
International Journal of Distributed and Parallel systems (IJDPS) Vol 12, No. 1/2, March 2021

DOI : 10.5121/ijdps.2021.12201 1

TASK-DECOMPOSITION BASED ANOMALY

DETECTION OF MASSIVE AND HIGH-VOLATILITY

SESSION DATA ON ACADEMIC
BACKBONE NETWORK

Ruo Ando1, Youki Kadobayashi2 and Hiroki Takakura1

1National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku,

Tokyo 101-8430 Japan
2Nara Institute of Science and Technology, Graduate School of Science and Technology,

8916-5 Takayama, Ikoma, Nara 630-0192, Japan

ABSTRACT

The Science Information Network (SINET) is a Japanese academic backbone network for more than 800

universities and research institutions. The characteristic of SINET traffic is that it is enormous and highly

variable. In this paper, we present a task-decomposition based anomaly detection of massive and

highvolatility session data of SINET. Three main features are discussed: Tash scheduling, Traffic

discrimination, and Histogramming. We adopt a task-decomposition based dynamic scheduling method to

handle the massive session data stream of SINET. In the experiment, we have analysed SINET traffic from

2/27 to 3/8 and detect some anomalies by LSTM based time-series data processing.

KEYWORDS

Anomaly detection, high-volatility traffic, task decomposition, dynamic scheduling, LSTM

1. INTRODUCTION

The Science Information Network (SINET) which the academic backbone network handles
Internet traffic of more than 800 universities in Japan. Session data of SINET is increased

drastically, which imposes a significant burden on network administrators. The main challenge in

this paper is to handle massive and high volatility traffic data.

Figure 1. SINET ingoing traffic

http://airccse.org/journal/ijdps/current2021.html
https://doi.org/10.5121/ijdps.2021.12201

International Journal of Distributed and Parallel systems (IJDPS) Vol 12, No. 1/2, March 2021

2

First of all, we report the temporal pattern of the SINET ingoing/outgoing traffic patterns. Figures
1 and 2 show the traffic volume of session data. Session data is grouped into one-hour frame bins.

In ingoing traffic, we observe a clear diurnal pattern from 01/25/2021 to 01/29/2012. This period

is the weekday of the academic campus. On the other hand, 01/30/2021 and 01/31/2021 are

weekends, which results in a decrease of traffic and plateau.

Figure 2. SINET outgoing trafic

More importantly, the session data stream on SINET is high-volatility traffic. In both ingoing and
outgoing sessions, the peak traffic is about 2.5 times larger than average traffic. In this paper we

present our pipeline for handling massive session data stream adopting taskdecomposition based

parallelism. Our pipeline can handle high-volatility session data stream of about 500GB-650GB

per day.

2. RELATED WORK

Asghari et al. [1] propose a systematic approach for providing comparative infection metrics from
large-scale noisy sinkhole data of Conficker botnet. In [2], a large dataset of 350 million HTTP

request logs is analyzed for understanding user behavior of mobile cloud storage service. [3] et al.

report an empirical analysis for extracting and modeling the traffic patterns of 9600 cellular towers

deployed in a metropolitan city. [4] Presents a characterization of Amazon's Web Services (AWS),
which reveal that most of the content residing on EC2 and S3 is served by one Amazon data center

located in Virginia. [5] et al. proposes a characterization of Dropbox by means of passive

measurements of four vantage points in Europe, collected during 42 consecutive days. In [6], a new
framework to enable a macroscopic characterization of attacks, attack targets, and DDOS

protection is proposed. [7] Presents an analysis of online campus storage systems and data sharing

services for more than 19,000 students and 500 student groups. [8] et al. present the large-scale
characterization of inbound attacks towards the cloud and outbound attacks from the cloud using

three months of NetFlow data in 2013 from a large cloud provider.

Wang et al. show mobile traffic patterns of large scale networks in urban environment by gathering
data in cellular towers. Sandiana National Laboratories (SNL) adopts Splunk for managing the Red

Sky Supercomputer [11]. Bitincka et al. adopts Splunk for optimizing data analysis with a semi-

structured time series database [12]. GPUs were initially designed for graphics rendering, but,
because of their cost effectiveness, they were quickly adopted by the HPC community for scientific

International Journal of Distributed and Parallel systems (IJDPS) Vol 12, No. 1/2, March 2021

3

computations [13]. GPUs have also been used to accelerate functions such as pattern matching
[14], network coding [15]. Ando [16] proposes a lock-free algorithm of data clustering using

GPGPU. Ando [17] proposes a Multi-GPU based pipeline system with ELK stack. LSTM

algorithm used in our pipeline is partly presented in [18].

