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ABSTRACT 

 

Action Rules are rule based systems for discovering actionable patterns which are hidden in a large 

dataset. All recommended patterns from Action Rules incur some form of cost to the users. It is obvious 

that recommendations are interesting to the users only if the cost that the user pays for the recommended 

actions is low. In other words, the recommendations should be profitable or valuable to the user when they 

perform a chain of actions, at the lowest possible cost. In the modern era of big data, organizations are 

collecting massive amounts of data, growing constantly. Finding low cost actionable patterns for such 

large data in these domains, is time consuming and requires a scalable approach. In this work, we 

introduce the notion of Action Graph and propose an algorithm to search the Action Graph for actionable 

patterns of lowest cost. We apply the proposed algorithm to three datasets in transportation, medical, and 

business domains. Results show how these domains can benefit from the discovered actionable 

recommendations of low cost. 
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1. INTRODUCTION 
 
Data Mining is a stage of Knowledge Discovery in Databases, which identifies previously 
unidentified, interesting and useful patterns and trends from a large quantity data. Rule based 
knowledge discovery tasks intend to circumscribe methods that identify, learn or evolve ‘rules’ 
to store and manipulate knowledge. In the field of data mining, many algorithms are available to 
generate rules which are used for association - to find frequently associated patterns in the data 
and classification - to classify patterns to one or more classes. Rules takes the format as given in 
equation (1), where the antecedent (left side of the rule) is a conjunction of conditions and the 
consequent (right side of the rule) is a resulting pattern for the conditions in antecedent. 
 

condition(s) → result(s)          (1) 
 
The primary obstacle for such data mining and machine learning algorithms is the lack of 

actionability [1]. For example, a credit card company can assign credit scores to its customers 
based on their underlying classification model. For their low credit score customers, they may 
want to assign a person to give personal suggestions to the customer’s improve credit score. 
Action Rule is a rule based knowledge discovery technique that recommend actionable patterns 
or possible transitions from one choice to another, which the user can use to their advantage. In 
other words, Action Rules helps to reclassify the data from one category to another, 
recommending patterns to improve performance of an object or establishing better work to the 
user. For example, one would want to find actionable patterns in the data to improve his/her 
salary. Some of the applications for Action Rules are: improving customer satisfaction in 
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business - suggesting how to improve the customer status from detractor to promoter, using 
online product surveys [2]. In medical domain: reducing hospital readmission in a state by giving 
actionable recommendations to doctors on certain procedures they can follow [3], and suggesting 
how to re-classify a breast cancer tumour from malignant to benign [4]. In transportation domain, 
suggesting how to re-classify a car condition from unacceptable to acceptable [5]. Action Rules 
are extracted from Decision table [6], which is more similar to the relational databases. A 
database becomes a decision table or decision system, when the attribute space of the data can be 
split into Stable Attributes, Flexible Attributes and a Decision attribute. Stable attributes in any 
Action Rule AR remain constant or cannot form action in AR. While flexible attributes can 
change their value for example attribute a change from ai to aj. Decision attribute is also a 
flexible attribute, but it is the attribute that the user has chosen to get the final decision that the 
user need to achieve. Action Rules can take the representation as given in equation (2), where Ψ 
represents a conjunction of stable features, (α → β) represents a conjunction of changes in values 
of flexible features and (θ → φ) represents desired decision action. Action Rules are validated 
using Support, Confidence, Utility and Coverage measures. 
 

[(Ψ) ∧ (α → β)] → (θ → φ)          (2) 
 
All actionable patterns given by an Action Rule subject to certain form of cost to the user [7], [8]. 
The extracted Action Rules are more interesting to users if the system recommends more diverse 
Action Rules and if Action Rules incur less cost to the users. Cost for actions in Action Rules can 
take a form of money, time, energy, human resources, etc. [9] Recommended actions can cause 
both positive and negative impact for users. Positivity in the rules is given by the measure of 
what amount of benefit the users can obtain from the recommendations. However, a 
recommendation can create negative impact if the user cannot accommodate such actions due to 
the cost for undertaking such actions is very high and it is not feasible for them. Thus, the 
actionable recommendations from a system should cause low cost to the users to make them 
feasible. However, most of the Action Rule discovery systems [10] [11] [12] [13] do not consider 
cost effectiveness for recommendations. In [7] [14], the notion of cost of the Action Rules is 
introduced and refined. Action Rules extraction algorithms produces very large number of Action 
Rules for big datasets. Searching for low cost Action Rules from such a huge volume of Action 
Rules can be very time consuming and requires a scalable and distributed approach for extracting 
them in a reasonable timeframe. 
 
Distributed Processing frameworks like Hadoop [15] and Spark [16] have been introduced to 
make big data processing and data mining faster and easier. These frameworks distribute the data 
among nodes in a cluster of computers. Usually, these clusters are configured nodes of high 
computational and storage power (RAM and CPU). Thus, when the data processing work is split 
among those multiple high processing nodes, each of which performs computations on their part 
of the data, a big chunk of work gets complete quickly. Finally, when all nodes finish executing 
their tasks, the results are merged to present the final result. Apache provides innumerable 
frameworks like Hadoop [15], Spark [16], Hive, Pig to handle all such big data and distributed 
processing for multiple purposes. In this work, we use Apache Spark [16] framework for 
implementing a scalable solution to our proposed method and make it suitable for big data. Spark 
provides APIs such as MLlib [17] for Machine Learning tasks in a distributed setup, GraphX 
[18] for an efficient parallel processing in large graphs. 
 
