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ABSTRACT 
 
Educational research often encounters clustered data sets, where observations are organized into 

multilevel units, consisting of lower-level units (individuals) nested within higher-level units (clusters). 
However, many studies in education utilize tree-based methods like Random Forest without considering the 

hierarchical structure of the data sets. Neglecting the clustered data structure can result in biased or 

inaccurate results. To address this issue, this study aimed to conduct a comprehensive survey of three tree-

based data mining algorithms and hierarchical linear modeling (HLM). The study utilized the Programme 

for International Student Assessment (PISA) 2018 data to compare different methods, including non-mixed-

effects tree models (e.g., Random Forest) and mixed-effects tree models (e.g., random effects expectation 

minimization recursive partitioning method, mixed-effects Random Forest), as well as the HLM approach. 

Based on the findings of this study, mixed-effects Random Forest demonstrated the highest prediction 

accuracy, while the random effects expectation minimization recursive partitioning method had the lowest 

prediction accuracy. However, it is important to note that tree-based methods limit deep interpretation of 

the results. Therefore, further analysis is needed to gain a more comprehensive understanding. In 

comparison, the HLM approach retains its value in terms of interpretability. Overall, this study offers 
valuable insights for selecting and utilizing suitable methods when analyzing clustered educational 

datasets. 
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1. INTRODUCTION 
 

Clustered or hierarchical data exhibits a multilevel structure where observations are sampled from 

lower-level units (individuals) nested within higher-level units (clusters). This type of data 

includes attributes at both the individual and cluster levels, enabling the exploration of variations 
among individuals within and between clusters. Observations within the same cluster tend to 

share more similarities than those from different clusters.  Considering both similarities and 

differences across clusters is crucial and can lead to more accurate results in research. Clustered 
data sets are commonly encountered in educational research, such as the Programme for 

International Student Assessment (PISA) data, which measures the academic achievements of 

fifteen-year-old students in reading, mathematics, and science. Scholars have studied PISA data 
using a clustered structure (e.g., [1], [2]).  

 

In 1984, Breiman et al. [3] introduced tree-based methods called classification and regression 

trees (CART). CART is a non-parametric approach that can handle large data sets with large 
number of attributes without requiring preselection. CART is particularly robust in handling 
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outliers, unlike some traditional statistical methods such as linear regression. However, in certain 
circumstances (e.g., when observations are modified), CART may produce unstable results, 

leading to high variability and poor predictive performance [4]. To address the instability issue, 

Breiman [5] proposed a tree-based ensemble method called Random Forest (RF). RF combines a 

large number of regression trees with the goal of improving predictions. RF has been successfully 
applied in educational research to predict students' learning performance (e.g., [6]). However, RF 

only considers the fixed effects of attributes, even when the data has a clustered structure. To 

overcome this limitation, a new method called the random effects expectation minimization 
recursive partitioning method (RE-EM tree) was proposed based on CART by Sela and Simonoff 

[7]. This method takes into account the random effects within a clustered data structure. 

Subsequently, another approach called mixed-effects Random Forest (MERF) was introduced, 
which incorporates random effects into RF [8]. This allows for the consideration of both fixed 

and random effects of attributes, providing a more comprehensive analysis of clustered data. 

 

This paper aims to conduct a comprehensive survey of various tree-based data mining algorithms 
and hierarchical linear modeling (HLM), which is one of the most widely used approaches for 

analyzing clustered educational data sets. The comparative study focuses on comparing non-

mixed-effects tree models (i.e., RF) with mixed-effects tree models (i.e., RE-EM tree, MERF), as 
well as the HLM approach. By evaluating the advantages and disadvantages of each method, this 

comparison will provide valuable insights for selecting and adopting appropriate methods in the 

analysis of clustered educational data sets. 
 

