the growing season was selected with the assumption that there would be
strong correlation between independent attributes and dependent attributes (SSG), which may
help us in selecting the relevant attribute and discarding the irrelevant attributes.

In our empirical experiment for finding the relevant attribute for drought modeling, the PCA and
CAS algorithms were found to be able to handle the continuous huge datasets with 519,000
records. The major outputs from PCA and CAS analysis are presented in the following
subsections.

3.1 PCA ATTRIBUTE SELECTION

For the PCA analysis, the discrete attributes (eco and LC) were excluded and only the continuous
data types were used. Detailed exploratory analysis was conducted for the intercorrelations within
the identified attributes for modeling drought in the study area. The iterative analyses for PCA
were done for the first dekads in May, August, and November. Since all of them showed same
pattern, only the analysis output for the first dekad in August is presented here.

Table 2 presents the correlation matrix for the attributes used in predicting the second dekad in
August using data from the first dekad in August. This correlation matrix shows how the
attributes correlate with each other and which ones may show duplication of information if we
use these attributes without attribute selection experimental analysis. For example, it was
observed that “best” (Bivariate ENSO Timeseries) (https://www.esrl.noaa.gov/psd
/data/climateindices/list/) has strong correlations with Nino34, Nino4, oni, and soi (Table 2).
These intercorrelations range from 0.70 to 0.90. This duplication of information or redundant
information directly led to the problem of overfitting and the overall model performance
uncertainty [13]. In addition to the overfitting, Kumar and Batth [13] indicated that if there is too
much redundant information present, then learning during the training phase is more difficult.

Although the choice of threshold for the variance is often selected heuristically and depends on
the problem domain [28], in our experimental analysis, we set a constraint to capture 95% of the
variance. Accordingly, 15 principal components (PCs) were needed to capture this threshold in
our experimental attributes and datasets. Our intention here when using PCA as a tool for
attribute selection is to select variables according to the magnitude of their coefficients (loadings).
Table 3 presents the eigenvectors for the 15 PCs and for all attributes considered. From this table
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it is possible to observe the eigenvectors (the coefficient values) for each attribute and the
contributions of the attributes in each identified PC (a total 15 PCs here).

Table 4 presents the eigenvalues for the selected PCs for capturing the 95% variability in
decreasing order of the eigenvalues, proportions, and cumulative variability. The eigenvalues here
show the variance in all the variables (rows), which is accounted for by the selected features. In
principle, the eigenvalues measure the amount of variation in the total sample accounted for by
each feature selected in explaining the class attribute.

The proportion in the second column of Table 4 shows the ratio of eigenvalues, which is the ratio
of explanatory importance of the selected features with respect to the other features. If a factor
has a low eigenvalue, then it is contributing little to the explanation of variances in the variables
and may be ignored as redundant with more important factors. The first selected features
explained about 30%, the second about 13%, and the third about 7% of the overall variability. To
achieve 95% of the variance, 14 PCs were needed (Table 4). The challenge here is that in each
PC, all the attributes were included even though they have very low eigenvector (coefficient)
values.

Tables 2-4 clearly showed which attributes are related to the class attribute (SSG) and also the
duplications of information available within the selected attributes. The PCA analysis here helped
us to explore the relationships between the selected attributes to explain the class attributes and
also the duplication of information if we use all the attributes identified for modelling the
vegetation condition (SSG) target values. In the following subsections, the CAS attribute
selection with GreedyStepwise algorithm prioritizes each attribute based on their strong
correlations between class attribute SSG and also their low information duplication within the
explanatory attributes.

Table 2: Correlation matrix for first August dekad outlook 1. Acronyms listed here are spelled out in Table
1. The same pattern was observed for May and November (not presented here).

awe  dem  amm  amo  bet | dmi  ma  me | Nmodd | Nimod om | pde  pm | gbo B el &m W &= N Precip | SM_ 55G

0771

0.2 04 1

035 048 057 1

001 013 082 03 1

L2 02 006 001 017 1

031 04l 0% 034 081 011 1

021 035 08 038 07 -001 078 1

024 033 0% -052 087 001 098 0.74 1

012 012 08 031 04 02 033 0.68 05 1

022 044 084 04 0 019 049 0.45 045 036 1

017 007 008 004 024 003 024 -0 017 002 014 1

037 001 026 035 04 025 029 0.18 03 02 035 o012 1

031 009 066 014 08 006 066 054 07 042 03 034 035 1

41 028 085 047 076 003 087 -074 088 055 033 014 035 068 1
034 076 047 039 016 042 048 026 045 01 023 028 003 001 034 1

