International Journal of Database Management Systems ([JDMS) Vol.9, No.6, December 2017

PERFORMANCE EVALUATION OF SQL AND NOSQL
DATABASE MANAGEMENT SYSTEMS IN A CLUSTER

Christine Niyizamwiyitira and Lars Lundberg

Department of Computer Science and Engineering, Blekinge Institute of Technology, SE-
37179 Karlskrona, Sweden.

ABSTRACT

In this study, we evaluate the performance of SQL and NoSQL database management systems namely;
Cassandra, CouchDB, MongoDB, PostgreSQL, and RethinkDB. We use a cluster of four nodes to run the
database systems, with external load generators.The evaluation is conducted using data from Telenor
Sverige, a telecommunication company that operates in Sweden. The experiments are conducted using
three datasets of different sizes.The write throughput and latency as well as the read throughput and
latency are evaluated for four queries; namely distance query, k-nearest neighbour query, range query, and
region query. For write operations Cassandra has the highest throughput when multiple nodes are used,
whereas PostgreSQL has the lowest latency and the highest throughput for a single node. For read
operations MongoDB has the lowest latency for all queries. However, Cassandra has the highest
throughput for reads. The throughput decreasesas the dataset size increases for both write and read, for
both sequential as well as random order access. However, this decrease is more significant for random
read and write. In this study, we present the experience we had with these different database management
systems including setup and configuration complexity.

KEYWORDS

Trajectory queries, cluster computing, SQL database, NoSQL database, Cassandra, CouchDB, MongoDB,
PostgreSQL, RethinkDB

1. INTRODUCTION

Immense volumes of data are generated continuously at a very high speed in different domains.
Being unstructured and semi structured make these data heterogeneous and complex.However,
efficient processing and analysis remain high priorities. The challenges include what technology
in terms of software and hardware to use in order to handle these data efficiently. Processing and
analysis is needed in different domain such as transportation optimization and different business
analytics for telecommunication companies that seek common patterns from their mobile users in
order to support business decisions.

The variety of SQL and NoSQL database management systems makes it difficult to pick the most
appropriate system for a specific use case. In this paper, five data base systems are evaluated with
respect to write and read throughput and latency. Throughput is interesting since telecom data is
generated at high pace, and latency is also interesting since the speed of telecom data processing
is critical.

DOI : 10.5121/ijdms.2017.9601 1

International Journal of Database Management Systems ([JDMS) Vol.9, No.6, December 2017

Since big data processing requires high performance computing, we use a cluster computing
environment in order to take advantage of parallel computing. We consider a case of trajectory
data of mobile users.

Trajectory data represents information that describes the location of the user in time and space. A
typical application of such data is that a telecommunication company wants to optimize the use of
cell antennas and identify different points of interests in order to expand its business. In order to
successfully process trajectory data, a proper choice of database system that efficiently respond to
different queries is required.

We use trajectory data that are collected from Telenor Sverige (a telecommunication company
that operates in Sweden). Mobile users' positionsaretracked every five minutes for an entire week
(Monday to Sunday) in a medium sized city. We are interested to know how mobile users move
around the city during different hours and days of the week. This will give insights about typical
behaviour in certain area at certain time. We expect periodic movement in some areas, €.g., at the
location of stores and restaurants during lunch time.

Our data are spatio-temporal where at a given time t a mobile user is located at a position (X,y).
The location of a mobile user is a triple (x,y,t) such that user’s position is represented as a spatial-
temporal point p; with pi=(X;,yi,ti).

By optimizing points of interests, different types of queries are proposed. They differ in terms of
input and output:

e Distance query: which finds points of interests that are located in equal or less than a
distance (or a radius), e.g., one kilometer from a certain position of a mobile user.

e K-Nearest neighbour query: that finds k nearest points of interests from a certain position
of a mobile user.

e Range query: that finds points of interests within a space range (the range can be a
triangle, polygon, ...).

e Region query : that finds the region that a mobile user frequently passes through at
certain time throughout the week.

The performance is evaluated on five open source database management systems that are capable
to handle big data; Cassandra,CouchDB,MongoDB, PostgreSQL, and RethinkDB. We consider
random access requests as well as sequential requests. The hardware is a cluster with four nodes
that run the database, with four external load generators for random workloads, and one load
generator for sequential workloads. By using this kind of data,an operator knows the locations
that are the most, or the least visited during a certain time.Therefore, in order to avoid
overloading and underloading at such locations, antenna planning can be updated accordingly.
For business expansion, a busy location during lunch time is for instance good for putting up a
restaurant.

The rest of the paper is organized as follows; Section 2 defines trajectory data concept, Section 3
summarizes related work, Section 4 gives an overview of database management systems, Section
5 describes the methodology, Section 6 presents the results. Section 7 presents some discussions
and analysis, and finally Section 8 draws conclusions.

International Journal of Database Management Systems ([JDMS) Vol.9, No.6, December 2017

2. TRAJECTORY DATA[1]

2.1. DEFINITION OF A TRAJECTORY

A trajectory is a function from a temporal domain to a range of spatial values, i.e., it has a start
and end time during which a space has been travelled (see Equation 1) [2].

[tbegintend] — space (1)
A complete trajectory is characterized by a list of triples p = (x,y, t), thus a trajectory is defined

as a sequence of positions Tp o5

Tpos = 1, P20 s Pn} (2)

Where p; = (x;,y;, t;) represents a spatio-temporal point, Figure 1 shows a trajectory.

Xirt, Yirr b
v xn' yll’ tn

Xi-1, Yi-1 ti-1
Y,

............

Figure 1.Mobile user’s trajectory as a sequence of triples

In this study, the trajectory data space is represented by latitude and longitude;x represents
latitude and y represents longitude, and time is represented by t.

2.2. DATA DESCRIPTION

Table 1.Mobile user data description

Mobile User’s attributes | Short description

1 User ID User identification

2 Site ID Identification number of the site location

3 Weekday Day of the week that the data has been recorded

4 Time Clock Time that the data hasbeen recorded

3 Profile ID The user profile identification such as a salesperson, a store,
with a mobile that runs a certain operating system like
android or any other

Segment ID Tvpe of client such as Corporate client, Cost Aware, Quality

Aware

7 SourceGSM Used network technology is Global System for
Mobile communication (GSM)

[SourceUMTS Used network technology is Universal Mobile
Telecommunications System (UMTS)

9 SourceLTE Used network technology is Long Term Evolution (LTE)

10 Easting User’s position with respect to east

11 Northing User’s position with respect to north

12 Latitude decimal User’s location in terms in latitude coordinates

13 Longitude decimal User's location in terms in longitude coordinates

14 Cell municipality Municipality of the Cell antenna’slocation

15 Cell county County of the Cell antenna’s location

16 Cell city Cell antenna’slocation in terms of City

17 Cell postcode Postcode of the Cell antenna’slocation

18 Cell address Address of the Cell antenma®s location

International Journal of Database Management Systems ([JDMS) Vol.9, No.6, December 2017

A location update is generated when a handset is generating traffic either by downloading or
uploading data. The data used in this paper are collected every five minutes for an entire week in
a medium sized city, i.e., the data is at rest. This data is anonymized in order to comply with the
company agreement about undisclosuring users’ information.

We have three datasets with different sizes.

1. DatasetO has 6,483,398 records and 18 attributes,
2. Datasetl has 12,966,795 records and 18 attributes,
3. Dataset2 has 25,933,590 records and 18 attributes.

Dataset2 has the biggest size, it is four times Dataset(O or two times Dataset1, the dataset size was
scaled until the available resources for the experiment, the cluster memory was maximized by the
size, thus we stopped at dataset2.