In this work, we utilize Action Rules produced using distributed Action Rules extraction 
algorithm: MR-Random Forest [19] and SARGS [20]. We introduce a graph representation for 
Action Rules that we extracted called Action Graph. We construct distributed graphs based on 
action terms of derived from Action Rules and their correlations. We use Spark GraphX [18] to 
build Action Graphs and perform implement search algorithms to discover low cost Action Rules 
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from the graph. We propose a distributed and a revised version of the Dijksra’s shortest path [21] 
algorithm to search the Action Graph and discover low cost Action Rules using Pregel API [22] 
provided by Apache Spark. We evaluate our method with non-distributed version of the 
Dijsktra’s algorithm and compare the times it takes to extract low cost Action Rules. 
 

2. RELATED WORKS 
 
More than a decade, researchers have been conducting studies on Action Rules mining to 
discovery actionable pattern from datasets. Some Action Rule discovery algorithms include: 
DEAR [10], ARAS [11] and Association Action Rules [12] in a single machine. However, with 
the advent of big data and constantly growing databases, the original Action Rules mining 
algorithms no longer can perform the mining at reasonable time. For that reason, recently, 
Tzacheva, et. al proposed MR-Random Forest algorithm [19] and Bagavathi, et. al proposed 
SARGS algorithm [20] for scalable Action Rules extraction in a distributed environment such as 
Hadoop MapReduce and Apache Spark to handle Big Data. However, these algorithms do not 
consider the Cost of the discovered Action Rules. All actionable patterns involve some form of 
Cost such as money, time, power and other resources to achieve the desired results [7]. 
 
Ras and Tzacheva [23] introduced the notion of cost and feasibility of Action Rules as an 
interestingness measure. They proposed a graph method for extracting feasible and low cost 
Action Rules. Ras and Tzacheva [7] proposed a heuristic search of new low cost Action Rules, 
where objects supporting new set of rules also supports existing rule set but the cost of 
reclassifying them is much lower for new rules. Later, Tzacheva and Tsay [14] proposed tree 
based method for extracting low cost Action Rules. 
 
Apart from Action Rules, some research has been done on extracting Actionable knowledge. For 
example, Yang, et.al [24] considered Customer Attrition in Customer Relationship Management 
(CRM) in telecommunications industry and the cost complexities involved in gaining profit to all 
customers. They proposed a method to extract low cost Actionable patterns for converting 
undesired customers to loyal ones while improve the net profit of all customers. Karim and 
Rahman [25] proposed another method to extract cost effective actionable patterns for customer 
attrition problem in post processing steps of Decision Tree and Naive Bayes classifiers. Su, et.al 
[8] proposed a method to consider positive benefits that occurs by following an Action Rule apart 
from all costs that incur from the same rule. Cui, et.al [1] proposed to extract optimal actionable 
plans during post processes of Additive Tree Model (ATM) classifier. These actionable patterns 
can change the given input to a desired one with a minimum cost. Hu, et.al [26] proposed an 
integrated framework to gather cost minimal actions sets to provide support for social projects 
stakeholders to control risks involved in risk analysis and project planning phases. Lately, Hu, 
et.al [27] developed a cost sensitive and ensemble framework to predict software project risk 
predictions and conducted large scale analysis over 60 models 327 real world project samples. 
 
In this work, we propose a graph based model to extract low cost Action Rules. We use Spark 
based Action Rules extraction algorithm: SARGS [20] to obtain Action Rules. We build Action 
Graph, based on the extracted Action Rules using Spark GraphX [18]. We propose a distributed 
version of the Dijkstra shortest path [21] algorithm, and implement it via Pregel API [22] to 
extract Action Rules of lowest cost 
 

2. BACKGROUND – ACTION RULES, COST OF ACTION RULES AND SPARK 
 
In this section, we give basic knowledge about Decision system, Action Rules, Spark and 
GraphX frameworks to understand out methodology. 
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2.1. Decision System 
 
Consider an information system given in Table 1. Information System can be represented as S = 
(X,A,V ) where,  X is a nonempty, finite set of objects: X = {x1,x2,x3,x4,x5,x6,x7,x8}, A is a 
nonempty, finite set of attributes: A = a,b,c,d and Vi is the domain of attribute a which represents 
a set of values for attribute i : i ∈ A. For example, Vb = b0,b2. 
 
An information system becomes a Decision system, if A = {ASt ∪ AFl ∪ d}, where d is a decision 

attribute. The user chooses the attribute d if they wants to extract desired action from di : i ∈ Vd. 
ASt is a set of Stable Attributes and AFl is a set of Flexible Attributes. For example, ZIPCODE is a 
Stable Attribute and User Ratings can be a Flexible Attribute. Let’s assume from Table1 that c ∈ 
ASt. a, b ∈ AFl and d ∈ d. and the decision maker desires Action Rules that triggers the decision 
attribute change from d1 to d2 throughout this paper for examples. 
 

Table 1: SAMPLE DECISION SYSTEM S 

 

X a b c d 

x1 a1 b1 c1 d1 

x2 a3 b1 c1 d1 

x3 a2 b2 c1 d2 

x4 a2 b2 c2 d2 

x5 a2 b1 c1 d1 

x6 a2 b2 c1 d2 

x7 a2 b1 c2 d2 

x8 a1 b2 c2 d1 
 

2.2. Action Rules 
 
In this subsection, we give definitions of action terms, action rules and properties of action rules 
[28]. Let S = (X, {A ∪ d},V ) be a decision system, where d is a decision attribute and V = ∪Vi : i 
∈ A. Action terms can be given by the expression of (m,m1 → m2), where m ∈ A and m1,m2 ∈ Vm. 
m1 = m2 if m ∈ ASt. In that case, we can simplify the expression as (m,m1) or (m = m1). Whereas, 
m1 6= m2 if m ∈ AFl. Action Rules can take a form of t1 ∩ t2 ∩ .... ∩ tn, where ti is an atomic action 
or action term and the Action Rule is a conjunction of action terms to achieve the desired action 
based on attribute d. Example Action Rule for the Decision System in Table 1 is given below: 
(a,a1 → a2).(b,b1 → b2)  (d,d1 → d2). 
 

