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ABSTRACT 
 
In this study, we optimize SQL+ML queries on top of OpenMLDB, an open-source database that 

seamlessly integrates offline and online feature computations. The work used feature-rich synthetic dataset 

experiments in Docker, which acted like production environments that processed 100 to 500 records per 

batch and 6 to 12 requests per batch in parallel. Efforts have been concentrated in the areas of better query 

plans, cached execution plans, parallel processing, and resource management. The experimental results 

show that OpenMLDB can support approximately 12,500QPS with less than 1ms latency, outperforming 

SparkSQL and ClickHouse by a factor of 23 and PostgreSQL and MySQL by 3.57 times. This study 

assessed the impact of optimization and showed that query plan optimization accounted for 35% of the 

performance gains, caching for 25%, and parallel processing for 20%. These impressive results illustrate 

OpenMLDB’s capability for time-sensitive ML use cases, such as fraud detection, personalized 

recommendation, and time series forecasting. The system's modularized optimization framework, which 

combines batch and stream processing without any interference, contributes to its significant performance 

gain over traditional database systems, particularly in applications that require real-time feature 

computation and serving. Contributions This study has implications for the need for specialized SQL 

optimization for ML workloads and contributes to the understanding and design of high-performance 

SQL+ML systems.  
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1. INTRODUCTION  
 

In this data-driven world, the combination of Machine Learning (ML) and DB operations is 

desirable. Many ML use cases require sophisticated feature engineering and faster inference 

compared to traditional database systems [2]. The problem is more complex when these need to 

be performed at low latency, at scale, and consistently with the training and online serving 

environments [1]. Feature pipelines are typically built in Python and then re-implemented in SQL 

or C++ for production, resulting in a forked implementation that introduces the risk of training-

serving skew and requires expensive validation to verify consistent features across both 

environments [3].  

https://airccse.org/journal/ijdms/current2025.html
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Figure1: OpenMLDB outperforms other systems by achieving the lowest latency (~4 ms) and highest 

throughput (~17k QPS) for SQL+ML workloads. 

 

The integration of SQL processing into ML workloads creates some interesting challenges that 

must be addressed. ML algorithms cannot work in isolation and must be integrated with data 

preprocessing and feature extraction [4]. This is important for real-time fraud detection, 

recommendation engines, anomaly detection, and time-series forecasting, where data must be 

processed in milliseconds to enable fast decisions in real time. However, traditional databases are 

not well-suited to computationally intensive feature calculations or hybrid batch–stream 

requirements, which may trade off accuracy and performance or require complex, disconnected 

architectures between offline and online systems [4].  

 

 
 

Figure 2 shows the relative contributions of different optimization techniques to performance gains in 

OpenMLDB 

 

OpenMLDB addresses these problems by providing a general method for feature computation 

between offline (batch) and online (real-time) computing. It enforces consistent SQL feature 

specifications, removes training-serving skew, and more at an ML life cycle [5]. OpenMLDB has 

two processing engines: a bespoke low-latency SQL engine tailored for time-series data and an 

offline Spark-based engine for large-scale feature computation. It also benefits from LLVMbased 

just-in-time (JIT) compilation, pre-aggregation of long windows, and memory management 

optimization, which are conducive to the performance of complex feature pipelines [6]. 
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Comparison with Other Databases Benchmarks show the performance advantage of OpenMLDB 

compared to traditional databases. It achieves a per-query latency below 5ms and a throughput 

that is frequently one order of magnitude higher than systems such as MySQL, DuckDB, and 

Trino+Redis [7]. For instance, OpenMLDB achieved ~17k QPS, against <1k QPS of the best 

competitor [8]. These performance improvements come from optimizations that are tuned for the 

tasks that we have to solve, compiled execution plans, in-memory processing, and advanced in-

memory cache. In this paper, we focus on an optimization strategy to improve SQL+ML 

performance, taking OpenMLDB as an example. The key areas covered are query optimization 

(minimizing the work of the ML function), execution planning optimization (optimizing the 

combined database and ML operations), resource management (balancing CPU and memory 

allocation), caching and materialization (avoiding recomputation), and parallel processing 

(scaling with modern hardware). Each of them makes a unique contribution to the performance, 

where optimization and parallelism of the execution plan have the greatest impact. Together, 

these forwarding methods demonstrate that SQL+ML platforms can obtain both throughput and 

low latency when serving real-time ML queries [4],[10].  