R - - - T T R R - - -

tsa 0 032 017 019 013 003 065 025 0.01 017 013 004 -008 017 001 004 04 1

N Precip 001 003 012 005 003 00T 008 O 0 0.01 0 o001 003 015 01 007 002 002 009 1

M 007 017 [ ) S 0 -002 0 0 o 001 0 1] 0 003 001 0 0 001 001 014 1

55G 0 0 008 017 018 012 006 001 014 014 011 008 012 -002 001 007 017 014 D02 009 0 1

Table 3: Eigenvectors for the analyzed attributes vs the 15 PCs (for first August dekad outlook 1).
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BC1 BC1 PC3 PC4 PC3H PCE PCT PCE PCD PC1D PCI1 12 PC13 PC14 PC15
B ] -0.0008 | 0.0014 | 0201 00734 | 07463 | 0.0922 | 02216 | 02041 | -0.3173 | -0337 | 0.0999 | 0.0783 | 0.1308 [ -0.0016
dem 00001 | -0.0018 [ 0.0032 | 04261 | -0.1303 | -0.4136 [ -0.0186 | -0.0373 | 0.1306 | 02903 | 0.6440 | -0.1784 [ -0.1068 | -0.2176 | -0.0011
amm 00947 | 04201 | 00272 | 0.0306 | 03203 | -0.043 | -03011 [ -0.0848 | 0.0107 | 00322 | -0.018 | 0.0433 [ 00736 | -0.0482 | -0.0394
amo 0163 | 04061 [ 02361 | 0.0103 | 0.1231 | 00176 | -0.1303 | 0.0019 | -0.1398 | 0.1276 | 0.0004 | 0.1230 | -0.1287 | 0.0246 | 0.3697
bast 03393 | -0.0003 | -00123 | -0.0091 | -0.0386 | 0.0040 | 0.032 00721 | 0.1009 | -0.0314 [ -0.0382 [ -0.0815 | -0.0895 | 0.0338 [ -0.0384
dmi 0220 | 0.1674 | -02633 | -0.0043 | 0.0218 | 0.0012 | -00666 | 02274 | 0.0341 | 0.1607 | -0.1342 | -0.0393 | -0.3260 | 0.1389 | 03371
mai 03187 | 0.1801 | -0.0806 | -0.0113 | -0.0406 | -0.0139 | 01312 | 0.0675 | 0145 | 01113 | 00621 | -0.07 02084 | 0.0628 | -0.1732
a0 00037 | 03257 [ 04289 [ 0.0505 | 02908 | -0D.0373 [ -02611 [ -0.0326 | -0.0772 | 0.1011 | -0.0361 | -0.0048 [ 0.0018 | -0.0188 | -0.4313
Ninoi4 03376 | 00338 | 01144 | 0 00026 | -0.0043 | 00169 | 0.0252 | -0.0083 | -0.0127 | 0.0138 | 0.025 0.0033 | 0.002 -0.0631
Ninod 03114 | 0.0473 [ -00746 [ 0.0304 | 0.1637 | -0.0061 [ -0.0326 | -0.1795 | 0.2039 | -0.0671 | 0.0020 | 0.0696 | 0.033 00297 | 0.4263
S 03528 | 00212 | -0.0846 | -0.0103 | -0.0339 | -0.0056 | -0.0236 | 0.0383 | -0.0218 | -0.0081 | 0.0281 | 0.1031 [ -0.0388 | 0.0094 | -0.198
pdo 02163 | 02276 | 0.0314 [ 0.0219 | 0.0961 | 0.0074 [ 0.1073 [ -0.2632 | 0.5098 | -0.2964 | 0.013 00921 | 02775 | 00751 | 0.0382
22 02239 | 00017 | 03384 | -0.0094 | 0.0184 | 00272 | 02183 | -0.0773 | 0.0134 | 0.1008 | -02216 | -0.3797 | -0.1238 | 0.0924 | 0.1383
gbo 00602 | -0.0762 [ 04719 [ -0.0992 | 0425 | 0.0307 [ 02331 [ 01212 | 03031 | -0.1693 | -0.024 | 0.0232 [ -0.3663 | 0.1137 | -0.1067
sflux 01339 | 02267 [ 02938 [ -0.03533 | -0298 | 0.0087 | 0.0895 [ 03681 | -0322 | 0.0276 | 0.071 00738 | 03201 | -0.0644 | 04329
20l 02362 | -0.2706 | 02444 | 0.0128 | 0.1025 | -0.01053 | -0.0375 | -0.08%5 | 0.1836 | -0.1173 | 0.0281 | 0.012% | 0.247% [ -0.0872 | 0.0941
tin 0.328 0.0764 | 0.0393 | -0.0017 | 0.0104 | -0.0162 | -0.126 | -D.0007 | -0.0067 | 0.0331 | -0.1037 | -0.341% | 0.073 0.0088 | -0.0514
ma 00731 | 04223 | 0.1153 | -0.0381 | -0.1803 | 0.016 | 0.1321 | 0.0884 | -0.0302 | -0.0403 | 0.0642 | 0.1917 | -0.I731 [ 0.0461 | -0.1366
i 00341 | 03133 | 03655 [ -0.0703 | 03102 | 0.002 [ -0.0123 [ 0.0333 | 0.0372 | -0.0188 | 01352 | 0321 [ 02034 | -0.0137 | -0.1636
N Precip | 0.0063 | -0.0332 | -0.007 | 02075 | 04740 | 0.0032 | 03667 | 04479 | -0.0123 | -0.3624 [ 0.1703 [ -0.2033 | 02083 | 0.3027 | 0.0107
SM 00023 | -0.0080 | 0.0047 | 05435 | 00398 | 0.1227 | 0.0632 | 02301 | 0.1426 | 0.0085 | 05013 | 0.0671 | -0.1336 | 03518 | 0.0134
55G_dd22 | 00676 | -0.0587 | 0.0837 | 0.083 01881 | 0.1402 | 0.6735 | 04008 | 0241 | 04317 [ -0.0902 | -0.1116 | 01272 | -0.0312 | -0.0726