Table 1 shows the 18 attributes in each data record used by Telenor.
2.3. DEFINITION OF TRAJECTORY QUERIES

Trajectories queries on spatio-temporal data are the foundation of many applications such as
traffic analysis, mobile user’s behaviour, and many others [3] [4]. In the context of location
optimization, common trajectory queries that we consider in this study are:Distance query, k-
nearest neighbour query, Range query, and Region query. We will describe these queries in the
subsections below.

Figure 2 visualizes the four query types; C; is the location of cell i, each C; is represented by
(x;, ¥;) where x; is latitude and y; is longitude. A distance query returns a list of cells that are
located at a certain distance from a location, e.g., within distance L from the position of C;. The
query returns the list [Cy, C3 Cy, C7].

We can find the two cells that are closest to cell C;, by using a k-nearest neighbour query with
k=2.

Given a triangular space, a range query returns the cells that belong to that space.

A region query returns the cell that is the most frequently visited at a certain time. e.g., cell Cgat
time #; (see Figure 2).

G: Ceo
[xi, yil —
L E, Cu TG

C2, Ca3,Csand Crare 7/ . %L “ N\ P4

located at 3 l;/": c,“ C7 and C11 are located
a distance less than L I t"’ \ within space range
from Cu. P 1 N A (triangle), [Cq, Cos Cyol
Distance Query SWew o

\ C (Ea ./ Cs Range Query

Inside the cycle of a TN e

radius L, C2 and Ca are Te—" <

the two nearest closest "._\((\"4 N

of Cu. "

K-NN Query ’

B F - .
S # Csis the most visited region at
N C < time T,
. Region Query

Figure 2. Visualization for Query Types

International Journal of Database Management Systems ([JDMS) Vol.9, No.6, December 2017

2.3.1. DISTANCE QUERY

Definition: A distance query returns all the cells in the circle whose distance from a given
position is less than a threshold [3], [4]. Figure 3 shows inputs and output of a distance query.

Latitude

Query inputs Longitude
Distance DB

list of Cell_locations

Figure 3. Distance Query

2.3.2. K-NEAREST NEIGHBOUR QUERY

Definition: A k-Nearest Neighbour (k-NN) Query returns from zero up to k cells which are the
closest to a given position (x, y)[5] [6]; the k results are ordered by proximity. k-NN is bounded
by a distance, and if k cells within the given distance from the given position is not indicated, the
query behaves like a distance query.

Figure 4 shows the inputs and output of a k-NN query.

Latitude list of at most
i k Cell_locations
Query inputs Longitude _
e Distance DB

Figure 4.k-NNquery
2.3.3. RANGE QUERY

Definition: Range query returns all the cells that are located within a certain space shape
(polygon)[3]. In this paper we only consider triangles.Figure 5 shows inputs and output of range
query to find cells that are in the triangle. In this paper, the range query retrieve cells that are
located inside a triangle. The triangle space is defined by nodes latitude and longitude points.

Query inputs ([tat:, Long.], list of Cell_locations
[Laty, Longa], DB
[Latz, Longs])
Figure 5. Range query
2.3.4. REGION QUERY

Generally, trajectories of mobile users are independent of each other. However, they contain
common behaviour traits such as passing through a region at a certain periods, e.g., passing
through the shopping center during lunch time.

Definition: A region query identifies the cell that is the most visited at a given point in time[3].

Figure 6 shows inputs and output of a region query to find the cell that is the most visited at time
T.. In this paper, the region query takes time as input, then at a certain fixed time users are
moving around the city, region query picks up the region that most users are located.

International Journal of Database Management Systems ([JDMS) Vol.9, No.6, December 2017

The most visited

: Time Ti Cell locations at Ti
uery inputs —
Query inp DB

Figure 6. Region query

3. RELATED WORK

In [7], the authors proposed an approach and implementation of spatio-temporal database
management systems. This approach treats time-changing geometries, whether they change in
discrete or continuous steps. The same approach can be used to tackle spatio-temporal data in
other database management systems. We evaluate trajectory queries on existing general purpose
database management systems(Cassandra, CouchDB, MongoDB,PostgreSQL, and RethinkDB).
In [8], the author describes requirements for database management systems that support location-
basedservice for spatio-temporal data. A list of ten representative queries for stationary and
moving reference objects is proposed. Some of those queries are related to the queries considered
in Section 2.

In [9], Dieter studied trajectory moving point objects, he explained three scenarios, namely
constrained movement, unconstraint movement and movement in networks. Different techniques
to index and to query in these scenarios define their respective processing performance. The
author modelled atrajectory as triple (x, y, t), we use the same model in this study.

In [10], the authors introduced querying moving objects (trajectory) in SECONDO, a DBMS
prototyping environment particularly geared for extension by algebra modules. The querying is
done using an SQL-like language. In our study, we are querying moving object using SQL and
Not Only SQL (NoSQL) querying languages on top of different database management systems.
The authors provide a benchmark on range queries and nearest neighbour queries in SECONDO
DBMS for moving data object in Berlin. The moving object data were generated using computer
simulation based on the map of Berlin [11]. This benchmark could be extended to other queries
such as region queries, distance queries, and so on. In our study, we apply these queries on real
world trajectory data, i.e., mobile users’ trajectory from Telenor Sverige.

In [5], the authors introduced a new type of query, Reverse Nearest Neighbour (RNN) which is
the opposite to Nearest Neighbour (NN). RNN can be useful in applications where moving
objects agree to provide some kind of service to each other, whenever a service is needed it is
requested from the nearest neighbour. An object knows objects that it will serve in the future
using RNN. RNN and NN are represented by distance query in our study.

In [12], the authors studied an aggregate query language forGIS and no-spatial data stored in a
data warehouse. In [13], the authors studied k-nearest neighbour search algorithm for historical
moving object trajectories, thisk-nearest neighbour is one of the queries that is considered in our
study.

In [14], the authors presented techniques for indexing and querying moving object trajectories.
These data are represented in three dimensions, where two dimensions correspond to space and
one dimension corresponds to time. We also represent our data in 3D as(x,y,t), with x,y
represent space whereas t represents time.

International Journal of Database Management Systems ([JDMS) Vol.9, No.6, December 2017

Query processing on multiprocessors was studied in [15], the authors implemented an emulator;
this is a software that uses computing cluster with NVIDIA GPUs or Intel Xeon Phi coprocessors
for relational query processing of a parallel DBMS on a cluster of multiprocessors. This study is
different from ours in a sense that we evaluate query processing on real physical hardware with
existing general purpose database management systems. Query processing using FPGA and GPU
on spatial-temporal data was studied in [16]. The authors presented a FPGA and GPU
implementation that process complex queries in parallel, the study did not investigate the
performance on various existing database systems, adistributed environment was also not
considered. In our study we investigate query processing on various database management
systems on a cluster. In [17], the authors conducted a survey on mining massive-scale spatio-
temporal trajectory data based on parallel computing platforms such as GPU, Map Reduce and
FPGA, again existing general purpose database systems were not evaluated. The authors
presented a hardware implementation for converting geohash codes to and from longitude/latitude
pairs for spatio-temporal data [18], the study shows that longitude and latitude coordinates are the
key points for modelling spatio-temporal data.

In our paper, we also use these coordinates for location based querying.The benchmark for
NoSQL databases, namely Apache Cassandra, Couchbase, HBase, and MongoDB is presented in
[19]. This benchmark was performed on Amazon Web Service (AWS) EC2 instances. They used
Yahoo! Cloud Serving Benchmark (YCSB) data. In terms of throughput and horizontal
scalability, Cassandra is the best, Hbase is the second, CouchBase is the third and MongoDB is
the fourth. In this paper we have not considered CouchBase and HBase, since they are in memory
databases, i.e., they used direct memory which is good for processing small data in real-time.
Therefore this would be smaller for our workload. We used Cassandra, CouchDB, MongoDB,
PostgreSQL, and RethinkDB on real-world workload instead simulated workload.