3. OVERVIEW

Figure 3 depicts our pipeline for handling massive session data stream on SINET. Our pipeline is

divided into three parts.

Figure 3. Overview of our data processing pipeline

3.1. Dynamic Task Scheduling

We adopt task decomposition for dynamic allocation. In handling massive and high-volatility

traffic data, each work item's amount of processing time is different or even unknown at the

beginning of the computation. We use task decomposition-based scheduling for coping with the

session stream of SINET (academic backbone network) because the amount of processing time
between tasks is usually variable and/or unpredictable.

3.2. Traffic Discrimination

At the second phase of our pipeline, we divide massive session data into ingoing/outgoing. We use

an acronym for Compute Unified Device Architecture (CUDA) Thrust Library for calculating a
huge amount of network addresses of session data by massive bit masking. For computing a large

number of bit masking in parallel, we adopt vector level parallelism of General Purpose Graphic

Processor Unit (GPGPU). To put it simply, we leverage GPGPU for traffic discrimination of
session data.

3.3. Histogramming

Finally, our pipeline outputs a time-series of ingoing/outgoing session data stream by mergescatter

pattern based histogramming. For generating time series data, we use a concurrent hash map of
Intel TBB. The concurrent hash map stores the pairs[i] of <timestamp, data[i]> which are

represented as histogram.

Generally, our pipeline adopts a coordinated batch processing pattern. Coordinated batch
processing is particularly effective as the workloads increase. Coordinated batch processing is vital

International Journal of Distributed and Parallel systems (IJDPS) Vol 12, No. 1/2, March 2021

4

to pull multiple outputs back together to generate some aggregated outputs. For handle huge
workloads of session data, we apply coordinated batch processing.

3.4. Coordinated Batch Processing

Coordinated batch processing is another key concept of our pipeline. Coordinated batch processing

is vital to pull multiple outputs back together in order to generate some sort of aggregated output.
The most canonical example of this aggregation is the reduce part of the map-reduce pattern for

generating time-series data. It is easy to see that the map step is an example of sharding a work

queue. The reduce step is an example of coordinated processing that eventually reduces a large

number of outputs down to single aggregate response.

4. METHODOLOGY

Figure 4 shows another overview of our system which consists of several patterns and parallelism.
The basic pattern is master-worker pattern. The master thread enqueues the chunks of session data

in the task decomposition manner. From the viewpoint of worker threads, our system run in

dynamic scheduling.

The master-worker design pattern divides the roles of computation in the items as follows.

[1] Coping with pieces of work to workers
[2] Collecting the outputs of the computations from the workers

[3] Performing I/O scheduling on behalf of the workers, sending them the data which workers

are supposed to process, particularly accessing a file

Figure 4. Design pattern of our pipeline

Each simplest form and implementation of the master-worker pattern involves a single master node

and multiple worker nodes, as shown in Figure 3. More specifically, the master thread traverses
the session data file directory and enqueues the file name. When the queue is complete, the master

thread waits until the worker thread processing packets consumes a file name and removes it from

the queue.

4.1. Task Decomposition

The two fundamental components of algorithms are tasks and data. A task operates on data, either

modifying it in place or creating new data. In a parallel computation, multiple tasks need to be

managed and coordinated. If we want to transform code into a concurrent version, there are two

International Journal of Distributed and Parallel systems (IJDPS) Vol 12, No. 1/2, March 2021

5

ways - data decomposition and task decomposition. In data decomposition, the program copes with
a large collection of data and can independently compute every chunk of the data. In task

decomposition, the process is partitioned into a set of independent tasks that threads can execute in

any order. Besides, concerning task decomposition, there are several ways to handle tasks.

It is important to note that task decomposition is classified into functional decomposition. The

opposite of data parallelism is functional decomposition, an approach that runs different program

functions in parallel. At best, functional decomposition improves performance by a constant factor.
For example, if a program has functions f, g, and h, running them in parallel at best triples

performance, but only if all three functions take the same amount of time to execute and do not

depend on each other, and there is no overhead. Otherwise, the improvement will be more minor.