In the subsequent sections of the paper, we provide a concise overview of the non-mixed-effects 

tree-based method (RF), the mixed-effects tree-based methods (RE-EM tree, MERF), and the 

HLM approach. We then present a comparative study to determine the optimal method by 
utilizing the PISA 2018 clustered data set. Finally, we report the results obtained and engage in a 

thorough discussion of the findings. 

 

2. THEORETICAL FRAMEWORK 
 

Educational Data Mining (EDM) is a rapidly growing field that focuses on analyzing data within 

an educational context using various Data Mining (DM) techniques and tools [25]. Tree-based 

methods have been commonly employed in educational research. These methods have been 
utilized in various studies to analyze educational data and gain insights into different aspects of 

the educational context. For example, Decision Tree has been applied to predict student outcomes 

such as academic success, dropout risks, and online persistence in web-supported courses (e.g., 
[26], [27]). Additionally, Random Forest has been utilized in predicting learning performance and 

detecting instances of online cheating behavior among students [28]. These tree-based methods 

offer valuable tools for extracting knowledge from educational datasets and facilitating data-

driven decision-making in the field of education.  
 

Hierarchical linear modeling (HLM) is widely recognized as the predominant statistical method 

utilized in educational research, particularly in the analysis of multilevel research data. It has 
found extensive application in various educational studies, including investigations into the 

effects of technology usage on student learning achievement [29]. HLM offers a powerful 

framework for examining the relationships between variables at different levels of analysis, 
allowing researchers to account for the hierarchical structure of educational data and assess the 

impact of various factors on student outcomes. Its versatility and capability to handle nested data 

make it a popular choice for researchers seeking to delve into the complexities of educational 

phenomena. 
 



International Journal of Database Management Systems (IJDMS) Vol.15, No.2/3, June 2023 

3 

2.1. Tree-based Method: Random Forest 
 

Random Forest (RF), introduced by Breiman [9], has gained widespread use in prediction and 

classification tasks (e.g., [10]), even in scenarios with high-dimensional data [11]. RF is a 
collection of regression trees that combines the bagging procedure with randomization in variable 

splitting. Bagging, as proposed by Breiman [5], involves generating random bootstrap samples 

from the original data. The bootstrap samples are generated by repeatedly drawing from the 
original data set, with each sample having the same size as the original data. Each tree in the RF 

is constructed by randomly selecting features from the bootstrap samples. The predictions of RF 

are determined by averaging the outputs of the individual trees. 

 
The main challenge of RF lies in its interpretability due to the composition of multiple regression 

trees. However, RF can still provide insights into the relevance of input attributes. When training 

an RF model, the out-of-bag (OOB) observations are not included in the bootstrap samples. These 
OOB observations are utilized to evaluate the model's accuracy by calculating the OOB error. 

This error measure is also helpful in selecting optimal values for tuning parameters, such as the 

number of randomly selected attributes considered for each split [5]. 
 

2.2. Mixed-Effects Methods 
 

2.2.1. Hierarchical Linear Modeling 

 

Hierarchical linear modeling (HLM), or multilevel modeling, is a widely utilized method for 
analyzing clustered data, which involves nested structures where individuals (lower-level units) 

are grouped within clusters (higher-level units). This approach is commonly applied in 

educational research, where individuals are sampled from classes and schools (e.g., [12]). In a 

two-level model, one level explores the relationships among the lower-level units, while the other 
level examines how these relationships vary across the higher-level units [13]. For instance, 

consider a random intercept model, which can be expressed as follows: 

 
  (1) 

where: 

 = response variable value for the individual  nested within the  cluster unit; 

= intercept for the  cluster unit; 

= regression slope associated with the attribute  for the  cluster unit; 

 = attribute value of X for the individual  in the  cluster unit; 

= random error for the individual  in the  cluster unit. 

 

In the model formula (1),  can be written as: 

  (2) 

where:  

 = mean intercept across all clustered units, which is a fixed effect; 

 = a random effect of the  cluster unit on the intercept. 