4. DATABASE MANAGEMENT SYSTEMS OVERVIEW

The presence of unstructured data stimulated the invention of new databases, since Relational
Database Management Systems (RDBMS) that uses Structured Query Language (SQL) cannot
handle unstructured data efficiently. A new data model, Not Only SQL (NoSQL) was introduced
to deal also with unstructured data [20]. The main features of NoSQL follow the CAP theorem
(Consistency, Availability, and Partition tolerance). The core idea of CAP is that a distributed
system cannot meet these three needs simultaneously (see Figure 7). Depending on the data
models, NoSQL can be relational, key value based, column based, and document based. In this
study we choose five open source databases that have diverse features of SQL (PostgreSQL) and
NoSQL (Cassandra, CouchDB, MongoDB and RethinkDB).

A key value data model means that a value corresponds to a key, in column based systems data
arestored by column, each column is an index of the database, queries are applied to columns,
whereby each column is treated one by one. A document-based database stores in the JSON or
XML format, each document, is indexed and it has a key.

International Journal of Database Management Systems ([JDMS) Vol.9, No.6, December 2017

Availability

PostgresQL Cassandra

CouchDB

Consisten Partition

MongoDB Tolerance
RethinkDB

Figure 7. Principles of Distributed Database systems.

4.1. CASSANDRA

Apache Cassandra is an open-source NoSQL column based database. It is written in Java, it is a
top level Apache project born at Facebook and built on Amazon’s Dynamo and Google’s
BigTable. It is a distributed database for managing large amounts of structured data across many
commodity servers, while providing highly available service with no single point of failure. In
CAP, Cassandra has availability and partition tolerance (AP) with eventual (delayed)
consistency. Cassandra offers continuous availability, linearly scaling performance, operational
simplicity and easy data distribution across multiple data centers and cloud availability zones.
Cassandra has a masterless ring architecture[21].The keyspace is similar to database in RDBMS,
inside keyspace there are tables which are similar to tables in RDBMS, column and rows are
similar to those of RDBMS’ tables. The querying language is Cassandra Query Language (CQL)
that is very similar to SQL [22]. Cassandra does not natively support spatial indexing but this can
be extended via Stratio’s Cassandra Lucene index. Stratio’s Cassandra Lucene Index is an
additional module for Apache Cassandra, it extends its index functionality to provide near real
time search for text search, field based sorting, and spatial index.[23].

4.2. COUCHDB

CouchDB is written in Erlang and it stores data as JSON documents. Access documents and
query indexes with a web browser, via HTTP. CouchDB indexes, combines, and transforms
documents with JavaScript. Itis highly available and partition tolerant, but also eventually
consistent,CouchDB supports masterless setup[23].The system does not natively support spatial
queries, we add a module GeoCouch for spatial indexon CouchDB[25].

4.3. MONGODB

MongoDB is an open-source NoSQL document database, itis written in C++. MongoDB has a
database, inside the database there are collections, like tables in RDBMS. Inside a collection there
are documents, these are like a tuple/row in RDBMS, and inside a document there are fields
which are like columns in RDBMS [25][26]. MongoDB is consistent and partition tolerant.
MongoDB has natively a built in function for spatial queries and it has a sharding (separating
very large database into smaller, faster and easily manageable parts called shards across cluster’s
nodes) feature to support horizontal scalability of the database in master/slave fashion[27].

8

International Journal of Database Management Systems ([JDMS) Vol.9, No.6, December 2017

4.4. POSTGRESQL

PostgreSQL is an open source object RDBMS written in C that has two features according to the
CAP theorem; those are availability, i.e., each user can always read and write, and consistency,
i.e., all users have the same view of data. PostgreSQL organises data in columns and rows [28, p.
3]. PostgreSQL does not natively support horizontal scalability as well as spatial queries,
PostgreSQL is extended by CITUS and PostGIS to support scalability in master/slave fashion and
spatial queries indexing respectively[29][30].

4.5. RETHINKDB

RethinkDB is an open source NoSQL database system. RethinkDB is written in C ++, it is
horizontally scalable in a master/slave setup, it is mostly designed to facilitate real-time updates
for query results to applications[31]. RethinkDB natively support spatial queries using
GeoJson.The system uses the ReQL query language that is available for Python, Ruby, and Java.

5. METHODOLOGY

This section presents details about the experimental setup, hardware and software; the
measurement procedure is also explained. All the data are represented in the comma separated
values (CSV) format.

5.1 EXPERIMENT SETUP

A cluster is made up of 4 nodes, each node is Dell powerEdge R320 with operating system:
Ubuntu 14.04.3 LTS x86_64. Each node has 23 GB RAM, disk size of 279.4GB, and a processor
(Intel(R) Xeon(R) CPU E5-2420 v2) with12 cores, each core is hyperthreaded into 2 cores, which
gives 24 virtual cores.These servers run Java development kit jdk 1.8.0.72.These servers are only
running our database management systems, nothing else.Another machine (called load generator)
with the same features outside of this database cluster generates the load for sequential writing
and reading towards the cluster. This setup is described in Figure 8. We use four load generators
for random writing and reading, each of these generators has also the same features mentioned
earlier. Figure 9 shows the setup for random load.

Cassandra 3.0.3 is installed at each of the nodes in the cluster in a ring topology with each node
has the same role as the other, i.e. master/master fashion. Stratio Lucene is installed and
connected to Cassandra at each of the nodes. The replication factor equals the number of nodes,
i.e., every node has the same copy of data[32]. The consistency level is Quorum, i.e., return most
recent data from a majority of replicas[34].

CouchDB is also installed on each of the cluster nodes in master/master fashion, after that
Geocouch is installed and connected to CouchDB[23][24].

MongoDB is installed on the cluster in master/slave fashion, where the master mongos (mongo
master server) is installed on one of the nodes, and the three config servers which act like slave
servers are installed on the remaining three nodes[35][34].

PostgreSQL is also installed with PostGIS on each of the cluster nodes. After that, CITUS is
connected to PostgreSQL in order to support the distribution, and as a result PostgreSQL
becomes a distributed database system in master/slave fashion where one of the nodes acts as the
master and the others as the slaves [30][35].

International Journal of Database Management Systems ([JDMS) Vol.9, No.6, December 2017

RethinkDB is also installed at each of the cluster nodes in a master/slave fashion; one node is a
master [31].

Table 2 shows the details of different features of the database management systems that we are
evaluating. In Table 2, BASE is Basically Available, Soft state, Eventual consistency, and ACID
is Atomicity, Consistency, Isolation, and Durability.

‘ Database Cluster of 4 nodes ‘
o R
<N0de ‘.D (Node 2)
<Node 5) <Node Q
o —

Figure 8. Experiment setup for sequential workload

4 Load Generators \.

| Database Cluster of 4 nodes |

Generator 1 I [
CRCED

Generator 2 — —
CORCE

Generator 3

fd

Generator 4

\ /

Figure 9. Experiment setup for random workload

10

International Journal of Database Management Systems ([JDMS) Vol.9, No.6, December 2017

Table 2. Database systems features

Cassandra CouchDB MongoDE | Postgre5QL | RethinkDB
Extension Stratio’s GeoCouch Natively PostGIS Natively
module to Cassandra support support
support Lucene Index Spatial Spatial
Spatial query query
query
Extension MNatively Natively CITUS Natively
maodule to distibuted distributed distnbuted
support
distributed
computing
Language | Java Erlang C+ C C++
Query Cassandra Jzon Jzon Structure EethinkDE
Language Chaery Chuery query

Language Language Language

(CQL) (SQL) (ReQLin

pvthon)
Partitioning | Sharding Sharding Sharding Sharding Sharding
method
Replication | Master/Master | MasterMaster | Master'slave | Master/slave | Master/slave
method
Transaction | BASE BASE BASE ACID BASE
property
Version 303 16.1 j0e 053 231
License Apache 2.0 Apache 2.0 GWNU AGPL | Postgre3QL | AGFL
w30
Data Model | Colmmm+key | Document+ | Document+ | Cohumn+ Document +
Eey Eey row Eevy
(relational
DEMS)
First 2010 2005 2007 1986 2009
Release
5.2 WRITE PROCEDURE

Two ways of writing are considered; sequential and random order. During sequential writing, the
workload is generated by one load generator machine towards the clusterand the given entire
dataset is written in sequential order.