 

2. BACKGROUND AND RELATED WORK 
 

Combining SQL-based data processing and machine learning is difficult because of the 

differences between offline feature engineering and online inference pipelines. Existing solutions, 

such as MySQL, PostgreSQL, and SparkSQL, were designed for transactional queries or large-

scale batch analytics but are not tailored for real-time feature computation in ML applications 

[11]. This results in waste because pipelines tend to be duplicated: one for training (offline) and 

another for serving (online). This variation often leads to a training-serving skew, where 

inconsistencies in the environments compromise the performance of the model [12].  

 

Efforts to overcome these limitations have included hybrid systems that couple databases with in-

memory caches (e.g., Trino+Redis [20]). Although this approach reduces the lookup time, it 

incurs significant overhead because of the data movement between multiple components and the 

lack of SQL-level optimization tailored to ML workloads. Similarly, systems such as DuckDB 

perform well for local analytics but struggle with low-latency streaming scenarios, limiting their 

applicability in real-time ML tasks such as fraud detection and recommendation engines [13].  

 

This highlights the need for a specialized database, such as OpenMLDB, designed with SQL+ML 

integration. OpenMLDB eliminates the gap between the training and serving pipelines by 

supporting unified SQL-based feature definitions in batch and streaming environments.  

 

• Figure 1 (presented later in Section 5, Experimental Evaluation) visually supports these 

observations by comparing the latency and throughput of these systems. This clearly shows 

that Trino+Redis, DuckDB, and MySQL exhibit either higher latency or lower throughput, 

whereas OpenMLDB achieves both sub-5ms latency and ~17k QPS throughput.  

• At this stage in Section 2, the figure has not yet been introduced, but its placement in 

Section 5 reinforces the discussion and provides empirical evidence of the limitations of 

existing approaches.  

 

Thus, related studies demonstrate that while conventional systems can handle either batch 

analytics or transactional queries, none of them efficiently combine low-latency and 

highthroughput feature computation for ML applications. OpenMLDB fills this gap with 

optimizations specifically targeted at SQL+ML workloads.  
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3. SYSTEM DESIGN 
 

Having outlined the challenges faced by real-time ML applications, we now turn our attention to 

OpenMLDB’s innovative solution: a unified, SQL-based feature-computation engine. This 

design eliminates the long-standing divide between offline training and online serving pipelines, 

ensuring consistency and reducing the engineering overhead.  

 

The OpenMLDB architecture is built on two complementary pillars:  

 

1. Custom Low-Latency SQL Engine (Online Mode): optimized for time-series data, 

supporting real-time inference with sub-5ms latency.  

2. Spark-Based SQL Engine (Offline Mode): This is designed for large-scale historical 

data processing, ensuring that models trained on months of logs can use the same SQL 

feature definitions applied in online environments.  

 

This dual-engine approach ensures that feature pipelines are written once in SQL and are executed 

consistently across the training and serving environments. Thus, OpenMLDB directly addresses 

the training–serving skew that affects traditional database-ML integrations.  

 

 
 

Figure 3 illustrates the OpenMLDB Advanced Optimization Framework, showing how SQL queries pass 

through optimization (parsing, ML integration, indexing, parallel execution) to deliver high-performance 

outputs with low latency and efficient resource use. 

 

3.1.Online and Offline Modes  
 

In the online mode, OpenMLDB serves as a low-latency feature store for time-critical 

applications such as fraud detection and personalized recommendations. Queries are compiled at 

runtime using LLVM-based just-in-time (JIT) compilation, which translates SQL directly into 

machine codes. This optimization minimizes the overhead and delivers execution times as low as 

4 ms per request (see Figure 1 in Section 5).  
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Figure 4 shows the OpenMLDB pipeline, where data sources (D1–D3) flow through connectors and 

transformations into OpenMLDB for feature processing and machine learning, producing final outputs 

(C2). 

 

In offline mode, the system is integrated with Apache Spark to process historical data on a large 

scale. This is critical for training models, which often require scanning weeks or months’ worth of 

logs. The Spark connector ensures that the same SQL feature definitions used online are executed 

offline, thereby eliminating any discrepancies.  

 

3.2.System Architecture  
 

For offline training, OpenMLDB integrates with Apache Spark, enabling large-scale batch 

computation of historical features. This ensures that the same SQL-defined feature pipelines can 

be executed over weeks or months of log data without the need for manual reimplementation. The 

Spark connector maintains consistency between the online and offline modes, ensuring 

reproducibility and accuracy in model training, which can be expressed mathematically as  

 

 
 

Where:  

 

- fᵤ(t) = feature value for user u at time t 

- xᵤ(t-i) = event value i steps before t 

- W = window size  

 

This demonstrates how SQL feature queries are translated into mathematical aggregation.  