Table 4: Eigenvalue for the 14 PCs (for first August dekad outlook 1).

Principal Components (PC) | Eigenvalue | Proportion | Cumulative Variance
PC 1 7.26538 0.30272 0.30272
PC2 3.16231 0.13176 0.43449
PC3 1.75295 0.07304 0.50753
PC4 1.64945 0.06873 0.57625
PC5 1.3762 0.05734 0.6336
PC6 1.06352 0.04431 0.67791
PC7 1.00475 0.04186 0.71977
PC 8 0.93827 0.03909 0.75887
PC9 0.89764 0.0374 0.79627
PC 10 0.87402 0.03642 0.83269
PC 11 0.77798 0.03242 0.8651
PC 12 0.72802 0.03033 0.89544
PC 13 0.64466 0.02686 0.9223
PC 14 0.60315 0.02513 0.94743

3.2 CAS ATTRIBUTE SELECTION

For this analysis, outlook prediction data for the first dekads in May, August, and November were
used. Data from these three dekadal outlook predictions were used because they are in the middle
of the growing season in the study area and also are assumed to have higher prediction accuracies
than other dekadal (ten-days interval) time-lag prediction.

In this experimental analysis, the attribute evaluator was CfsSubsetEval and the corresponding
search method was the GreedyStepwise algorithm. The attribute evaluator is the technique by
which each attribute in our dataset is evaluated in the context of the dependent variable (SSG).
The search method is the technique by which to navigate different combinations of attributes in
the dataset in order to arrive on a short list of chosen attributes. The CfsSubsetEval algorithm
evaluates the worth of a subset of attributes by considering the individual predictive ability of
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each attribute along with the degree of redundancy between the selected attributes [30]. The
attributes that are highly correlated with the class attribute SSG while having low intercorrelation
within themselves are the ones that we search for and subsequently rank by their merit order.
Table 5 presents dekad 7, dekad 22, and dekad 31 attribute lists with their merit rank for outlooks
1-5, respectively. The merit value here is in terms of correlation values, based on the hypothesis
that good attribute subsets contain attributes highly correlated with the dependent attribute SSG,
yet uncorrelated with each other [30].

Table 5: List of attributes for modeling drought in GHA. The merit value for the attributes is the correlation
value (attribute-to-class SSG and attribute-to-attribute as indicated in equations 2, 3, and 4).