For random writing, there are four load generators, each generator contains the same dataset.
Each generator makes a write request that writes a quarter of the entire dataset size records in a
random order into the database cluster.

For Cassandra, data into CSV format is imported into the Cassandra database cluster. The node
that receives the request will get a list of N nodes responsible for replicas of the keys in the write
request from ReplicationStrategy. It then sends a RowMutation message to each of the N nodes.
Then each node append the write to the commit log and update the in-memory Memtable data
structure with the write. All the writes either random or sequential, are written using SSTable
loader.

11

International Journal of Database Management Systems ([JDMS) Vol.9, No.6, December 2017

For CouchDB, the CSV data format is imported from the load generator into CouchDB using a
couch import script that is written in Node.js. After writing, each row in the source file becomes a
document. In CouchDB, every node in the cluster participates in the importing and writing.
Writing are done using http_bulk.

For MongoDB, CSV data format is imported using mongo import script towards mongos
(master). Each row becomes a document, thereafter mongos shards the data across the cluster.
For PostgreSQL, CSV data format is imported and written on the master, which shards it across
the cluster nodes.

For RethinkDB, CSV data format is imported and written to the database through the master node
which shards it across the cluster.

When the writing is completed, the message that indicates how many records are written during
how long time, will appear on the load generator machine (s).
Each record (row) in all datasets have the same size, i.e., each row is 7.94 KB in CSV format.

5.3 READING PROCEDURE

Reading is also conducted in two ways; sequential and random. In the sequential procedure, the
read request is generated from one load generator, each of the queries, distance, k-nearest
neighbour, range, and region is sent 10 times to each of the database systems(Cassandra,
CouchDB, MongoDB, PostgreSQL, and RethinkDB).

For random read, read request, i.e., queries, are generated from 4 load generators, and the
responses are gathered at the load generators.

5.4 MEASUREMENT PROCEDURE

In this study, we measure the write and read latency,as well as the throughput. The latency
measured in these experiments shows how long each individual write or read request takes to be
processed. It does not include network latency between the load generator and the database
cluster. Instead, it is measured from the database perspective, i.e., the time that is required to
process a single request.

The write latency is the number of milliseconds required to fulfill a single write request. The time
period starts when one of the cluster nodes receives write request from the load generator, and
ends when the nodes complete a write request.

The read latency is the number of milliseconds required to fulfill a read request. The time period
starts when one of the cluster nodes receives read request from the load generator, and ends when
the node completes a read request.All the results are the average of ten runs. Measurements are
conducted on three datasets of different size, namely dataset0, datasetl, and dataset2 as defined in
Section 2. Read latency is measured with respect to the four different queries as defined also in
Section 2.

For the write latency, the workload is 100% write only, and for read latency, the workload is
100% read.

12

International Journal of Database Management Systems ([JDMS) Vol.9, No.6, December 2017

We measure the throughput as operations per second, Throughput = number of completed
operations / time to complete those operations. The latency is measured on the database cluster
servers, whereas the throughput is measured on load generators.

6. RESULTS

All datasets are populated into Cassandra and PostgreSQL, and CouchDB without any
transformation. Whereas, in MongoDB and RethinkDB, coordinates attributes (latitude and
longitude) were combined into an array location attribute in order to be able to use spatial
function in MongoDB and RethinkDB. Results for datasetO and dataset] are presented as tables in
the appendix. Whereas results from dataset2 are plotted in this section.

Results in figures 10 and 11show the write throughput and latency for dataset2 for both sequence
and random. Figures 12-19 show the read throughput and the latency for distance, k-NN, range,
and region queries in dataset2. The throughput is measured as operations per second whereas the
latency is presented in milliseconds.

During the write workload, MongoDB, PostgreSQL, and RethinkDB use one master node only
therefore, their latency and throughput are consistent throughout all nodes. However, Cassandra
and CouchDB scale their throughput as the number of nodes increases. CouchDB has a slightly
inconsistent latency as the number of nodes increases, i.e., the latency goes up and down a little
as the number of nodes increases.

The dataset size impacts the throughput negatively, especially for random write since the search
grows as the dataset size increases. Therefore, the throughput decreases and the latency increases
(see Appendix and figures 10(b)and 11(b)).

During read, Cassandra has in most cases the highest throughput, PostgreSQL has the second
highest throughput, and MongoDB has the third whereas CouchDB has the lowest. The read
throughput scales up as the number of nodes increases for all the database systems, see figures
12,14,16, and 18. Generally, MongoDB has the lowest read latency for higher number of nodes,
see figures 13,15,17, and 19.

For one node, the read latency for Cassandra, MongoDB, and PostgreSQL are similar, and they
are significantly lower than CouchDB and RethinkDB.

Generally, Cassandra has the highest read throughput. MongoDB and PostgreSQL have almost
similar read throughput following Cassandra.RethinkDB has the fourth highest throughput,
whereas CouchDB has the lowest throughput. This is shown in figures 12,14,16,and 18 for
different queries. Database systems installed into master/slave fashion exhibit immediate writing
consistency, e.g., MongoDB, PostgreSQL, and RethinkDB. Whereas those installed into
master/master fashion present eventual consistency, e.g., Cassanda and CouchDB.

13

International Journal of Database Management Systems ([JDMS) Vol.9, No.6, December 2017

5= 10* a5 x10° Random writing throughpat for Dataset2
: Il C assandra
45 I CouchDB
' 3l [MongoDB
4+ —1 PosigreSOL
I 7ethink OB I RethinkDE
5 25
3l
0 o 2r
ﬂ 25 2
8 8
2 1.5
1.5 1
1
l 05
05 I
0 —]
1 2 3 4 1 2 3 4

Number of Nodes Number of Nodes

(a) (b)

Figure 10. (a) Sequential write throughput for dataset2, (b) Random write throughput for dataset2

Sequential writing latency for Dataset2

0.07 Band 2
Ao writing Latency for Dataset2
0065 W 0.075
F——
> 0.07]
e ——
0.06 S =
n 0,065
Eposst £
& 4 > 0.06
5 i 5 _ + 3
e
§ 0.05 % 0.055
-
2)
£ 0045} £ 005
s £
0.04 = 0.045
) #— Cassandra
—+— CouchDB 0.04
0,035 MangoDB
PostgreSQL 0035
—— RethinkDB
0.03 0.03
1 2 3 4 1 2 3 4
Mumber of Nodes Number of Nodes

(b)

Figure 11. (a) Sequential write latency for dataset2, (b) Random write latency for dataset2

0° R jing Throughput for di Query in Dataset2

4
a5
Il FethinkDE
3
25
o
g 2
o
15
T
) I I I
0 | |
1 2 3 4 1 2 3 4

Number of Nodes MNumber of Nodes

(a) (b)

Figure 12. (a) Sequential read throughput for distance query in dataset2, (b)Random read throughput for
distance query in dataset2

14

International Journal of Database Management Systems ([JDMS) Vol.9, No.6, December 2017