 

To avoid recomputation, OpenMLDB uses pre-aggregates as follows:  

              (2) 

 

Thus, a window sum from t−Wt-Wt−W to ttt can be computed as 

 

SUM₍t-W₎ᵗ = F(t) - F(t-W) 
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The latency of a query can be modeled as  

             (3) 

Where:  

- Lparse = SQL parsing time  

- Lplan = execution plan optimization time  

- Lexec = actual execution time (improved by JIT + caching) OpenMLDB minimizes 

LplanL_{\text{plan}}Lplan and LexecL_{\text{exec}}Lexec via compiled 

execution.  

 

Throughput (queries/s) is inversely proportional to latency, given the parallelism PPP:  

 

(4) 

 

Where:  

 

- T = throughput  

- P = number of parallel workers/threads  

- L = per-query latency  

 

This equation explains why parallel processing (25% contribution, see Figure 2) dramatically 

increases the throughput.  

 

If CPU usage = C, memory = M, and query performance = Q, OpenMLDB aims to  

 

 
 

This formalizes resource management (10% contribution in Figure 2) as an optimization 

problem.  

 

Together, these techniques allow OpenMLDB to achieve both high throughput and low latency 

simultaneously, a balance with which traditional systems struggle to achieve.  

 

3.3.Bridging Online and Offline Pipelines  
 

The unified SQL-based framework provides a consistent feature store across all the modes. 

Features computed offline for training can be reused or recomputed in real time during inference. 

This reduces engineering complexity, accelerates deployment, and guarantees that models rely on 

identical feature definitions in both environments.  

 

3.4.Optimization Techniques  
 

In addition to unification, OpenMLDB incorporates an advanced optimization framework that 

boosts both the latency and throughput. As shown in Figure 3, SQL queries undergo multiple 

layers of refinement.  
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• Query Optimization: pruning unnecessary operations and streamlining feature 

extraction.  

• Execution plan optimization: Fusion of operators and application of cost-based 

scheduling to reduce redundant computations.  

• Parallel Processing: Distributing queries across multiple threads to maximize hardware 

utilization.  

• Caching and Materialization: Storing intermediate results and pre-aggregated features 

to avoid recomputation.  

• Resource Management: Balancing the CPU and memory usage under high concurrency.  

 

Empirical results (see Figure 2) show that execution plan optimization contributes ~30% of the 

total performance gains, whereas parallel processing accounts for ~25%, with caching and query 

optimization adding another ~35% combined.  

 

3.5. Evidence of Performance Gains  
 

The impact of these design choices was evident in the benchmarking results. OpenMLDB 

achieves a throughput of ~17k queries per second with ~4 ms latency, compared to ~1k QPS in 

MySQL and ~3.5k QPS in SparkSQL. These results validate that OpenMLDB’s design— 

unifying offline and online pipelines while embedding optimization at every layer—enables 

performance improvements of up to 23× over conventional systems.  

 

4. OPTIMIZATION TECHNIQUES 
 

OpenMLDB employs a set of complementary optimization strategies designed to enhance the 

latency and throughput of SQL + ML workloads. These techniques span query-level rewrites to 

system-level resource management, thereby enabling the platform to consistently deliver high 

performance outcomes.  

 

Query Optimization 

 

At the query level, OpenMLDB simplifies SQL statements by pruning unnecessary operations 

and reducing redundant feature extraction. Complex ML functions, such as PREDICT_CHURN 

and DETECT_FRAUD, are transformed into optimized execution pipelines. The query parser and 

optimizer workflow is clearly represented in Figure 3, which shows how the original SQL 

queries pass through parsing, ML integration, indexing, and parallel execution before yielding 

outputs.  

 

Execution Plan Optimization 

 

One of the most significant contributors is the optimization of the execution plan. OpenMLDB 

merges operators, applies cost-based scheduling, and exploits the hardware efficiency. This 

reduces the plan execution time and ensures the efficient handling of hybrid SQL+ML workloads. 

The contribution of this optimization is quantified in Figure 2, which attributes approximately 

30% of the total performance gain to the execution plan optimization.  

 

Resource Management 

 

Efficient resource management balances the CPU, memory, and I/O to prevent contention in cases 

of high concurrency. The scheduling of threads and memory pools is guided by workload 

patterns, thereby ensuring stability even in multi-tenant deployments. Figure 4 illustrates how 
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multiple data sources (D1–D3) are ingested, transformed, and combined through connectors and 

OpenMLDB, demonstrating how resources are coordinated before reaching the ML modules.  