Attribute March ment value August menit value I November ment \z'.uef

i Outl Ot Outd Outd Ot Chtl Outl Outd Ot} Out3 Outl | Out2 | Cutd | Oud | Outd
amm 02393 | 02642 | 02674 | 02684 | 0.269 0282 | 028 | 0291 0304 | 0291 02968 | 03053 | 03013 | 0.2968 | 02931
amo 09717 | 09398 | 0943 0923 09072 | 0946 | 0938 | 0938 |0924 | 0911 09765 | 09735 | 0.9684 | 09616 | 0.9536
awe 09367 | 05449 | 09159 | 08973 | 08771 | 096 095 0925 0912 | 0.898 | 0.9635 | 09605 | 0.9356 | 0.9488 | 0.9409
best 02915 | 0296 | 0298 | 03211 | 03198 |0385 0391 0393 [ 0391 | 0388 | 04079 | 0.4008 | 0393 | 0.3585 | 03353
dem 06781 | 0.66%6 | 0.6627 | 06323 | 06382 | 0692 | 0688 | 0682 | 0674 | 0667 | 07312 | 0.7281 | 0.7239 | 0.7182 | 07116
dmi 0.0846 | 0.0839 | 0.083 0.0829 | 0084 |0172 |0177 |0182 |[0185 | 0189 | 0.0935 | 0.0892 | 0.0851 | 0.0813 | 0.0773
aco 05650 | 0.5653 | 0.3639 | 05577 | 05468 | 0615 [ 0612 | 0606 | 0399 | 0393 0.6012 | 0.6474 | 0.6437 | 0.6387 | 0.6329

landeover | 0.9874 | 0.9677 | 0.9501 | 09291 | 09013 | 0989 | 0978 | 0964 [ 0548 | 0833 09933 | 09915 | 09836 | 0.9675 | 09392

mel 0348 | 03303 | 03305 | 03481 | 03432 | 0426 | 0431 0432 [ 043 0426 | 05323 | 03475 | 05413 | 03349 | 03173

nao 04615 | 04618 | 04391 | 04329 | 04449 | 036 0365 | 0366 0365 |0362 | 04488 | 047 04639 | 04613 | 04353

Nino34 09415 | 09311 | 09295 | 09107 | 08902 [ 0993 [ 0982 | 0967 0552 | 0537 | 0549 | 09437 | 09406 | 09338 | 09238

Ninod 09911 | 0978 | 09601 | 09388 | 09156 | 0875 | 0871 0938 0943 | 0528 | 05913 | 0.9873 | 09813 | 0.5735 | 09651
omi 05054 | 05046 | 05019 | 04962 | 05076 | 0.563 | 0.361 0557 [ 0552 | 0347 | 05198 | 05144 | 05079 | 0.3012 | 04533
pdo 03177 [ 03209 | 0322 | 02987 | 02984 |[03l6 (0319 ([032 0319 | 0301 03322 | 03266 | 03202 | 03141 | 03099
pna 04075 | 04065 | 04023 | 04191 | 04153 | 0473 | 0478 | 0478 | 0477 | 0473 0.6504 | 0.5965 | 0.3906 | 0.5838 | 0.5761
gbo 04342 | 04324 | 04267 | 03936 | 0388 025 | 0304 | 0305 0292 | 0315 03525 | 03697 | 0.3639 | 0.3876 | 03851
sflux 07437 | 07347 | 07272 | 07159 | 07005 | 0734 [ 075 0743 | 0735 | 0727 | 0.7951 | O.7918 | 07872 | 0781 | 07738
M 09804 [ 09743 | 09367 | 08355 | 09124 | 0882 |[096 | 0931 0536 | 0511 | 05837 | 09803 | 09747 | 05978 | 09609
50l 03787 | 03802 | 03781 | 03736 | 03634 | 0.26 0265 | 0267 | 0267 | 0263 0374 | 0347 | 03407 | 03345 | 03303

55G_dek22 | 0.9944 | 09802 | 09611 | 08387 | 09145 | 0993 0.984 0.968 0.952 0837 0.5986 | 0.9943 | 0.9888 | 0.9811 | 09726

tin 05335 | 05306 | 05233 | 05171 | 04883 | 0336 0339 |0 0339 | 0336 | 03097 | 02938 | 0.2903 | 0.2864 | 0.283
ma 09038 | 0.3947 | 0881 08641 | 08453 | 0828 | 0521 0811 08 0.7 08605 | 08572 | 0.8529 | 0.847 | 08402
tsa 08257 | 08205 | 08107 | 07969 | 07805 | 0826 | 0817 | 0804 | 0891 0878 | 09349 | 09311 | 0.9256 | 0.9189 | 09113