Sequential reading latency for distance query in Dataset2

0.066 . ks Random mdlngllatency for distance query in Dislam:e_z i
4 e
0.064 — 1 e
- 1 008F ——
006 t—u e 1 B
T 1 "
1 | 0.075 _—
= 0.086 4 - . 1
£ . e i £ — 4
& 0.058 e 4 7 007 et
g +— Cassandra 1 H g
3 —— CouchDB | L
& 1 -
ES P MangoDB] §. 0085} _—
3 PosigreSOL =
3 0054 —+— Rethink DB 1 =
4 1 - © 006
0.052 = —4— 1
0.08 ¢ 0.055 +—o— g:j:::
1 MongaDB
0.048 1 0.05 PosigreSCL
| i | | —*— RethinkDB
1 2 3 4 1 2 3 4
Number of Nodes Number of Nodes

(a) (b)

Figure 13. (a) Sequential read latency for distance query in dataset2, (b)Random read latency for distance
query in dataset2

3 10" Random reading Thr hput for k-NN Query in Dataset2
" 25 [JposgresaL
I FeethinkDB M RcthinkDE
2}
@
Z1s
)
1
05

1 2 3 4 i 2 3 4
Number of Nodes Number of Nodes

(a)
Figure 14. (a) Sequential read throughput for &-NN query in dataset2, (b)Random read throughput for k-

NN query in dataset2
0.064 mqing latency for k-NN qqem inD — Random reading latency for k-NN query in Dataset2
—+4— Cassandra i
—t— CouchDB e
0.062 [MongoDB o 0.075
PosigreSOL ,—""'_
—+— RathinkDBE —)
0.06 T ol
i ke 0.07
g I - =
Eooss| el g
= L] p— E
< = B £ 0.085
T 0086 E“;
z ?
® 0.054 _# g 006
2 @
« - «
] | = 0.055
. —#— Cassandra
—+— CouchDB
0.05 MongoDB
0.05 PostgreS0L
—s— RethinkDB
0.048 . i . L
1 2 3 4 1 2 3 4
Number of Nodes MNumber of Nodes

(a) (b)

Figure 15. (a) Sequential read latency for k-NN query in dataset2, (b) Random read latency for &-NN
query in dataset2

15

International Journal of Database Management Systems ([JDMS) Vol.9, No.6, December 2017

5 10" Sequential reading throughput for Range Query in Dataset2 s 10" Random reading Throughput for Range Query in Dataset2
I Cassandra i
N CouchDB
45 [MongaDB 4
[IPosigresaL
ar B Fcthink DB
25
2
L
]
g
1.5
it
0.5

1 2 3 4
Number of Nodes

(a)

2 3
MNumber of Nodes

(b)

Figure 16.(a) Sequential read throughput for Range query in dataset2, (b)Random read throughput for
Range query in dataset2

Sequential reading latency for range query in Dataset2

0.06 0.07 Random reading latency for range query in Dataset2
Cassandra 1 .07 —
—4— CouchDB | |
MongoD8 1
0.058 PostgreSaL P
—=— RethinkDB: __—]
o di
Tg 0.056 ot =
= -~ 1 E
= L - i =
g N] 2
— ——
L] 0.054 —+ f_______d—*”" =
£ sl — t £
© ,__—fﬂ'”_ﬂ_ " a
x 0.052 S = 0,055
-~
4= Cassandra
0.05 = | —— CouchDB
I MongoDB
005§ PostgreS0L
i “— RethinkD8
0.048 L /
1 2 3 4 1 2 3 4

Number of Nodes Nurnber of Nodes

(a) (b)

Figure 17. (a) Sequential read latency for range query in dataset2, (b) Random read latency for range
query in dataset2

16

International Journal of Database Management Systems ([JDMS) Vol.9, No.6, December 2017

« 108 Thr for Rnglun Query in D
-Casssmra T 3r
25

N CouchDB |
0 I| |I| ||I I‘
3

-MongoDB
Nu mber of Nodes

ghput for Region Query in Dataset2

35 I:IPoslgruSG.
I R cthink DB

I RcthinkDB

ops/s
a L8]

0

[

MNumber of Nodes

(a) (b)

Figure 18. (a) Sequential read throughput for region query in dataset2, (a)Random read throughput for
region query in dataset2

Sequential reading latency for region query in dataset2 0.07 ¢ Random reading latency for region query in Dataset2

0.06
4— Cassandra [—
—+— CouchDB I S
MongoDB _F________---;’__’_A———
0.058 PosigreSOL —T ’ I - i
—+— RethinkDB o 00851 !
/*—- / T S 4 * T
ey =]
£ 0056 - —] g |
= &
) / E 0.06 F
2 / T :
Joosp - = |
S i |
g 0.052 - | & 0085
e
4 Cassandra
0.05 I +— CouchDB
|]
I | | —s— RethinkDB
0.048 1 2 3 2
1 2 3 4 MNumber of Nodes
MNumber of Nodes
(a) (b)

Figure 19. (a) Sequential read latency for region query in dataset2, (b)Random read latency for region
query in dataset2

7. DISCUSSION AND ANALYSIS

In terms of scalability, Cassandra outperforms the other database systems throughout our
experiments. Cassandra shows lower write latency for one node and it slightly increases for two
nodes, then it stays stable for more nodes. Cassandra does not presents the best write and read
latency, but it has the highest throughput, this shows that Cassandra has more parallelism.

PostgreSQL presents the lowest write latency, followed by MongoDB, which is followed by
Cassandra, CouchDB, and RethinkDB which has the highest write latency. In general, Cassandra
has the highest write throughput as the number of nodes increases whereas RethinkDB has the

lowest throughput.
17

International Journal of Database Management Systems ([JDMS) Vol.9, No.6, December 2017

CouchDB is scalable, however, the slowest in reading and its reading throughput is similarly
affected. We observe that Cassandra and CouchDB present similar speed up, However, Cassandra
has higher throughput than CouchDB.The reason is that CouchDB serves mainly as backend to
serve the web whereby retrieving a lot of records at the same time may become very
slow.Usually, there will be cashing functions and closest region hosting that will support
CouchDB when it is backing the web. The writing and reading throughput of CouchDB is not as
high as expected; this is caused by fetching data over HTTP protocol which is essentially a high
latency protocol. Therefore, CouchDB scalability does not exploit the parallelism by achieving
higher throughput as expected.MongoDB, PostgreSQL, and RethinkDB are installed in master
slave fashion, thus they are not scalable for write since only the master node writes.

PostgreSQL presents the best write latency and the highest throughput. From one node until three
nodes PostgreSQL outperforms other database systems. This is due to delayed commit that
happens at the end of whole dataset write workload, thus speeding up the writing. Introducing an
explicit commit after each record (row) insert could slow down PostgreSQL significantly.
Delayed commit is usually the default in PostgreSQL, it may cause data loss in case of database
crash, and therefore it should not be used for very sensitive data like bank transactions.

MongoDB has in most cases the lowest read latency because it has a spatial function that quickly
process spatial queries. MongoDB is fast for reads because it shards data across nodes, when a
query is launched, only the concerned nodes will respond to the query. This avoid going over the
whole dataset. The same principle is also applied in PostgreSQL with the help of CITUS, the
extension that horizontally scales PostgreSQL across commodity servers using sharding.

Since RethinkDB is designed for real-time applications such as game live score and online
multiplayer games, during which writing must be acknowledged by the server and subsequently
are available to the client. Such data are in most cases relatively small in order to be processed at
low latency, due to big size datasets that are used in our experiments, RethinkDB suffers from
high latency and low throughput. However, the performance is better for read than write.

As expected, sequential processing has higher throughput and a little shorter latency than random
processing. Increase of the dataset size causes the throughput to decrease significantly, this is a
result of the overhead that becomes higher as the dataset’s size increases. The latency is also
affected by the increase of the datasetin such a way that the latency becomes a bit higher.
However, this increase is not significant. This is intuitively true since the throughput is measured
from the load generator, and latency is measured from the database servers.