2.2.1. Properties of Action Rules 

 
Action Rules are considered interesting based on the metrics such as Support, Confidence, Utility 
and Coverage. Higher these values, more interesting they are to the end user. Consider an action 
rule R of form: 

(Y1 → Y2)  (Z1 → Z2) 
 

where, Y is the condition part of R and Z is the decision part of R 
Y1 is a set of all left side action terms in the condition part of R 
Y2 is a set of all right side action terms in the condition part of R 
Z1 is the decision attribute value on left side 
Z2 is the decision attribute value on right side 
 
In [6], the support and confidence of an action rule R is given as  
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Support(R) = min{card(Y1 ∩ Z1), card(Y2 ∩ Z2)} 

 
 
Later, Tzacheva et.al [29] proposed a new set of formula for calculating Support and Confidence 
of Action Rules. Their idea is to reduce complexities in searching the data several times for 
Support and Confidence of an Action Rule. The new formula are given below. 
 

Support(R) = card(Y2 ∩ Z2) 

 
 
Tzacheva et. al [29] also introduced a notion of utility for Action Rules. Utility of Action Rules 
takes a following form. For most of cases Utility of Action Rules equals the Old Confidence of 
the same Action Rule. 
 

 
 

Coverage of an Action Rule means that how many decision from values, from the entire decision 
system S, are being covered by all extracted Action Rules. In other words, using the extracted 
Action Rules, Coverage defines how many data records in the decision system can successfully 
transfers from Z1 to Z2. 
 

 
 

Figure 1: Overview of Spark execution using Resilient Distributed Datasets(RDD). Tasks such as 
transformations are given to the slave nodes. Slaves after performing the tasks, cache the result in 

RAM. Results can be given back to the Driver node or can be used for another transformation 
operation 

 
2.3. Cost of Action Rules 
 
Typically, there is a cost associated with changing an attribute value from one class to another - 
more desirable one. The cost is a subjective measure, in a sense that domain knowledge from the 
user or experts in the field is necessary in order to determine the costs associated with taking the 
actions. Costs could be monetary, moral, or a combination of the two. For example, lowering the 
interest percent rate for a customer is a monetary cost for the bank; while, changing the marital 
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status from ’married’ to ’divorced’ has a moral cost, in addition to any monetary costs which 
may be incurred in the process. Feasibility is an objective measure, i.e. domain independent. 
According to the cost of actions associated with the classification part of action rules, a business 
user may be unable or unwilling to proceed with them. The definition of cost was introduced by 
Tzacheva and Ras [7] as follows: 
 
Assume that S = (X,A,V ) is an information system. Let Y ⊆ X, b ∈ A is a flexible attribute in S 

and v1,v2 ∈ Vb are its two values. By ℘S(b,v1 → v2) we mean a number from (0,ω] which describes 
the average cost of changing the attribute value v1 to v2 for any of the qualifying objects in Y . 
These numbers are provided by experts. Object x ∈ Y qualifies for the change from v1 to v2, if 
b(x) = v1. If the above change is not feasible, then we write ℘S(b,v1 → v2) = ω. Also, if ℘S(b,v1 → 
v2) < ℘S(b,v3 → v4), then we say that the change of values from v1 to v2 is more feasible than the 
change from v3 to v4. Assume an action rule r of the form: 
 

(b1,v1 → w1) ∧ (b2,v2 → w2) ∧ ... ∧ (bp,vp → wp)  (d,k1 → k2) 
 
If the sum of the costs of the terms on the left hand side of the action rule is smaller than the cost 
on the right hand side, then we say that the rule r is feasible. 
 

2.4. Spark 
 
Spark [16] is a framework that is similar to MapReduce [15] to process large quantity of data 
efficiently in a parallel fashion and in a short span of time. The disadvantage of MapReduce 
framework is frequent system’s disk access for writing and reading the data between Map and 
Reduce phases. However, Spark introduces a distributed memory abstraction strategy named 
Resilient Distributed Datasets(RDD). The RDDs works by splitting the data into multiple nodes, 
do in-memory computations on whose nodes and store the results in memory itself if there are 
any available space in RAM. These results can be accessed for future processes and analyses, 
which in-turn create another RDD. Once the RAM goes out of memory, Spark uses some 
strategies to push the results that are unused for a long time to the disk. Thus, Spark cuts off large 
number of disk accesses for storing intermediate outputs like in Hadoop MapReduce. Spark 
works in a Master-Slave approach. The Driver node(Master) allocate tasks to the Worker 
nodes(Slaves). Spark preserves data-locality (i.e) locating worker nodes nearer to the current 
node which contains a part of the data. A task that the worker perform can be either a 
Transformation or an Action. During Transformation stage, computations are made on the data 
split and results are stored in-memory of the worker node. Results of all worker nodes together 
form another RDD. While the Action stage on an RDD collect results from all workers and send 
it to the driver node or save the results to a storage system. Figure 1. shows an overview of the 
execution of Spark. 
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Figure 2: Spark Lineage Graph Example 