4.2. Dynamic Scheduling

We can allocate tasks to threads in two different ways: static scheduling and dynamic scheduling.

Static scheduling of which the cost is known at the outset of computation is not appropriate in daily

processing of session data. Although some daily patterns could be observed, traffic of academic
backbone networks is changing daily. Besides, drastic traffic increase occurs, particularly on

ingoing traffic. In dynamic scheduling, tasks must be assigned to threads for execution. Perhaps

the more correct way to say this is that threads must know which tasks to execute.

In either case, you always want to assure that the amount of computation done by threads is roughly

equivalent. That is, a load of computation is balanced in each thread.

5. IMPLEMENTATION

5.1. Task Queue

The popular dynamic scheduling method involves setting up a shared container (typically a queue)

which can hold tasks and allow threads to pull out a new task once the previous task is complete.

Tasks (or adequate descriptions of tasks) must be encapsulated into some structure that can be
pushed into the queue. Access the queue must be mutually exclusive between threads to ensure

which threads get unique tasks and no tasks are lost through some corruption of the shared

container. The task queue design's main purpose is to ensure that each chunk of work is processed

within a certain amount of time.

5.2. Merge Scatter Pattern

The merge scatters pattern, associative and commutative operators are provided for merging

elements in case of a collision. With the nature of this pattern, scatter could occur in any order.

Therefore, both associative and commutative properties are required. An example that uses addition
as the merge operator is shown in Figure 5. It is straightforward to adopt a merge scatter pattern to

implement histograms with the adding operation.

Figure 5. Merge scatter pattern

International Journal of Distributed and Parallel systems (IJDPS) Vol 12, No. 1/2, March 2021

6

5.3. Deep Learning for Time-series Analysis

Deep learning for time-series analysis is a new endeavour and promising field. Deep learning is

advantageous because deep learning is a highly flexible technique. Specifically, it deep learning
provides the capability of modelling highly complex behaviour. Besides, it offers the possibility

for nonlinear temporal behaviour without estimating at function forms – which could potentially

great change for nonstatistical forecasting techniques. Many of the trouble of preprocessing data to
a fit the assumptions can be evaded when deep learning model is applied. The potential advantages

of deep learning are as follows:

[1] No requirement of stationarity necessary.
[2] There is no need to develop the art and skill of picking parameters, such as assessing

seasonality and order of a seasonal ARIMA model. The art and kill of selecting parameters

are not required. For example, assessing seasonality and sequence of a seasonal ARIMA
model.

[3] With deep learning, we do not need to develop a hypothesis concerning a dynamics of s

system.

However, it is important to notice that deep learning is not a silver bullet. Although there is no

requirement or assumption of stationarity for deep learning applied to time series, in practice, deep

learning does not work excellently for fitting data with a trend unless the basic architectures are
embedded. So still we need to preprocess our data or our technique.

In this paper, we apply Long Short Term Memory (LSTM) for anomaly detection. Long Short
Term Memory networks - usually just called LSTMs - are a special kind of RNN, capable of

learning long-term dependencies. They were introduced by Hochreiter & Schmidhuber [9], and

were refined and popularized by many people in the following work.1 They work tremendously
well on a large variety of problems, and are now widely used.

6. EXPERIMENTAL RESULT

We report the observation and prediction about SINET traffic during 2/27 - 3/8. In the observation,
we use a rack server of Dell(TM) PowerEdge(TM) PE C4140 with 96 core CPUs and 4 GPUs.

CPU is Intel(R) Xeon(R) Platinum 8160 CPU @ 2.10GHz. Our PE C4140 has 1.5TB memory.

GPU is Tesla V100 PCIe 32GB (NVIDIA Corporation GV100GL). Data stream is forwarded to

our pipeline from PA-7000. The PA-7000 Series is powered by a scalable architecture for the
purpose of applying the appropriate type and volume of processing power to the key functional

tasks of networking, security, and management.

Figures 6 and 7 show the traffic volume of session data. Session data is grouped into one-hour

frame bins. In ingoing traffic, we observe a clear diurnal pattern from 01/25/2021 to 01/29/2012.

This period is the weekday of the academic campus. On the other hand, 01/30/2021 and 01/31/2021
are weekends, which results in the decrease in traffic and plateau. Concerning outgoing traffic, we

observed more clear diurnal patterns during 03/02-03/06. The key findings are that in outgoing

traffic, there is no drastic spike compared with ongoing traffic.