The decrease of throughput with the increase of the dataset’s size is even more noticeable for
random writing and reading. Random writing and reading has lower throughput comparing to
sequential writing and reading for dataset0, datasetl, and dataset2 respectively. This is caused by
the overhead due to the random search order across the entire dataset, thus the search becomes
exhaustive for both writing and reading. We saw a throughput decrease of almost 10% from
sequential to random processing.

In order to get better results, we have used new hardware and we have used workload of different
sizes. We considered also random and sequential processing for both write and read. Compared to
the benchmarking of Cassandra, Couchbase, HBase, and MongoDB [19], we have similar trends
where Cassandra outperforms MongoDB. Moreover, we include the comparison for five database
systems, Cassandra, CouchDB, MongoDB, PostgreSQL and RethinkDB. Our results can serve as
benchmark for other studies.

18

International Journal of Database Management Systems ([JDMS) Vol.9, No.6, December 2017

8. CONCLUSIONS

In this paper, we evaluate the write and read throughput as well as the latency of five SQL and
NoSQL database management systems namely; Cassandra, CouchDB, MongoDB, PostgreSQL,
and RethinkDB. The evaluation is conducted on a cluster using telecommunication data collected
from Telenor Sverige. We did measurements on three datasets of different sizes; datasetO,
datasetl, and dataset2.We measured the write throughput and latency of each of the datasets, and
the readthroughput and latency for four queries, namely distance, k-nearest neighbour, range, and
region queries. Both writing and reading are experimented in sequential, and in random on a
database cluster system of four nodes.

For read queries, all database management systems are scalable as the number of nodes
increases.However, only Cassandra and CouchDB show scalability for data writing. It is observed
that as the dataset’s size increases the throughput decreases and the latency increases.

The write throughput results show that on a single server, PostgreSQL performs better than others
whereas Cassandra exhibits the highest throughout for higher number of nodes. PostgreSQL also
presents the lowest latency for all writes. The reading results for all four queries show that
Cassandra has the highest throughput even though it does have the lowest latency. This is a result
of more parallelism in Cassandra. CouchDB has the lowest read throughput and highest latency
though it is scalable, i.e., as the number of nodes increase the throughput increases as well.

In our experiments, we observed that in some cases PostgreSQL when featured by CITRUS,
shows lower reading latency and horizontal scalability features than MongoDB, CouchDB, and
RethinkDB. If the data to be processed requires the flexibility of traditional relational database
(SQL), PostgreSQL would be preferred, if scalability matters, one would choose Cassandra.
MongoDB, CouchDB, and RethinkDB would favour data that are transferred over the web, since
they are document oriented that are easy to interpret for the web.

During our experiments, we experienced installation challenges of different database
management systems. In terms of installation, Cassandra was straight forward except that spatial
query extension that was challenging to be incorporated into the system. CouchDB was the most
challenging, it took more time than the other database systems, especially installing it in a
distributed fashion on many nodes. MongoDB was also straight forward with sharding that was a
bit challenging. PostgreSQL was straight forward.However incorporating the distributing
platform CITUS was challenging. RethinkDB was the easiest to install. By ranking these database
systems according to easiness of installation, RethinkDB is the first, MongoDB is the second,
Cassandra is the third, PostgreSQL is the fourth, and CouchDB is the fifth.

As far as mobile users’ data analytics is concerned, since the processing and analysis is not done
on the fly as the data come in, immediate consistency is not a big issue. Hence Cassandra would
suits to process it, because it has high throughput and a relatively low latency with eventual
consistency and availability across the cluster.

19

International Journal of Database Management Systems ([JDMS) Vol.9, No.6, December 2017

APPENDIX

I. Writing Throughput (Operations Per Second) And Latency In Milliseconds

1. DATASETO0

A. SEQUENTIAL WRITING

Table 3. Throughput(Th) and its standard deviation (Stdv)

Nodes | Cassandra CouchDE MongoDE PostgreSQL RethinkDE
Th. Stdv | Th. Stdv | Th. Stdv | Th. Stdv | Th. Stdv
Inode | 1822202 | 035 | 5178.01 | 0535 | 2443708 | 0.72 | 3984878 | 039 | 1471492 | 041
2nodes | 2600640 | 0.34 | 633831 | 049 | 2443708 [0.72 | 3984878 | 039 | 1471492 | 041
Snodes | 3589921 | 042 | 911357 |09 24437098 | 072 [3984878 | 039 [1471492 | 041
dnodes | 4831146 [0531 | 1570071 [020 | 2443708 | 0.72 | 3084878 | 030 [1471492 | 0.41

Table 4. Latency (Lat.) and its standard deviation (Stdv)
Nodes | Cassandra CouchDE MongoDE PostgreSQL RethinkDB
Lat. | Stdv Lat. | Stdv Lat. | Stdv Lat. Stdv Lat. Stdv

lnode | 0.036 [0.000045 [0.044 [0.000035 [0.039 [0.000032 [0.033 [0.000039

0.049 | 0.000041

[

0.049 | 0.000041

0
Inodes | 0.037 | 0.000051 | 0.045 [0.000048 | 0.039 [0.0000
0

2
2| 0033 | 0.000039
3nodes | 0.057 | 0.000044 | 0.045 | 0.00002 | 0.039 | 0.000052

0.033 [0.000039

0.049 | 0.000041

B. RANDOM WRITING
Table 5. Throughput (Th) and its standard deviation (Stdv)

Nodes | Cassandra CouchDB AongoDB PostgreSQL RethinkDBE
Th. Stdv | Th. Stdv | Th. Stdv | Th. Stdv | Th Stdv
Inode | 1348872 (0.73 [388351 | 0.65 | 20035.14 | 0.71 | 2988639 | 0.81 | 941755 | 0.72
Inodes | 2210544 | 061 | 490373 | 0.65 | 20039.14 | 0.71 | 2088650 | 0.81 | 941755 | 081
3nodes | 3051433 [0.72 | 6835.18 [0.62 | 20039.14 | 0.71 | 20886.59 | 0.81 | 941755 | 0.81
4nodes | 41064.74 | 039 | 1178228 | 038 | 2003914 | 0.71 | 20886.59 | 0.81 | 9417.535 | 0.81
Table 6. Latency (Lat.) and its standard deviation (Stdv)
Nodes | Cassandra CouchDB MongoDB PostgreSQL RethinkDB
Lat. Stdv Lat. Stdv Lat. | Stdv Lat. | Stdw Lat. | Stdv
lnode | 0.0383| 0.000036 | 0.048 | 0.000066 | 0.043 | 0.000058 | 0.032 | 0.000052 | 0.054 | 0.000061

Inodes | 00383 | 0.000062 | 0.046 | 0.000033 | 0.043 | 0000038 | 0.032 | 0.000032

0.034 | 0.000061

Snodes | 0.0392 | 0.000037 | 0.050 | 0.000039 | 0.043 | 0.000038 | 0.032 | 0.000032

0.054 | 0.000061

4nodes | 0.0399 | 0.000060 | 0.0499 | 0.000064 [0.043 | 0.000038 | 0.032 | 0.000032

0.034 | 0.000061

20

International Journal of Database Management Systems ([JDMS) Vol.9, No.6, December 2017

1. DATASET1

A. SEQUENTIAL WRITING

Table 7 Throughput (Th) and its standard deviation (Stdv)