 
Spark helps machine learning algorithms which relies on multiple iterations on the given data 
with the help of RDD’s in memory computation. Spark handles node failures by having a lineage 
graph of RDDs. The lineage graph is a Directed Acyclic Graph (DAG) where each node 
represents a transformation stage. Figure 2 shows a sample lineage graph of combining RDDs 
from two inputs. When a failure occurs at a certain stage, Spark uses the last available working 
point (RDD) from the lineage graph and restart all computations from that working point rather 
than repeating the entire process from the beginning or saving the intermediate results and 
replicating them across multiple nodes. This strategy of data management, fault tolerance and in-
memory processing make Spark to do computations faster than MapReduce 
 

2.5. Spark GraphX 
 
Spark, with its efficiency in Resilient Distributed Datasets 
 
(RDDs) help wide variety of applications such as Machine Learning with MLlib library [17], 
Graph Analysis with GraphX library [18]. GraphX is an embedded graph processing framework 
built on top of Apache Spark. In general, graphs can be represented as G=(V,E), where V is the 
set of vertices in G and E, which takes the general representation as eij = Edge(i,j), is the set of 
edges connecting 2 vertices (i,j) in G. GraphX treats the complete graphs as an RDD. It 
maintains the graph RDD in the type of [VD, ED], where VD and ED are other RDDs 
representing vertex properties and edge properties respectively. Figure 5 provides the simple 
GraphX framework and functions it provide to support various graph operations. GraphX 
performs graph-specific operations as a series of distributed map(), join() and reduce() functions 
of RDDs. Besides these functions, GraphX comprise of Google’s Pregel API [22]. GraphX uses 
Pregel API to perform iterative tasks like PageRank, Graph search algorithms like Depth First 
Search (DFS) and Breadth First Search (BFS) and finding shortest routes in graphs like 
Dijkstra’s algorithm. In iterative graph algorithms, vertices of the graph have to pass some 
messages to their neighbours. Since the graph is maintained as a single RDD in GraphX, the 
message passing is complicated compared to other graph libraries. The Pregel API automates this 
message sending and receiving module and provides a functionality to do these jobs efficiently to 
suit the Spark environment. GraphX also shows great speedups for iterative graph algorithms 
such as PageRank compared to other graph libraries such as GraphLab [30] and Giraph [31]. For 
iterative graph processing, GraphX provides Pregel API [22]. Pregel works in a message passing 
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fashion between the graph vertices. In GraphX, Pregel has three functions: sendMsg() - to 
process and send a message to a vertex’s immediate neighbours, mergeMsg() - to merge all 
messages from a vertex’s immediate neighbors and receiveMsg() - to receive and process the 
merged message. Following these steps, each vertex can share and collect information with their 
neighbours. With this method, the information can flow from one end of the graph to another 
gradually. For iterative procedure, Pregel iterations are named as super steps. In each super step, 
each vertex executes all three above mentioned functions. 
 

 
 

Figure 3: GraphX Framework with basic graph algorithms 
 

4. METHODOLOGY 
 
In this work, we propose a graph-based method to search for optimal low cost Action Rules. To 
extract low cost Action Rules, first we extract Action Rules with a distributed mechanism: 
SARGS [20]. From the extracted Action Rules, we build an Action Graph. We then propose a 
method based on Dijkstra’s algorithm to search the Action Graph for low cost Action Rules. In 
this section, we give the SARGS algorithm, Action Graphs and our search algorithm to extract 
low cost Action Rules 
 

 
 

Figure 4: Distributed Actionable Pattern Mining using SARGS algorithm overview 

 
4.1. Action Rules extraction using SARGS 
 
The SARGS algorithm propsed in [20] uses LERS [32] and ARAS [11] methods for extracting 
Action Rules in a distributed fashion for larger datasets. Figure 4 gives an overview of the 
SARGS algorithm. SARGS algorithm consists of 3 modules namely: Data distribution, LERS 
and ARAS. 
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4.1.1. Data distribution Module 
 
The data distribution module is to evenly distribute the data based on the decision attribute. The 
main objective of the data distribution module is to overcome the obstacle of inaccurate 
knowledge discovery while extracted in a distributed setup. The given input data is split into n 

groups, where n=no. of decision attribute vales and each group consists of records from the 
information system matching the corresponding decision value. Also, the proportion constraint 
Pg ' PS is maintained, where Pg is the proportion of records in a partition g with decision attribute 
value di and PS is the proportion of records in the given information system S with decision 
attribute value di. By this way, each partition contains same proportion of data which is equal to 
the original dataset. The final actionable knowledge from these partitions are considered to be 
equal to that of the knowledge from the single data. Figure 5 shows an example data partition for 
the information system S shown in Table 1. 
 

 
 

Figure 5: Example Data Distribution in SARGS for the Decision System given in Table 1 

 
4.1.2. Data distribution Module 
 
The second module in the SARGS algorithm is the LERS [32]. LERS is a Learning from 
Examples based on Rough Sets which extracts classification rules from the information system. 
SARGS follows distributed method of generating classification rules using LERS system. Using 
the information system S from Table 1, LERS strategy can find all certain and possible rules 
describing decision attribute d in terms of attributes a,b, and c. Since LERS follows bottomup 
strategy, it constructs classification rules with conditional part covering x attributes, then it 
continues to construct rules with conditional part of x + 1 attributes during the following 
iterations. Only marked rules from the LERS module are considered for the ARAS module. A 
classification rule ci if and only if Sci ⊆ Sd∗, where Sci is the set of rows in S that support the 
classification rule ci and Sd∗ is the set of rows in S that support the decision attribute value d∗. 