N Precip | 0.6033 | 0.603 06039 | 03976 | 0386 | 0516 |03517 | 0316 [0312 | 0308 | 04787 | 04413 | 04342 | 04267 | 04238
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Table 5 for March (dekad 7 or March 1-10) presents the merits of the attributes (the correlation
with dependent attribute SSG). The higher the merit, the more relevant the selected attribute. In
Table 5, the merit value ranges from 0.08 to 0.99 for outlook 1, from 0.08 to 0.98 for outlook 2,
from 0.08 to 0.96 for outlook 3, from 0.08 to 0.94 for outlook 4, and from 0.08 to 0.92 for outlook
5. As the outlook periods increase, the merit value was found to be decreasing. This is in line with
our expectation in that as the prediction length increases, the vegetation condition (SSG) to be
predicted is different from the predictors. For the first March dekad (March 1-10), outlook 1 is
March 11-20 vegetation conditions (SSG), whereas outlook 5 is dekad 12 (April 20-30)
vegetation conditions. In Table 5, a total of 15 attributes were found to have >0.5 merit value, and
the remaining 10 attributes were found to have <0.5 for outlooks 1, 2, and 3. For outlooks 4 and
5, a total of 14 attributes were found to have >0.5 merit value. The correlations were found to
decrease as the outlook period increased in the time lag predictions. Consistently, the best
attributes were found to be the same for all the outlooks assessed in the time lag predictions.
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Figure 5: Correlation values between explanatory attributes and dependent value SSG for the selected

growing months: a) March 1-10, b) August 1-10, and ¢) November 1-10.
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With the same procedure used for the first dekad in May, the experimental analysis was repeated
for the first dekads in August and November (Table 5). The same patterns were observed for all
three dekadal periods, confirming the applicability of the CAS attribute selection approach for our
domain area.

Figure 4 presents the correlation patterns of the attributes for March, August, and November
under outlooks 1-5. As expected for the three growing periods (March, August, and November),
outlook 1 had the highest correlation values and outlook 5 had the lowest correlation values.
Figure 5a-c presents the correlation of each attribute with the target attribute SSG for the March,
August, and November growing periods. In all of the assessed attributes, as the prediction time-
lag increases, the correlations were found to decrease.

4. CONCLUSIONS

In this research, we developed an attribute selection approach with special emphasis for drought
modeling and prediction. The empirical study presented here confirmed that the automated data
mining attribute selection technique is an objective-based attribute selection approach compared
to the subjective attribute selection approaches, which rely on past study reviews, common sense,
and theory-based consultation.

From the experimental analysis using real world drought data, we developed an empirical method
for selecting relevant attributes for modeling drought and also selected the most relevant attribute
for drought modeling and predictions in the GHA. The list of attributes with a relevancy threshold
value of merit >0.5 for the three growing months (May, August, and November) are presented in
Table 6. The experimental outputs were also evaluated through experts’ assessment of the
domain-specific descriptions of the nature of the attributes for their relevance to vegetation
conditions and drought modeling in the study area. This experimental evaluation is ongoing.

Table 6: List of relevant attributes with their merit values for modeling drought in GHA. The average merit
value is for the middle of the three growing seasons (March, August, and November), outlook 1-5, as
presented in Table 5.

Attribute name Abbreviation Average Merit value Rank
Atlantic Multi-decadal Oscillation amo 0.946353 5
Available Water Holding Capacity of the Soil awc 0.933747 7
Digital Elevation Model dem 0.687793 11
Ecoregion eco 0.599233 12
Land Cover landcover 0.963113 3
East Central Tropical Pacific SST Nino34 0.941927 6
Central Tropical Pacific SST Nino4 0.963807 2
Normalized Precipitation N_Precip 0.518133 14
Oceanic Nino Index oni 0.522153 13
Pacific North American Index pna 0.495127 15
Solar Flux (10.7cm) sflux 0.75066 10
Soil Moisture SM 0.960127 4
Standardized Seasonal Greenness SSG 0.97072 1
Tropical Southern Atlantic Index tna 0.846447 9
Tropical Southern Atlantic Index tsa 0.87814 8

In conclusion, in the experimental analysis that we did on four attribute selection approaches
(CAS, PCA, ReliefAttributEval, and WraperSubsetEval), the CAS and PCA were found to be
helpful. The other two options (ReliefAttributEval and WraperSubsetEval) were found to be

14
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computationally intensive and impractical with normal machines, since they need high computing
machines with multicore processor capacities.

Future research may use the ReliefAttributEval and WraperSubsetEval algorithms for improved
results on attribute search processes. For the current experiment, it was found that these two
algorithms were computationally intensive, and we could not execute the experimental analysis.
Multicore processing machines can be used for this challenge to get the experimental outputs in
reasonable time. Future research may also evaluate the developed methodology using relevant
classification techniques and quantify the actual information gain from the developed approach.
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