Nodes | Cassandra CouchDB MongoeDBE Postgre SQL ERethinkDE
Th. Stdv | Th. Stdv | Th. Stdv | Th. Stdv | Th. Stdv
Inode | 16976628 | 0.65 [479931 075 [22309515 |1 072 [3452288 | 0.83 [10033.11 | 063
2nodes | 2341421 | 068 | 642620 | 068 | 2239515 | 072 | 3432288 | 083 | 10031.77 | 0.63
3nodes | 3523501 | 073 | 891024 (061 | 22305153 [072 | 34532288 | 0.83 | 10033.11 [063
dnodes | 47707.11 | 069 | 1508117 [053 | 2230515 | 072 | 34532288 | 0.83 | 10033.11 | 063
Table 8. Latency (Lat.) and its standard deviation (Stdv)
Nodes | Cassandra CouchDB MongoDB PostgreSQL RethinkDB
Lat. | Stdv Lat. | Stdv Lat. | Stdv Lat. | Stdv Lat. | Stdv
Inode | 0.046| 0.000049 | 0.033 [0.000039 | 0.049) 0000072 [0.039 | 0000078 | 0.057 | 0.000082
Znodes | 0.046 | 0.000064 [0.052 | 0.000061 | 0.049 [0.000072 | 0.039) 0.000078 | 0.057 | 0.000082
3nodes | 0.047 | 0.000061 [0.054 | 0000065 | 0.049| 0.000072] 0039 0.000078 | 0.037 | 0.000082
dnodes | 0.047 [0.000030 | 0.0534 | 0.000062 [0.049 | 0.000072 | 0.059 [0.000078 | 0.037 | 0.000082
B. RANDOM WRITING
Table 9. Throughput (Th) and its standard deviation (Stdv)
Nodes | Cassandra CouchDBE MongoDB PostgreSQL RethinkDB
Th. Stdv | Th. Stdv | Th. Stdv | Th. Stdv | Th. Stdv
Inode | 1324181 | 076 [326353 | 083 | 1679536 (081 | 2382078 | 064 | 551821 (071
Inodes | 1826300 | 0.73 [436081 | 082 [16796.36 [081 | 2382078 | 064 | 552847 [071
3nodes | 2740801 | 062 | 6063.08 083 | 1679636 (081 | 23820.78 | 064 [331821 | 071
dnodes | 3721153 | 069 | 1025519 | 073 | 1679636 | 081 | 2382078 (064 | 331821 | 071
Table 10. Latency (Lat.) and its standard deviation (Stdv)
Nodes | Cassandra CouchDB MongoDB PostgreSQL RethinkDB
Lat. Stdv Lat. | Stdv Lat. Stdv Lat. Stdv Lat. Stdv
Inode | 0.0463 | 0.000031 | 0.034 | 0.000061 | 0.0483 | 0.000065 | 0.0455 | 0.000075 | 0.0573 [0.000063
2nodes | 0.0467 [0.000034 | 0.033 [0.000035 | 0.0483 | 0.000063 | 0.0455 | 0.000075 [0.0573 | 0.000063
3nodes | 0.0467 | 0.000063 | 0.055 | 0.000071 | 0.0483 | 0.000065 | 0.0455 | 0.000075 | 0.0575 | 0.000063
4nodes | 0.0467 | 0.000058 | 0.035 | 0.000062 | 0.0483 | 0.000065 [0.0455 | 0.000075 [0.0573 | 0.000063
I1. Reading Throughput (Operations Per Second) And Latency In Milliseconds
1. DATASET0
A. DISTANCE QUERY
A. SEQUENTIAL READING
Table 11. Throughput (Th) and its standard deviation (Stdv)
Nodes | Cassandra CouchDB MongoDB PostgreSQL RethinkDB
Th. Stdv | Th. Stdv | Th. Stdv | Th. Stdv | Th. Stdv
Inode | 379146081 (076 | 158131658 | 0.67 | 308733238 | 0.65 | 180004388 [086 | 231540028 | 068
Inodes | 426530342 [0.73 185230042 [0.82 | 360188777 | 0.76 | 3241699 0.85 | 281386869 | 0.74
3nodes [487473533 | 0.62 | 209141870 | 0.81 | 405212375 | 0.89 | 405212375 [0.73 | 308733238 | 0.66
dnodes [5333818016 | 069 | 249361461 [0.75 | 408722023 | 068 | 51867184 | 091 [405212375 | 0.83

21

International Journal of Database Management Systems ([JDMS) Vol.9, No.6, December 2017

Table 12. Latency (Lat.) and its standard deviation (Stdv)

Nodes | Cassandra CouchDE MongoDB PostgreSQL RethinkDB

Lat. | Stdv Lat. | Stdv Lat. | Stdv Lat. | Stdv Lat. | Stdv
Inode [0.032 | 0.000042 | 0.042 | 0.000051 | 0.033 [0.000062 [0.031 | 0.000074 | 0.041 | 0.000062
2nodes | 0.033 | 0.000063 | 0.041 | 0.000062 [0.031 | 0.000034 | 0.034 | 0.000065 | 0.039 [0.000074
3nodes | 0.035 | 0.000061 | 0.043 | 0.000038 [0.031 | 0.000045 | 0.034 | 0.000036 | 0.041 [0.000062
4nodes | 0.036 | 0.000068 | 0.045 | 0.000079 | 0.031 | 0.000063 | 0.034 | 0000058 [0.042 | 0.000067

B. RANDOM READING

Table 13. Throughput (Th) and its standard deviation (Stdv)

Nodes | Cassandra CouchDB MongoDB PostgreSQL RethinkDB

Th. Stdv | Th. Stdv | Th. Stdv | Th. Stdv | Th Stdv
Inode | 303316863 | 0.67 | 123342693 | 0.79 [234637260 | 0.76 | 133260847 | 0.76 | 171346947 | 0.73
Inodes | 341231473 | 0.89 | 144487155 [0.75 | 273743471 | 083 | 239885726 | 0.83 | 2085962.83 | 0.82
3nodes | 380978827 | 0.74 | 163130639 | 0.72 | 3079614.05 | 0.71 [2998571.57 | 0.82 | 228462596 | 0.39
dnodes | 428654413 [0.79 | 19450194 | 086 | 370020421 | 059 | 383817161 | 082 | 200857157 | 0.81

Table 14. Latency (Lat.) and its standard deviation (Stdv)

Nodes | Cassandra CouchDB MongoDB PostgreSQL RethinkDB

Lat. Stdv Lat. | Stdv Lat. | Stdv Lat. Stdv Lat. Stdv

Inode | 0.043 |[0.000033 | 0.058 | 0000068 | 0.043 | 0.000072 | 0.042 | 0.000072 [0.05315 | 0.000078

Inodes | 0.048 | 0.000056 | 0.060 | 0.000068 | 0.045 | 0000054 | 0.047 | 0.000075 [0.032 | 0.000076

jnodes | 0.048 | 0.000032 | 0.061 | 0.000061 | 0.045 | 0.000049 | 0.0475 | 0.000046 | 0.034 | 0.000064

4nodes | 0.0432 | 0.000039 | 0.064 | 0.000062 | 0.045 | 0.000060 | 0.0475 | 0.000069 | 0.056 |[0.000072

ACKNOWLEDGEMENTS

This work is part of the research project "Scalable resource-efficient systems for big data
analytics”" funded by the Knowledge Foundation (grant: 20140032) in Sweden. We also thank
Telenor Sverige for providing the data.

REFERENCES

[1] C. Niyizamwiyitira and L. Lundberg, ‘“Performance Evaluation of Trajectory Queries on
Multiprocessor and Cluster,” in Computer Science & Information Technology, Vienna,Austria, 2016,
vol. 6, pp. 145-163.

[2] S. Spaccapietra, C. Parent, M. L. Damiani, J. A. de Macedo, F. Porto, and C. Vangenot, “A
conceptual view on trajectories,” Data Knowl. Eng., vol. 65, no. 1, pp. 126—146, 2008.

[3] Y. Zheng and X. Zhou, Computing with spatial trajectories. Springer Science & Business Media,
2011.

[4] N. Pelekis and Y. Theodoridis, Mobility data management and exploration. Springer, 2014.