 
4.1.3. Modified LERS Module 
 
The third module in the SARGS method is the modified version of ARAS [11] and it uses all 
marked classification rules from the second (LERS) module and derives Action Rules. ARAS 
method, which extracts incomplete Action Rules, may not be useful when the user requires valid 
recommendations. Sample Action Rules from the system ARAS for the Decision System S given 
in Table 1 are given below: 
 

ARs1 : (d1 → d2) = (a,→ a2).(b,→ b2)  (d,d1 → d2) 
ARs2 : (d1 → d2) = (a,→ a2).(c,c2)  (d,d1 → d2)  
ARs3 : (d1 → d2) = (b,→ b1).(c,c2)  (d,d1 → d2) 
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ARs4 : (d1 → d2) = (b,→ b2).(c,c1)  (d,d1 → d2) 
This method gives the modified version of ARAS module that the SARGS algorithm uses to 
extract all complete Action Rules. This algorithm extracts all missing values from the conditional 
(left) part of the given Action Rule. The algorithm then get cartesian product of all missing 
values (except the values of same attribute) and fills in the action rule. Following Action Rules 
are extracted from the decision system S given in Table 1 using SARGS method. 
 

AR1(d1 → d2) = (A,a1 → a2).(B,→ b2)  (D,d1 → d2) 
AR2(d1 → d2) = (A,a3 → a2).(B,→ b2)  (D,d1 → d2) 

 

4.2. Action Graphs 
 
We build a graph called Action Graph from the Action Rules extracted using the SARGS 
algorithm. We build Action Graph by using action terms in Action Rules and their relation with 
other action terms. In general, graphs take the representation of G = (V,E), where V is a set of 
vertices and E is a set of edges connecting vertex pairs in V. All vertices and edges can contain 
properties that combined together uniquely represent vertices and edges respectively. We 
represent our Action Graph as an undirected graph Ag = (Av, Ae). In Action Graph, we treat action 
terms that we get from Action Rules as a set of vertices (Av) and we create edge between a vertex 
pair (am,an| am,an ∈ ri), where ri is an Action Rule. We set basic properties of an action term such 
as Vertex Id, Name, Cost, Support, Neighbour Ids and Action Rules of low cost based on the 
vertex as vertex properties of the Action Graph and Cooccurrence Frequency of a vertex pair as 
an edge property. For example, red node means highest frequency, yellow node means medium 
frequency, and blue node means low frequency. Figure 6 gives a sample Action Graph for 
Action Rules extracted from Table 1 using the SARGS algorithm. 
 

 
 

Figure 6: Sample Action Graph with Vertex Properties and Edge weights; Vertex color represents how 
frequently the action term occurs, with Red being the most frequent, and Yellow the least frequent. 
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4.3. Action Graph search algorithm for extracting Action Rules of lowest cost 

 

 
 

Algorithm 1: Action Graph Search Algorithm for Action Rules of Lowest Cost 

 
Algorithm 1 gives an overview of our search algorithm with functions to send, receive and merge 
messages. The basic idea behind our search algorithm is very similar to Dijkstra’s shortest path 

algorithm [21] adapted to distributed environment on cloud. In each iteration: all vertices share 
their action term with its cost with their neighbours; all vertices add action terms arriving from 
neighbours to their dictionary; all vertices combine the valid low cost action terms with the ones 
already in their dictionary; the resulting action rules are sorted by cost in descending order; 
finally, all vertices share the set of low-cost action rules with their neighbours; algorithm runs for 
n − iterations, where n is the number of action terms in the longest action rule, from the input list 
of action rules. The search algorithm takes the Action Graph Ag = (Av, Ae), where Av is a set of 
vertices or action terms and Ae is a set of edges connecting vertex pairs in Av, and minimum cost 
threshold ρ. We send an initial empty message to start the functions. The first function to execute 
is the ReceiveMsg(). For better readability we explain in the order of SendMsg(), MergeMsg and 
ReceiveMsg(). Steps 6-10 gives procedure to do for all vertices when they need to send a 
message to their immediate neighbours. Each vertex process each edge originating from them. 
For each available low cost Action Rule r, it checks if r ⊆ dstn.neighbors in Step 9. This step 
filters the dictionary in each vertex remove action terms that are irrelevant to the destination 
vertex. To avoid duplicate rules from multiple vertices, we send only the combination of action 
terms that are new to the destination vertex. In Steps 11-13 we give a procedure for each vertex 
to combine messages from multiple vertices. This function simply combines all messages 
(dictionaries of action terms with their Costs) and into a single Dictionary. This single Dictionary 
is processed via the ReceiveMsg() function for processing. In Steps 1-5 we show the processing 
the ReceiveMsg() performs - for all vertices when they receive a message. When a vertex 
receives a set of action term combinations and their corresponding costs, it adds its own cost to 
produce a Low Cost Action Rule. If the total cost is less than or equal to the given cost threshold 
ρ, the vertex adds the Action Rule to its list of Low Cost Action Rules. The main function is 
described in Step 16, where we initiate the first messageSend() operation to v ∈ Av. First, we 
populate Action Rules property of each vertex to the combination of current vertex and its 
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immediate neighbour and respective cost. Next, all vertices send an empty message to all their 
immediate neighbours. This continues for n iterations as mentioned above. Once all iterations are 
over, we obtain an Action Graph A

0
g containing Action Rules along with their cost for each 

vertex. We then sort the rules by cost in Descending Order and suggest to the user the top 5 
lowest cost rules for each vertex. The top 5 lowest cost Action Rules from all vertices form the 
set of the discovered Action Rules of Lowest Cost. 
 