   
A combined model can be created using Equation (1) and Equation (2):  

 

  (3) 
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In this random intercept only model, the parameters are estimated via the variance components  
and .  represents the unexplained variation at the lower level when controlling the attribute 

, while  is the unexplained variation at the higher level.  

 

2.2.2. RE-EM Tree 

 

Sela and Simonoff [7] introduced the random effects expectation-maximization recursive 
partitioning method (RE-EM tree), which is specifically designed to handle clustered and 

longitudinal data. This method utilizes CART [3] as the underlying regression tree algorithm. In 

Sela and Simonoff [7], we have sampling individuals or objects i = 1, ..., I at times t = 1, ..., . 
An observation of an individual for a single time is referred as (i, t). An individual can have 

multiple observations across different times. For each observation, we have a vector of j 

attributes, . The attributes may be constant among individuals over time or 

differ across time and individuals. To detect differences for individuals over time, we have a 

known design matrix  and a vector of unknown individual-specific random effects intercept  
being uncorrelated with the attributes. A general effects model can be written as: 

 

  (4) 

 
 ~ Normal (0,  

(5) 

and   

 Normal (0,  (6) 

 
 are random errors that are independent and not associated with the random effects, .  

is a non-diagonal matrix that allows an autocorrelation structure within the errors for an 

individual. The RE-EM tree uses a tree structure to estimate  as well as the individual-specific 
random intercept . Compared with a linear mixed-effects model (where ), the RE-EM 

tree has more flexible assumptions, which admit that the functional form of  is normally 

unknown. The RE-EM tree can also better handle with missing values and overfitting issues. The 

estimation process of a RE-EM tree is shown as below [7]: 
 

1. Initially set the estimated random effects, to zero.  

2. Run iterations through the steps a–c until the estimated random effects, , converge by 
considering change in the likelihood or restricted likelihood function being less than the 

tolerance value. 

a. Fit a regression tree to the data to predict the response variable using the 

attributes, , for objects i = 1, ..., I at times t = 1, ..., . The tree 

includes a set of indicator features, I (   ), where  ranges over all the 

terminal nodes in the tree.  

b. Estimate the linear mixed-effects model,  using 

the response variable and the attributes.  

c. Extract the estimated random effects  from the estimated linear mixed-effects 

model. 
3. Replace the predicted values of the response variable at each terminal node of the tree in 

the step 2a with the population-level predicted mean response  from the linear mixed-

effects model in step 2b.  

 
Any tree algorithm can be applied to step 2a. Sela and Simonoff [7] implemented the CART tree 

algorithm based on the R package – rpart in the step 2a and developed the R package, REEMtree. 

The RE-EM tree algorithm maximizes the reduction in sum of squares when splitting a node. 
Maximum likelihood or restricted maximum likelihood (REML) can be used in step 2b. The 
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splitting process continues as long as the improvement in proportion of variability being 
accounted for by the tree (termed complexity parameter), which determines the optimal size of 

the tree. In the example of Sela and Simonoff [7], the value of complexity parameter (cp) was set 

at least 0.001, and the number of observations in the node was set at least 20. A 10-fold cross 

validation was applied to prune the tree once the initial tree was settled. The final split of the tree 
had the largest cp value and obtained the minimized validation error that was less than one 

standard error above the minimized value. The RE-EM tree allows for autocorrelation within 

individuals, which may yield more effective models comparing with no autocorrelation structure 
[7].  

 

2.2.2. Mixed-Effects Random Forest 
 

Hajjem et al. [14] expanded upon the CART algorithm [3] and introduced a mixed-effects 

regression tree (MERT) approach for handling clustered data with a continuous outcome. MERT 

utilizes the expectation-maximization (EM) algorithm to estimate the random components. 
Subsequently, a standard tree is applied to estimate the fixed effects after removing the random 

component. This approach enables the examination of non-linear relationships between the fixed 

components and response values. 
 