[5] R. Benetis, C. S. Jensen, G. Karciauskas, and S. galtenis, “Nearest neighbor and reverse nearest
neighbor queries for moving objects,” in Database Engineering and Applications Symposium, 2002.
Proceedings. International, 2002, pp. 44-53.

[6] E. Frentzos, K. Gratsias, N. Pelekis, and Y. Theodoridis, “Nearest neighbor search on moving object
trajectories,” in Advances in Spatial and Temporal Databases, Springer, 2005, pp. 328-345.

22

[17]

[18]

International Journal of Database Management Systems ([JDMS) Vol.9, No.6, December 2017

M. Erwig, R. H. Gu, M. Schneider, M. Vazirgiannis, and others, “Spatio-temporal data types: An
approach to modeling and querying moving objects in databases,” Geolnformatica, vol. 3, no. 3, pp.
269-296, 1999.

Y. Theodoridis, “Ten benchmark database queries for location-based services,” Comput. J., vol. 46,
no. 6, pp. 713-725, 2003.

D. Pfoser, “Indexing the trajectories of moving objects,” IEEE Data Eng Bull, vol. 25, no. 2, pp. 3-9,
2002.

V. T. De Almeida, R. H. Giiting, and T. Behr, “Querying moving objects in secondo,” in null, 2006,
p- 47.

C. Diintgen, T. Behr, and R. H. Giiting, “BerlinMOD: a benchmark for moving object databases,”
VLDB J., vol. 18, no. 6, pp. 1335-1368, 2009.

L. I. Gémez, B. Kuijpers, and A. A. Vaisman, “Aggregation languages for moving object and places
of interest,” in Proceedings of the 2008 ACM symposium on Applied computing, 2008, pp. 857-862.
Y.-J. Gao, C. Li, G.-C. Chen, L. Chen, X.-T. Jiang, and C. Chen, “Efficient k-nearest-neighbor search
algorithms for historical moving object trajectories,” J. Comput. Sci. Technol., vol. 22, no. 2, pp.
232-244,2007.

D. Pfoser, C. S. Jensen, Y. Theodoridis, and others, “Novel approaches to the indexing of moving
object trajectories,” in Proceedings of VLDB, 2000, pp. 395-406.

K. Y. Besedin and P. S. Kostenetskiy, “Simulating of query processing on multiprocessor database
systems with modern coprocessors,” in Information and Communication Technology, Electronics and
Microelectronics (MIPRO), 2014 37th International Convention on, 2014, pp. 1614-1616.

R. Moussalli, I. Absalyamov, M. R. Vieira, W. Najjar, and V. J. Tsotras, “High performance FPGA
and GPU complex pattern matching over spatio-temporal streams,” Geolnformatica, vol. 19, no. 2,
pp. 405434, Aug. 2014.

P. Huang and B. Yuan, “Mining Massive-Scale Spatiotemporal Trajectories in Parallel: A Survey,” in
Trends and Applications in Knowledge Discovery and Data Mining, Springer, 2015, pp. 41-52.

R. Moussalli, M. Srivatsa, and S. Asaad, “Fast and Flexible Conversion of Geohash Codes to and
from Latitude/Longitude Coordinates,” in Field-Programmable Custom Computing Machines
(FCCM), 2015 IEEE 23rd Annual International Symposium on, 2015, pp. 179-186.

“ no sql benchmark - Google Search.” [Online]. Available:
https://www.google.rw/search?q=no+sql+benchmark&oq=no+sql+benchmark&aqs=chrome..69157;01
5.4785j0j7&sourceid=chrome&ie=UTF-8. [Accessed: 22-Nov-2017].

J. Han, E. Haihong, G. Le, and J. Du, “Survey on NoSQL database,” in Pervasive computing and
applications (ICPCA), 2011 6th international conference on, 2011, pp. 363-366.

“What is Apache Cassandra?,” Planet Cassandra, 18-Jun-2015. [Online]. Available:
http://www.planetcassandra.org/what-is-apache-cassandra/. [Accessed: 23-Feb-2016].

“CQL.” [Online]. Available: http://docs.datastax.com/en//cassandra/2.0/cassandra/cql.html.
[Accessed: 23-Feb-2016].

“Stratio/cassandra-lucene-index,” GitHub. [Online]. Available: https://github.com/Stratio/cassandra-
lucene-index. [Accessed: 23-Mar-2016].

“Apache CouchDB.” [Online]. Available: http://couchdb.apache.org/. [Accessed: 16-Aug-2016].
“couchbase/geocouch,” GitHub. [Online]. Available: https://github.com/couchbase/geocouch.
[Accessed: 16-Aug-2016].

tutorialspoint.com, “MongoDB Overview,” www.tutorialspoint.com. [Online]. Available:
http://www.tutorialspoint.com/mongodb/mongodb_overview.htm. [Accessed: 23-Feb-2016].
“MongoDB for GIANT Ideas,” MongoDB. [Online]. Available: https://www.mongodb.com/.
[Accessed: 23-Feb-2016].

“Sharding Introduction — MongoDB Manual 32>
https://github.com/mongodb/docs/blob/master/source/core/sharding-introduction.txt.[Online].
Available: https://docs.mongodb.org/manual/core/sharding-introduction/. [Accessed: 24-Feb-2016].

J. Worsley and J. D. Drake, Practical PostgreSQL. O’Reilly Media, Inc., 2002.

“Multi-node setup on Ubuntu or Debian — Citus 5.1.0 documentation.” [Online]. Available:
http://docs.citusdata.com/en/v5.1/installation/production_deb.html. [Accessed: 16-Aug-2016].

23

International Journal of Database Management Systems ([JDMS) Vol.9, No.6, December 2017

[31] “PostGIS — Spatial and Geographic Objects for PostgreSQL.” [Online]. Available:

http://postgis.net/. [Accessed: 16-Aug-2016].

[32] “RethinkDB: the open-source database for the realtime web.” [Online]. Available:

https://www.rethinkdb.com/. [Accessed: 16-Aug-2016].

[33] “Stratio/cassandra-lucene-index,” GitHub. [Online]. Available: https://github.com/Stratio/cassandra-

lucene-index. [Accessed: 30-Mar-2016].

[34] “Consistency & Cassandra,” Planet Cassandra, 10-Apr-2013. [Online]. Available:

http://www.planetcassandra.org/blog/consistency-cassandra/. [Accessed: 29-Sep-2016].

[35] “How To Create a Sharded Cluster in MongoDB Using an Ubuntu 12.04 VPS,” DigitalOcean.
[Online]. Available: https://www.digitalocean.com/community/tutorials/how-to-create-a-sharded-

cluster-in-mongodb-using-an-ubuntu-12-04-vps. [Accessed: 29-Sep-2016].

[36] “Multi-node setup on Ubuntu or Debian — Citus 5.1.0 documentation.” [Online]. Available:

http://docs.citusdata.com/en/v5.1/installation/production_deb.html. [Accessed: 16-Aug-2016].

AUTHORS

Christine Niyizamwiyitira is a PhD student in Computer science at Blekinge Institute of
Technology (BTH) in Computer Science and Engineering Department. Her research
interests includes Real-time systems, cloud computing, high performance computing,
Database performance, and Voice based application. Her current Research focuses on
Scheduling of real time systems on Virtual Machines (uniprocessor & multiprocessor) and
Big data processing.

Lars Lundberg is a professor in Computer Systems Engineering at the Department of
Computer Science and Engineering at Blekinge Institute of Technology in Sweden. He
has a M.Sc. in Computer Science from Linkoping University (1986) and a Ph.D. in
Computer Engineering from Lund University (1993). His research interests include
parallel and cluster computing, real-time systems and software engineering. Professor
Lundberg's current work focuses on performance and availability aspects.

24