4.4. Post-processing: Action set correlations of low cost Action Rules 
 
By following the Algorithm1, we obtain all low cost Action Rules. Some Action terms in Action 
Rules may have high correlations. We propose a method to reduce further the cost of the 
obtained rules by considering edge weights in our Action Graph. We assign edge weights 
between two vertices or action terms based on their frequencies of co-occurring together in 
Action Rules. We define a correlation threshold η to check if two action terms in an Action Rule 
is highly correlated. We assume that two action terms ar1,br1|(ar1,br1) ∈ r1, where r1 is an Action 
Rule, to be highly correlated if their co-occurring frequency w is greater than or equal to η. We 
propose that when two action terms satisfy the w ≥ η, then the action suggested by the first term 
is expected to trigger the action suggested by the second one. Therefore, the lowest cost action 
can be dropped from the total cost. For each vertex, we define a correlation matrix, which gives 
correlation frequency between the current vertex or action term and its neighbour. Figure 7 gives 
a sample correlation matrix for the action term vertex (b,1 → 2). With this correlation matrix, we 
can identify which 2 terms are highly correlated. Then we process each Action Rule from the 
dictionary of low cost Action Rules of the current vertex. When a highly correlated pair occurs in 
the Action Rule, we drop the cost of lowest cost action term. For example, cost of the Action 
Rule (b,1 → 2) ∩ (c = 1) can be reduced from 31 to 30, if the correlation threshold η is set to 1. 
 

 
 

Figure 7: Example Correlation Matrix of the action term (b,1 → 2) 

 

5. EXPERIMENTS AND RESULTS 
 
To test our methods, we use three datasets: Car Evaluation data, Mammographic Mass data, and 
the city of Charlotte North Carolina BusinessWise data. 
 

 
 
 
 
 
 
 
 
 
 
 



International Journal of Database Management Systems ( IJDMS ) Vol.10, No.3, June 2018 

13 

 

 
Table 2: Dataset properties 

 
Property Car Evaluation 

Data 
Mamm. Mass 
Data 

Business Data 

# of instances 1728 961 22441 

Attributes 7 attributes 
-Buying 
-Maintenance 
-Doors 
-Persons 
-Luggage Boot 
-Safety 
-Class 

6 attributes 
-BI-RADS 
-Patient’s age 
-Shape 
-Margin 
-Density 
-Severity 

17 attributes 
including  
-City 
-Sector 
-Site Type 
-Building 
Type 
-Estimated 
Sales 
-Total 
Employees 
Count 

Decision 
attribute 
values 

Class 
(unacc, acc, 
good, vgood) 

Severity 
(0 - benign, 
1malignant) 

Estimated 
Sales 
(<$2M,2- 

# of 
instances / 
decision 
value 

unacc - 1210 acc 
- 384  
good - 69 vgood 
- 65 

0 – 516 
1 - 445 

<$2M – 12503 
$2-$10M – 1927 
$10-$25M – 393 
$25-$50M – 130 
$50-$100M – 69 
$100M-$500M – 57 
>$500M – 50 

Data size 52 KB 16 KB 5.5 MB 

 
Table 3: Parameters used for Action Rules discovery using SARGS algorithm 

 
Property Car Evaluation 

Data 
Mamm. Mass 
Data 

Business Data 

Stable attributes Doors, Persons Age Start Year 

Required decision 
action 

(Class) 
unacc → acc 

(Severity) 
1 → 0 

Estimated 
Sales $2M − 
$10M → $10M 

− 
$24M 

Minimum 
Support α and 
Confidence β 

2, 70% 2, 70% 100, 70% 

Cost Threshold φ 1500 2000 3000 

 
The Car Evaluation and Mammography are obtained from the Machine Learning repository of 
the Department of Information and Computer Science of the University of California, Irvine [33]. 
The Car Evaluation Data consists of records describing a car’s goodness and acceptability based 
on features such as buying frequency, maintenance cost, safety measure, seating capacity and 
luggage boot size. Mammographic is the most effective method for screening breast cancer. The 
Mammographic Mass data contains records that measure severity of the cancer based on patient’s 
age, cancer shape, cancer density and BI-RADS(a test score to denote how severe the cancer is). 
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Table 4: Example Action Rules of lowest cost for Car Evaluation Dataset 
 

Low Cost Action Rules 

1. ARC4 : (buying, high → med) ∧ (lugBoot, med → small) ∧ (maint, low → med) ∧ (persons = 
4) ∧ (safety, low → high)  (class, unacc → acc)[Support : 4,OldConfidence: 100%, New 

Confidence : 100%, Utility : 100%] COST : 1300.0 
2. ARC5 : (buying, low → med) ∧ (lugBoot, med → big) ∧ (maint, low → med) ∧ (persons = 

more) ∧ (safety, low → med)  (class, unacc → acc)[Support : 4,OldConfidence: 100%, 

New Confidence: 100%, Utility: 100%] COST: 1400.0 

Low Cost Action Rules after Correlation 

1. ARC4 : (buying, high → med) ∧ (lugBoot, med → small) ∧ (maint, low → med) ∧ (persons = 
4) ∧ (safety, low → high)  (class, unacc → acc) [Support: 4, Old Confidence: 100%, New 

Confidence: 100%, Utility: 100%] COST: 1000.0 

2. ARC5 : (buying, low → med) ∧ (lugBoot, med → big) ∧ (maint, low → med) ∧ (persons = more) 
∧ (safety, low → med)  (class, unacc → acc) [Support : 4,Old Confidence: 100%, New 

Confidence: 100%, Utility : 100%] COST: 1100.0 

 
The city of Charlotte North Carolina BusinessWise data, which was donated by the Charlotte 
Chamber of Commerce. This data collects details of over 20,000 business companies in 
Mecklenburg county, North Carolina. The data includes their City, Start Year, Sector, 
Specialization of the company in a selected sector, Site Type, Employees count at the site, Total 
employees in the company including all branches, Site building type, Total sites and Estimated 
Sales. From this data, our focus is how to increase the Estimated Sales amounts in USD. We 
show detailed description of each dataset properties in Table 2 which we use to test our 
algorithm. 
 