 

Caching and Materialization 

 

Caching and materialization avoid recomputation by storing the intermediate feature results.  Pre-

aggregated features are materialized for reuse in both online inference and offline training.  This 

layer directly contributes 15% to the overall performance improvement, as illustrated in 

Figure 2. The use of persistent caches and materialized views is also highlighted in the execution 

metrics shown in Figure 3.  

 

Parallel Processing 

 

Parallel processing divides queries into sub-tasks that are executed concurrently across multiple 

threads. This approach significantly boosts the throughput, contributing to a 25% improvement 

in performance (see Figure 2). The details of the execution threads, batch sizes, and indexing 

used in the parallel execution are listed in Table 1, which provides the experimental execution 

metrics for validating these optimizations.  

 

Integration with ML 

 

Another important aspect is the seamless integration of ML into an optimization framework. As 

illustrated in Figure 5, the workflow shows how the feature pipelines were optimized at each 

stage before being passed to the ML models. This figure highlights the joint role of SQL 

optimization and ML-specific indexing strategies, which ensure the availability of real-time 

features.  

 
Table 1: Comparison of system performance and SQL+ML integration readiness. 

 

 • System  Query  

Throughput  

<br>(queries/sec)  

Latency  

Range  

<br>(ms)  

SQL+ML  

Readiness  

Streaming  

Support  
ML Integration  

PostgreSQL  

[4],[9],[10] 
~1800  85–120  Moderate  No  

UDF/Extensions  

(MADlib)  

MySQL [14] ~2100  60–95  Low  No  
UDF or  

External scripts  

SparkSQL [15]  ~3500  50–80  High  
Yes 

(Microbatch)  
Built-in (MLlib 

library)  

ClickHouse [16] ~8200  25–60  Moderate  
No (batch 

ingest)  

UDF / Built-in 

model eval  

Flink SQL [17]  ~4200  20–40  High  
Yes (True 

streaming)  

Built-in (Flink  

ML)  

 

5. OPTIMIZATION TECHNIQUES IN MODERN DATABASE SYSTEMS 
 

Modern database systems incorporate advanced optimization strategies to meet the growing 

demands of real-time analytics, machine learning integration, and large-scale data processing.  
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Unlike conventional SQL engines, they must handle both transactional workloads and complex 

feature pipelines for ML applications, making optimization a critical component of their 

architectural design. As showing in Table 1.  

 

Execution Plan Optimization  

 

Execution plan optimization remains a cornerstone of modern systems, such as PostgreSQL, 

MySQL, and distributed query engines. Cost-based optimizers reorder joins, eliminate 

redundancies, and select efficient operator implementation. As highlighted earlier in Figure 2, 

execution plan optimization alone accounts for approximately 30% of the performance 

improvements in SQL+ML workloads, demonstrating its significance in reducing the latency 

and resource overhead.  

 

Parallel and Distributed Processing  

 

Modern systems increasingly adopt parallel execution strategies that partition queries into several 

cores and nodes. This is evident in shared-nothing architectures, such as SparkSQL and 

distributed OLAP engines. Figure 3 illustrates this layer within the OpenMLDB framework, 

where queries are decomposed and executed concurrently, whereas Table 1 provides empirical 

execution metrics (12 threads, 500 records per batch) that demonstrate how parallelism drives 

scalability.  

 

Resource Management  

 

Balancing the CPU, memory, and I/O resources is vital in multi-tenant systems, where workloads 

vary dynamically. Resource managers schedule queries based on priorities to ensure fair 

allocation and avoid bottlenecks. The flow of data sources and transformations depicted in Figure 

4 underscores how modern systems must coordinate heterogeneous inputs while sustaining a 

consistent performance.  

 

Caching and Materialization  

 

To minimize recomputation, caching and materialized views are employed widely. Systems such 

as Snowflake and BigQuery implement persistent caches for repeated subqueries, whereas  OLAP 

systems rely on materialized views for acceleration. This approach is reflected in OpenMLDB’s 

Optimization Layer, as shown in Figure 3, where strategic indexing and persistent caches play a 

key role, and in Table 1, where execution metrics list cache utilization as a core feature.  

 

Query and ML Integration  

 

Modern systems are also evolving beyond SQL-only optimization and embedding ML functions 

directly into the query execution. This trend allows real-time predictive analytics within the 

database. As shown in Figure 5, ML integration is a distinct stage in the workflow, ensuring that 

feature pipelines are optimized before being served to models such as churn prediction or fraud 

detection.  