To enhance prediction accuracy, Hajjem et al. [8] further developed a mixed-effects Random 

Forest (MERF), where a Random Forest replaces the regression tree. This advancement 
incorporates the benefits of ensemble learning to improve predictions in the presence of random 

effects. Additionally, Hajjem et al. [15] extended the MERT approach to handle non-Gaussian 

response variables, introducing a generalized mixed-effects regression tree (GMERT) that can 

address classification problems.  
 

The MERF algorithm can be defined as follows: 

 
  (7) 

 

 (0, (0,  (8) 

 
  (9) 

 

where  =  is the  vector of responses for the  observations in the cluster ,  = 

 is the matrix of fixed effects attributes, and  is estimated using Breiman's 

Random Forest [9].  represents the  matrix of random effects attributes for 

the cluster ,  is the  matrix of random effects coefficients for the cluster 

, and is the  vector of errors. D is the covariance matrix of , while  is 

the covariance matrix of . In the MERF algorithm,  is assumed linear with the response 

variable, the random component  is assumed to be independent and normally 

distributed. The covariance matrix of the response is assumed to be  = Cov( ) = + , 

and V = Cov(y) = diag( ,…, ), where y = . Another assumption is the between-

clusters are independent. Fitting the MERF allows us to predict new observations in the clusters 
considering the cluster-level random effects. The correlation is assumed to occur only via the 

between-cluster variations, where  is diagonal ( , i = 1,…, n).  

 

The overall steps of the MERF algorithm, as described in Hajjem et al. [8], can be outlined as 
follows: 
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1. Set r = 0 and the initial values for the parameters, which are ,  , 

. 

2. Set r = r + 1. Update the response corrected for the random effects , random forest 

of the fixed effects , the random component : 

 

(i) Set , i = 1,…, n. 

(ii) Build a RF with  as the response and  as the corresponding training set of 

attributes, i = 1,…, n, j = 1,…, . The bootstrap training samples are repeatedly 

drawn from the training set ( , ). 

(iii) Estimate  using the out-of-bag prediction of the RF, that is, estimate each 

 using the bootstrap samples to build the trees not containing observation . 

(iv) Set  = ( - ), i = 1,…, n, where  = + , 

for i = 1,…,n. 

 

3. Update  and  following 

 

 
 

, 

 

where . 

 

4. Iterate the previous steps until convergence. Apply the generalized log-likelihood (GLL) 

criterion to confirm the convergence: 
 

 

GLL(f, |y) =   

 
 

When predicting a new observation j from known cluster i, we can use the population-averaged 

RF prediction  and the random component . If a new observation is from an unknown 

cluster not included in the sample, we use only the population-averaged RF prediction. 

 

3. METHODS 
 

3.1. Data 
 
For this study, the PISA 2018 data set provided by the Organization for Economic Co-operation 

and Development (OECD) was utilized. The PISA 2018 survey aimed to assess the knowledge 

and skills of 15-year-old students in the areas of mathematics, reading, and science across 79 
participating countries and regions. Additionally, 52 countries administered a questionnaire 

regarding students' familiarity with information and communications technologies (ICT). In this 

particular study, the focus was solely on the students' reading competencies (PV1READ) as the 

response variable. 
 

After addressing missing values, two countries with varying numbers of observations were 

selected for analysis: Kazakhstan (  = 10,040) and the United States (  = 2,592). In this study, a 
total of 31 attributes were considered, encompassing ICT-related attributes, reading attributes, 
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and other relevant student information. Table 1 provides a list of these attributes along with brief 
descriptions.  