Table 3 give parameters that we set for each dataset to collect Action Rules. For the Car 

Evaluation data, we choose Class attribute as a decision attribute and we collect Action Rules to 
help the car company to change the car from Unacceptable state to Acceptable state. For the 
Mammographic Mass data, we choose Cancer Severity as a decision attribute and we collect 
Action Rules to suggest Actions to doctors on how to reduce the tumour severity from Malignant 

to Benign. For Business Data we choose class attribute as Estimated Sales, and we collect Action 
Rules to suggest Actions to business on how to increase their Estimated Sales in USD from the 
range 2million-10million USD to 10millon-24million USD. 
 
With our datasets and using parameters that we set in Table 3, we run the SARGS algorithm on 
each data. We collect Action Rules which meet the minimum support(α), and minimum 
confidence(β), threshold. We record the cost(φ) for each action term. We calculate Total Cost of 
each Action Rule by adding the cost of all action terms in the rule. Usually, the cost of each 
action term is specified by an expert in the domain. For example, for the Mammography dataset, 
a medical doctor specifies the cost for the suggested actions. For Car Evaluation data, the car 
manufacturer specifies the cost for the suggested actions. However, for our experiment purpose, 
we assign a random cost number to each action term. We assign the cost of 0 for action terms 
which have stable attributes, because the stable attributes cannot be changed. For the Flexible 
Attributes, we set the cost values between 0 and 1000. In Table 4, Table 5 and Table 6, we show 
samples of Low Cost Action Rules, and Low Cost. Action rules - after post-processing steps or 
Correlation over the low cost Action Rules, for the Car Evaluation Data, Mammographic Mass 

Data and Business Data respectively. These rules support the parameters which we set in Table 

3. In Table 4, Table 5 and Table 6, low cost Action Rules are ones which has cost less than φ. 
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Table 5: Example Action Rules of lowest cost for Mammographic Dataset 

 
Low Cost Action Rules 

1. ARM4: (BI−RADS, 6 → 4) ∧ (Density, 3 → 2) ∧ (Margin, 5 → 1)  (Severity, 1 → 0) 
[Support: 25, Old Confidence: 100%, New Confidence: 100%, Utility: 100%] COST: 550.0 

2. ARM5: (Age = 60) ∧ (BI − RADS,6 → 4)  (Severity, 1 → 0) [Support: 11, Old Confidence: 
100%, New Confidence: 100%, Utility: 100%] COST: 450.0 

3. ARM6: (BI−RADS, 6 → 4) ∧ (Margin, 5 → 1) ∧ (Shape, 3 → 2)  (Severity, 1 → 0) 
[Support: 13, Old Confidence: 100%, New Confidence: 100%, Utility: 100%] COST: 800.0 

Low Cost Action Rules after Correlation 

1. ARM4: (BI−RADS, 6 → 4) ∧ (Density, 3 → 2) ∧ (Margin, 5 → 1)  (Severity, 1 → 0) 
[Support: 25, Old Confidence: 100%, New Confidence: 100%, Utility: 100%] COST: 450.0 

2. ARM5: (Age = 60) ∧ (BI − RADS,6 → 4)  (Severity, 1 → 0) [Support: 11, Old Confidence: 
100%, New Confidence: 100%, Utility: 100%] COST: 400.0 

3. ARM6: (BI−RADS, 6 → 4) ∧ (Margin, 5 → 1) ∧ (Shape, 3 → 2)  (Severity, 1 → 0) 
[Support: 13, Old Confidence: 100%, New Confidence: 100%, Utility: 100%] COST: 600.0 

 
These Action Rules define what actions do a company/user should employ to achieve their 
desired goal. For example, the rule ARC4 recommends that if a car company decreases the Buying 

Cost from high to medium and increases the Maintenance Cost from low to medium and increases 
Safety Measures from low to high and if the Seating Capacity is 4, then the Car Condition may 
change from Unacceptable to Acceptable with the cost of 1300.0. For all datasets, we consider 
cost just as a measure of an Action Rule since the actual costs are assigned by experts. 
 
Next, we build an Action Graph using the list of extracted Action Rules as an input. We 
implement the Action Graph in both non-parallel environment, and in a clustered environment 
for performance and scalability comparison. The Non-parallel version is implemented in Java. 
The Apache Spark [16] using the Spark GraphX library. We use Scala programming language. 
We test the system on a Spark cluster running over Hadoop YARN. The cluster has 6 nodes 
connected via 10 GigaBytes per second Ethernet network. We use Pregel API [22] in Spark 
GraphX [18] framework to search the Action Graph in an iterative procedure by using the 
Algorithm described in figure Algorithm 1. This algorithm returns all low cost Action Rules 
(cost < φ). From these Action Rules, we do post processing step and highly correlating action 
terms pair (correlation frequency ≥ η). If there is any correlation pair in the Action Rule, we drop 
the lowest cost in that pair. For example, consider the low cost Action Rule ARB5 from Table6. 
Cost of this Action Rule is 1394.0. In the post-processing step, we find that the Action Term 
(EMPSITE,4−9Employees → 10 − 24Employees) of cost 504.0 co-occurs frequently with the 
action term (EMPALLSITE,25 − 49Employees → 500 − 999Employees) of cost 63.0. So, we 
consider that one of these action terms trigger the other action to happen eventually. Thus, we 
drop the cost of (EMPALLSITE,25−49Employees → 500−999Employees) and reduce the cost of 
the Action Rule to 1213.0. 
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Table 6: Example Action Rules of lowest cost for Charlotte Businesswise Dataset 
 