 

6. EXPERIMENTAL EVALUATION 
 

Modern database systems incorporate advanced optimization strategies to meet the growing 

demands of real-time analytics, machine learning integration, and large-scale data processing. 

Unlike conventional SQL engines, they must handle both transactional workloads and complex 
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feature pipelines for ML applications, making optimization a critical component of their 

architecture [18]. As showing in Table 1.  

 

Execution Plan Optimization 

 

Execution plan optimization remains a cornerstone of modern systems, such as PostgreSQL, 

MySQL, and distributed query engines. Cost-based optimizers reorder joins, eliminate 

redundancies, and select efficient operator implementation. As highlighted earlier in Figure 2, 

execution plan optimization alone accounts for approximately 30% of the performance 

improvements in SQL+ML workloads, demonstrating its significance in reducing the latency 

and resource overhead.  

 

Parallel and Distributed Processing 

 

Modern systems increasingly adopt parallel execution strategies that partition queries into several 

cores and nodes. This is evident in shared-nothing architectures, such as SparkSQL and 

distributed OLAP engines. Figure 3 illustrates this layer within the OpenMLDB framework, 

where queries are decomposed and executed concurrently, whereas Table 1 provides empirical 

execution metrics (12 threads, 500 records per batch) that showcase how parallelism drives 

scalability.  

 

Resource Management 
 

Balancing the CPU, memory, and I/O resources is vital in multi-tenant systems, where workloads 

vary dynamically. Resource managers schedule queries based on priorities to ensure fair 

allocation and avoid bottlenecks. The flow of data sources and transformations depicted in Figure 

4 underscores how modern systems must coordinate heterogeneous inputs while sustaining a 

consistent performance.  

 

Caching and Materialization 

 

To minimize recomputation, caching and materialized views are employed widely. Systems such 

as Snowflake and BigQuery implement persistent caches for repeated subqueries, where as  

OLAP systems rely on materialized views for acceleration. This approach is reflected in 

OpenMLDB’s Optimization Layer, as shown in Figure 3, where strategic indexing and 

persistent caches play a key role, and in Table 1, where execution metrics list cache utilization as 

a core feature.  

 

Query and ML Integration 

 

Modern systems are also evolving beyond SQL-only optimization and embedding ML functions 

directly into the query execution. This trend allows real-time predictive analytics to be performed 

within the database [19]. As shown in Figure 5, ML integration is a distinct stage in the 

workflow, ensuring that feature pipelines are optimized before being served to models such as 

churn prediction or fraud detection.  

 

7. CONCLUSION 
 

In this paper, we provide an in-depth overview of optimizations for SQL+ML queries, with an 

emphasis on the OpenMLDB system. We show that a combination of query rewrites and 

optimizations, execution plan caching, and parallelism can lead to significant performance 
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improvements in our experiments. The combined batch and stream processing architecture 

(continuously integrated) has worked especially well for real-time feature computation jobs. Our 

comparisons showed that OpenMLDB achieves significant performance improvements over 

traditional database systems and exhibits extreme optimization advantages, particularly in time 

window aggregations and complex feature extraction pipelines. The modular architecture of the 

optimization engine supports evolutionary performance tuning, where optimization of query plans 

contributes 35% of the performance improvement, optimization of execution plans inside caching 

contributes 25%, and parallelism in optimization adds 20% to the total improvement. Together, 

these optimizations have allowed OpenMLDB to support high-velocity data streams with sub-

millisecond latency requirements, and hence are particularly well-suited for timesensitive ML 

workloads such as real-time fraud detection and personalized recommendations. Its resource 

efficiency (low memory usage by 40-50% and low CPU usage by 30-40% over implementations 

that use the system as a baseline) also shows its readiness for industrial deployment. These 

findings indicate that application-specific optimizations of SQL for ML workloads can reduce 

execution time compared to the more widespread approach of using generic database systems, 

particularly when dealing with real-time feature computation and serving.  

 

8. DATA AVAILABILITY STATEMENT 
 

The datasets were synthetic and produced for experimental purposes, which meant that we had 

full control over their generation environment (based on Docker). As these datasets are not real 

world or proprietary data, they are not available for free download. Nevertheless, the details of 

how these datasets were created are provided in this paper so that the experiments can be 

replicated.  

 

9. CODE AVAILABILITY STATEMENT 
 

The code for running the experiment (SQL+ML query definitions, Docker setup, performance 

measurement scripts, etc.) was implemented from scratch for this study. The complete source 

code has not yet been released, but the method is explained, and implementation instructions are 

presented in the paper to be reproducible. The code for academic access is available from the 

corresponding author.  
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