 
Table 1. Attributes Information 

 
Attribute Name Description 

PV1READ Student reading performance score (WLE) 

ICTHOME ICT available at home 

ICTSCH ICT available at school 

ICTRES ICT resources (WLE) 

INTICT Student interest in ICT (WLE) 

COMPICT Perceived ICT competence (WLE) 
AUTICT Perceived autonomy related to ICT use (WLE) 

SOCIAICT ICT as a topic in social interaction (WLE) 

ICTCLASS Subject-related ICT use during lessons (WLE) 

ICTOUTSIDE Subject-related ICT use outside of lessons (WLE) 

ENTUSE ICT use for leisure outside of school (WLE) 

HOMESCH Use of ICT for schoolwork activities outside of school (WLE) 

USESCH Use of ICT at school in general (WLE) 

PERFEED Perceived Feedback from teachers (WLE) 

EMOSUPS Parental emotional support perceived by student (WLE) 

LMINS Learning time (minutes per week) 

ESCS Index of economic, social and cultural status (WLE) 
UNDREM Meta-cognition: understanding and remembering 

METASUM Meta-cognition: summarizing 

METASPAM Meta-cognition: assess credibility 

HEDRES Home educational resources (WLE) 

STIMREAD Teachers' stimulation of reading engagement perceived by student 

(WLE) 

ADAPTIVITY Adaptation of instruction (WLE) 

TEACHINT Perceived teacher's interest in teaching (WLE) 

JOYREAD Joy/Like reading (WLE) 

SCREADCOMP Self-concept of reading: Perception of competence (WLE) 

SCREADDIFF Self-concept of reading: Perception of difficulty (WLE) 

PISADIFF Perception of difficulty of the PISA test (WLE) 
PERCOMP Perception of competitiveness at school (WLE) 

PERCOOP Perception of cooperation at school (WLE) 

ATTLNACT Attitude towards school: learning activities (WLE) 

BELONG Subjective well-being: Sense of belonging to school (WLE) 

 

It is worth noting that certain attributes in the PISA 2018 data set were derived using transformed 
weighted likelihood estimates (WLE) techniques [16]. 

The formula of transformation is as below: 

 

 
 

where  is the final metric of the WLE scores after transformation, is the original WLEs in 

logits,   is the mean score based on the equally weighted OECD country samples, and 

 is the standard deviation of the initial WLEs for the OECD samples.  

 

The PISA 2018 applied plausible values for each student reading competency. Plausible values 
refer to a possible range of student competencies. Wu [17] noted that "instead of obtaining a point 

estimate for θ, a range of possible values for a student's θ, with an associated probability for each 

of these values, is estimated. Plausible values are random draws from this (estimated) distribution 
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for a student's θ. This distribution is referred to as the posterior distribution for a student's θ." (p. 
116).  

 

In this study, several attributes were selected that pertained to student engagement with teachers. 

These attributes encompassed aspects such as teachers' ability to stimulate reading engagement 
(STIMREAD), students' perception of teacher feedback (PERFREED), and students' perception 

of their teacher's interest in teaching (TEACHINT). Additionally, attributes related to students' 

meta-cognitive skills in reading were considered, including attributes such as understanding and 
remembering (UNDREM), summarizing (METASUM), assessing credibility (METASPAM), and 

enjoyment of reading (JOYREAD). 

 
Other attributes related to learning included the amount of time spent on test language learning 

(LMINS), student adaptivity in test language lessons (ADAPTIVITY), and students' self-concept 

of reading, which encompassed their perception of competence (SCREADCOMP) and difficulty 

(SCREADDIFF). The study also took into account students' perception of the difficulty of the 
PISA 2018 test (PISADIFF). 

 

Regarding students' background information, various attributes were analyzed. The index of 
student economic, social, and cultural status (ESCS) in the PISA 2018 data set was computed, 

taking into consideration factors such as parents' highest level of education, highest occupational 

status (HISEI), and home possessions (e.g., number of books). Other attributes included 
household possessions such as home educational resources (HEDRES) and parental emotional 

support (EMOSUPS). 

 

To examine the impact of the school environment on student learning, attributes representing 
students' perceptions of the school were considered. These attributes encompassed students' 

perception of school competitiveness (PERCOMP), school cooperation (PERCOOP), attitude 

towards school (ATTLNACT), and the school climate as assessed by the scale measuring 
students' sense of belonging to school (BELONG). 