Low Cost Action Rules 

1. ARB1: (EMPALLSITE, 50 – 99 Employees → 250 – 499 Employees) ∧ (EMPSITE, 50-99 
Employees → 4−9 Employees) ∧ (SECTOR, Services → Retail Trade) ∧ (STARTYR = 2006 − 
2010)  (ESTSALES, $2M − $10M → $10M − $24M) [Support: 2, Old Confidence: 60%, New 

Confidence: 66%, Utility: 90%] COST:1615.0 
2. ARB2: (CITY, Matthews → Charlotte) ∧ (EMPALLSITE, 25–49 Employees → 500–999 

Employees) ∧ (EMPSITE, 4-9 Employees → 10−24 Employees) ∧ (OWNBLDG, Y → N)  
(ESTSALES, $2M − $10M → $10M − $24M) [Support: 2, Old Confidence: 60%, New 

Confidence: 66%, Utility: 90%] COST:1276.0 

Low Cost Action Rules after Correlation 

1. ARB1: (EMPALLSITE, 50 – 99 Employees → 250 – 499 Employees) ∧ (EMPSITE, 50-99 
Employees → 4−9 Employees) ∧ (SECTOR, Services → Retail Trade) ∧ (STARTYR = 2006 − 
2010)  (ESTSALES, $2M − $10M → $10M − $24M) [Support: 2, Old Confidence: 60%, New 

Confidence: 66%, Utility: 90%] COST:1330.0 
2. ARB2: (CITY, Matthews → Charlotte) ∧ (EMPALLSITE, 25–49 Employees → 500–999 

Employees) ∧ (EMPSITE, 4-9 Employees → 10−24 Employees) ∧ (OWNBLDG, Y → N)  
(ESTSALES, $2M − $10M → $10M − $24M) [Support: 2, Old Confidence: 60%, New 

Confidence: 66%, Utility: 90%] COST:1213.0 

 

 
 

Figure 8: Action Graph for Action Rules from Car Evaluation Dataset 

 
A visualization of the Action Graph for the Car Evaluation data is shown in in Figure 6. The 
colour and size of the vertex v in the Action Graph represent how frequently a specific action 
term occurs in our Action Rules set. The more frequent action terms are shown in larger size 
nodes, and the less frequent in smaller size nodes. Also, the darker colours signify the most 
frequently occurring action terms, and the lighter colours less frequent action terms. For the Car 
Evaluation data, the action term (persons=more) occurs most frequently, is shown in the red 
colour red node in Figure 6, and the action term (safety, low → high) is the second most frequent 
term in our Action Rules set, which is shown in green colour node in Figure 6. Table 7 gives 
details about the number of Action Rules, and the processing time in seconds for the proposed 
algorithm to build Action Graphs (one for each dataset) and basic properties of these graphs such 
as number of nodes and edges. 
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Table 7: Action Graph Properties for different datasets 
 

Property Car Evaluation 
Data 

Mamm. Mass 
Data 

Business Data 

No.ofAction 
Rules 

415 290 2043 

No.ofAction 
Terms / Nodes 

33 98 224 

Minimum 
Support α and 
Confidence β 

2, 70% 2, 70% 2, 60% 

Cost Threshold 
φ 

1500 900 3000 

 
In Table 8, we give our system’s runtime performance comparing with non distributed version of 
the same algorithm. The distributed version of the Action Graph, which we implement in Apache 
Spark [16] using the GraphX [18] library, and the Pregel API [22], shows faster processing times 
for large datasets compared to single machine implementation in Java. 
 

Table 8: Analysis on Action Graphs for Low Cost Action Rules 

 
Dataset Non-distributed 

Algorithm 
Distributed 
Algorithm 

 

Car Evaluation 
Data 

1.2 mins 7.1 secs  

Mamm. Mass 
Data 

17 secs 5.8 secs  

Business Data > 10 mins 3.1 mins  

 

6. CONCLUSION 

 
The distributed version of the Action Graph Search for Lowest Cost Action Rules, which we 
implement in Apache Spark [16] using the GraphX [18] library, and the Pregel API [22], shows 
faster processing times for large datasets compared to single machine implementation in Java. 
Our proposed method presents an improvement over the Search for Action Rules of Lowest 
Costs in [7], as we use a distributed version for Graph Search, which is suitable to scale well for 
big datasets. In addition, it addresses a significant drawback of the previous method, which is 
using a heuristic search, and hence sometimes it is unable to reach the goal, and discovery any 
rules. The new proposed method always reaches the goal and discovers the rules of lowest cost. 
In the future, we plan to build a Decision Tree like structure, which can be searched, and shows 
the Lowest Cost Action Rules at the leaves of the tree. We plan to improve the support and 
confidence of the discovered Low Cost Action Rules by incorporating these parameters into the 
search procedure. We also plan to use the proposed Graph structure in order to design a 
distributed version of Association Action Rules extraction algorithm. 
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