 

3.2. Data Analysis  
 

Two countries' data were extracted from the raw data set and treated as separate individual data 

sets. Prior to analysis, these data sets underwent a cleaning process to remove missing and noisy 
data points. Each data set was then divided into a 70% training set and a 30% testing set using 

random resampling without replacement within clusters. The training data sets were utilized to 

construct the RF regression, RE-EM tree, MERF, and HLM models. On the other hand, the 

testing data sets were not involved in the model development phase but were used to assess the 
performance of the models created during the training phase. In applying RF regression, RE-EM 

tree, MERF, and HLM, each clustered data set took into account the fixed effects of the selected 

attributes as well as the variability associated with the schools. 
 

3.2.1. Building a RF model 

 
The randomForest package [18] in R (version 3.5.2) was applied to implement the RF algorithm. 

The following hyperparameters of RF were applied in the tuning process:  

 

1) Number of trees (ntreeTry). The default setting of number of trees (ntreeTry = 500) 
was adopted. In this study, 500 trees were sufficient to produce solid results.  

2) The stepFactor is the value by which the number of features sampled when 

constructing each tree (mtry) is inflated or deflated. This value was set as 1.5. 
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3) The improvement value in the minimum out-of-bag (OOB) error (improve) to continue 
the search was set as 0.01. 

4) Number of features sampled when constructing each tree (mtry). The default value of 

mtry was calculated using the formula, mtry = number of attributes / 3. The starting value of mtry 

follows mtry = default value / stepFactor. The ending value of mtry follows mtry = default value 
* stepFactor. Therefore, we used tuneRF function to confirm the best value of mtry based on the 

OOB error. In both the Kazakhstan and USA data sets, the tuning process showed that mtry = 7 

was the optimal value. 
 

3.2.2. Building a RE-EM Model 

 
The REEMtree package [19] in R (version 3.5.2) was applied in the analyses. In the RE-EM tree 

analyses, 10-fold cross validation was applied when building the models, and complexity 

parameter (cp) was set as 0.01 for pruning the trees in order to select the optimal tree size based 

on the lowest cross validation error.  
 

3.2.3. Building a MERF Model 

 
The merf package in Python (version 3.8) was used to run the MERF regression. In this study, we 

set 300 trees generated in the random forest and 50 as the maximum number of iterations until 

convergence for both sampling data sets.  
 
3.2.4. Applying HLM 

 

The HLM method was conducted in R (version 3.5.2) using the package lme4 [20]. The adjusted 

and conditional Intraclass Correlation Coefficient (ICC) was first run for each data set to estimate 

the variance explained by the school clustered structure. A random intercept model was employed 
for this study. 

 

3.3. Evaluation Criteria 
 

Once the RF regression, RE-EM tree, MERF, and HLM models were constructed, the testing data 

sets were employed to assess the performance of these models. Various evaluation metrics were 
utilized to measure the disparities between the predicted values and the actual values, including 

the mean square error (MSE), mean absolute error (MAE), mean absolute percent error (MAPE), 

and Accuracy (calculated as 100% minus MAPE). These metrics have been widely employed in 
previous research studies to evaluate model performance (e.g., [21]). Below are the formulas of 

MSE, MAE, and MAPE: 
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where n is the sample size,  is the actual value,  is the predicted value. Smaller values of 

MSE, MAE, and MAPE indicate smaller discrepancies between the estimated model and the 

actual data, indicating better model performance.   

 

4. RESULTS  
 

Based on the findings, the baseline models revealed intraclass correlations of 0.387 for 

Kazakhstan and 0.15 for the United States. This indicates that 38.7% of the variation in student 
reading achievement in Kazakhstan can be attributed to school effects, while for the United 

States, the school effects account for 15% of the variation in student reading scores. 

 
For the United States dataset, the random intercept model identified seven significant ICT-related 

attributes (HOMESCH, INTICT, AUTICT, SOIAICT, ICTCLASS, ICTHOME, and ICTSCH) 

and three significant teacher-related attributes (PERFEED, STIMREAD, and TEACHINT) that 

influenced student reading achievement. Significant impacts on student reading were also 
observed for student reading-related attributes (UNDREM, METASUM, METASPAM, 

SCREADCOMP, and JOYREAD), as well as other attributes such as EMOSUPS, HEDRES, 

ESCS, PISADIFF, PERCOOP, and BELONG. The overall HLM model achieved an accuracy of 
88.22% for the United States. 

 

In contrast, the HLM model for Kazakhstan yielded different significant attributes. Attributes 
such as ENTUSE, USESCH, COMPICT, and ICTRES significantly influenced student reading 

scores in Kazakhstan, while HOMESCH, AUTICT, and ICTSCH were found to be insignificant. 

Other significant attributes for predicting Kazakhstan students' reading performance included 

LMINS, ADAPTIVITY, and SCREADDIFF, which were not significant in the United States 
dataset. ESCS and BELONG were found to be insignificant for Kazakhstan students' reading 

performance. Overall, the HLM model for Kazakhstan achieved an accuracy of 89.8%. 

 
Regarding the RF models, they explained 49.43% of the variance in the United States dataset and 

53.17% of the variance in the Kazakhstan dataset. The top five important attributes in the RF 

model for the United States were METASPAM, PISADIFF, ESCS, JOYREAD, and METASUM. 
In the Kazakhstan dataset, the most important attributes were METASUM, UDREM, PISADIFF, 

METASPAM, and SCREADDIFF. The accuracy of the RF models was 92.61% for the United 

States and 93.72% for Kazakhstan. 

 
Comparatively, the RE-EM tree models achieved lower accuracies, with 86.72% for the United 

States and 89.03% for Kazakhstan. The RE-EM tree structures, as shown in Figure 1 and Figure 

2, were simpler for the United States dataset compared to the Kazakhstan dataset. METASPAM, 
PISADIFF, and METASUM were significant attributes contributing to the modeling structures 

for both datasets. 
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Figure 1. The United States RE-EM Tree Model Result. It shows the significant attributes and their 

thresholds. Those attributes are METASPAM, PISADIFF, METASUM, UNDREM, ESCS. 
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Figure 2. The Kazakhstan RE-EM Tree Model Result. It shows the significant attributes and their 

thresholds. Those attributes are METASUM, PISADIFF, SCREADDIFF, INTICT, USESCH, 

METASPAM, ICTCLASS. 

 

The MERF models performed the best among the different methods for both datasets, achieving 

accuracies of 93.16% for the United States and 94.38% for Kazakhstan. Other evaluation metrics 
also indicated that the MERF models outperformed the other methods (see Table 2 and Table 3).  

 
Table 2. The Evaluation Metrics Result of Each Model for the United States Data 

 
 MSE MAE MAPE ACCURACY 

RF 2371.006 34.6963 0.0739 92.61% 
RE-EM Tree 6238.66 62.8526 0.1328 86.72% 

MERF 2207.5367 20.2245 0.0684 93.16% 

HLM 4956.902 56.0686 0.1178 88.22% 

 
Table 3. The Evaluation Metrics Result of Each Model for the Kazakhstan Data 

 
 MSE MAE MAPE ACCURACY 

RF 1295.416 25.6777 0.0628 93.72% 

RE-EM Tree 3227.529 45.0954 0.1097 89.03% 

MERF  1143.1682 14.6682 0.0562 94.38% 

HLM 2837.556 42.138 0.102 89.8% 

 



International Journal of Database Management Systems (IJDMS) Vol.15, No.2/3, June 2023 

13 

Figures 3 and 4 further illustrated the influence of METASPAM, PISADIFF, and METASUM on 
students' reading performance, consistent with the results from the RF models. However, the 

MERF models slightly improved accuracy compared to the RF models in both datasets. 

 

 
 

Figure 3. The Importance of Attributes in MERF Model for the United States Data. 

 

 
 

Figure 4. The Importance of Attributes in MERF Model for the Kazakhstan Data. 
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5. DISCUSSION 
 
Among the methods applied, MERF proved to be the most accurate for both the United States and 

Kazakhstan datasets. MERF combines the advantages of the RF method, such as reducing 

overfitting, being less sensitive to outliers, easy parameter setting, and automatic variable 

importance generation. It is particularly suitable for clustering data as it considers both fixed and 
random effects of variables. The accurate predictions generated by MERF, using a bagging 

scheme, are valuable for predicting students' learning outcomes. A previous study by Pellagatti et 

al. [22] successfully applied a similar method called generalized mixed-effects Random Forest 
(GMERF) for predicting university student dropout. 

 

However, MERF, like RF, has a major drawback in its "black box" nature, making it challenging 

to interpret the relationships between predictor and response variables. The ensemble tree 
structures hinder the interpretation of each tree, making it difficult to discern the exact directions 

and magnitudes of variables' impacts, although variable importance information is available. In 

this regard, the CART-based RE-EM tree method provides more interpretability of the results. 
RE-EM tree combines the advantages of both regression tree and linear mixed-effects regression 

algorithms. It is robust to outliers, as the tree-splitting process can isolate outliers in individual 

tree nodes. Additionally, RE-EM tree does not require preselected variables in high-dimensional 
datasets, providing flexibility in capturing data patterns. However, the method may generate 

unstable decision trees due to different splitting approaches adopted by the tree structure. 

 

When comparing data mining methods with HLM in educational clustering data settings, data 
mining methods like MERF and RE-EM tree perform better for high-dimensional data, as they do 

not require specifying a functional form and can handle missing data values more effectively. The 

choice between MERF and RE-EM tree depends on the research study's objectives or 
applications. For instance, when developing an early alert system for identifying student dropouts 

or predicting course grades, MERF or GMERF can yield accurate predictions. These methods 

may also have great potential for use in other technologies in the future, such as intelligent 
tutoring systems, educational games, and recommender systems. On the other hand, when the 

main objective is to examine relationships among variables in big data for education, collected 

from technology systems or multiple sources, RE-EM tree may be more appropriate considering 

its interpretability. 
 

Additionally, HLM remains a useful method for educational clustering data, especially when the 

data is not high-dimensional and does not have significant issues with outliers or missing values. 
For example, Xu et al. [23] applied HLM to investigate the relationship between students' ICT 

usage and learning performance in mathematics, science, and reading. Hew et al. [24] used HLM 

to predict student satisfaction with massive open online courses. Our study results demonstrated 

the advantage of applying HLM, which even showed slightly higher accuracy than the RE-EM 
tree model. 

 

6. CONCLUSION 
 

This study offers a comprehensive comparison of four statistical methods, namely RF, RE-EM 
tree, MERF, and HLM, in analyzing clustered educational data. The findings shed light on the 

strengths and limitations of each method and provide valuable guidance for researchers in the 

education field. Specifically, the study highlights the potential benefits of utilizing mixed-effects 
data mining methods like RE-EM tree and MERF to enhance model accuracy when dealing with 

clustered data structures. Researchers can leverage these insights to make informed decisions 

regarding the selection and application of statistical methods in their own studies.  
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One limitation of this study is its exclusive focus on educational data, specifically the PISA 2018 
dataset. Future studies should expand their scope by testing these statistical methods on diverse 

datasets from other fields to validate the findings. Additionally, there is a need for further 

development of the algorithms to address their limitations in terms of interpretability. Improving 

the transparency and understanding of the models is crucial for their broader application and 
practical utility. 
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