International Journal of Distributed and Parallel systems (IJDPS) Vol 12, No. 1/2, March 2021

7

Figure 6. Anomaly detection of SINET outgoing traffic

Figure 7. Anomaly detection of SINET ingoing traffic

In summary, our multi-GPU-driven pipeline has succeeded in processing huge workloads of about

1.2 to 1.6 billion of session stream (500GB-650GB) within 24 hours during 03/02-03/06.

Our key observations are as follows:

[1] We observed some drastic spikes in ingoing sessions.
[2] There have been no extreme spikes in outgoing sessions.

[3] We have succeeded in detecting anomaly (several spikes in ingoing sessions) using MSE.

International Journal of Distributed and Parallel systems (IJDPS) Vol 12, No. 1/2, March 2021

8

7. DISCUSSION

In this paper, we give priority to handle huge session data over any other matter. In 2009 researchers

from Google wrote a paper entitled The Unreasonable Effectiveness of Data [10]. According to

this paper, if machine learning algorithm A using a messy dataset with a trillion lines can be highly

effective in tasks, algorithm A is downright useless in coping with a clean dataset with a mere
million lines. If algorithm A does not work with a dataset comprising a million examples, our

intuitive conclusion is that it does not work at all. Our pipeline system is based on the concept of

this paper. However, at the same time, simple time-series analysis algorithm is deployed on
currently our system. This point could be the limitations or deficiencies of our system.

8. CONCLUSION

Science Information Network (SINET) is the Japanese academic backbone network for more than
800 research institutions and universities. In our operational experience, SINET suffers the drastic

traffic increase by about five times larger than average. This paper presents the methodology and

system implementation for handling massive and high-volatility session data streams. We adopt
two technologies: dynamic scheduling and LTSM based anomaly detection. Besides, three main

features are discussed: Tash scheduling, Traffic discrimination, and Histogramming. We adopt a

task-decomposition based dynamic scheduling method to handle the massive session data stream

of SINET. In the experiment, we have analysed SINET traffic from 2/27 to 3/8 and detect some
anomalies by LSTM based time-series data processing. We can conclude that we have succeeded

in handling rapid session increase during 2/27-3/08. For further work, we are building more

sophisticated algorithm for time-series analysis. For example, more finegrained tuning of hyper
parameters and bi-directional RNN could be applied for our system.

REFERENCES

[1] Hadi Asghari, Michael Ciere, Michel J. G. van Eeten, ``Post-Mortem of a Zombie: Conficker Cleanup

After Six Years'', USENIX Security Symposium 2015: pp.1-16

[2] Zhenyu Li, Xiaohui Wang, Ningjing Huang, Mohamed Ali Kaafar, Zhenhua Li, Jian Zhou, Gaogang

Xie, Peter Steenkiste: An Empirical Analysis of a Large-scale Mobile Cloud Storage Service. Internet

Measurement Conference 2016: pp.287-301

[3] Fengli Xu, Yong Li, Huandong Wang, Pengyu Zhang, and Depeng Jin, ``Understanding Mobile Traffic
Patterns of Large Scale Cellular Towers in Urban Environment'', IEEE/ACM TRANSACTIONS ON

NETWORKING, VOL. 25, NO. 2, APRIL 2017

[4] Ignacio Bermudez, Stefano Traverso, Marco Mellia, Maurizio M. Munaf?: Exploring the cloud from

passive measurements: The Amazon AWS case. INFOCOM 2013: pp.230-234

[5] Idilio Drago, Marco Mellia, Maurizio M. Munafo, Anna Sperotto, Ramin Sadre, Aiko Pras: Inside

dropbox: understanding personal cloud storage services. Internet Measurement Conference 2012:

pp.481

[6] Mattijs Jonker, Alistair King, Johannes Krupp, Christian Rossow, Anna Sperotto, Alberto Dainotti:
Millions of targets under attack: a macroscopic characterization of the DoS ecosystem. Internet

Measurement Conference 2017: pp.100-113

[7] Song in Liu, Xiaomeng Huang, Haohuan Fu, Guangwen Yang: Understanding Data Characteristics

andAccess Patterns in a Cloud Storage System. CCGRID 2013: pp.327-334

International Journal of Distributed and Parallel systems (IJDPS) Vol 12, No. 1/2, March 2021

9

[8] Rui Miao, Rahul Potharaju, Milan Yu, Navendu Jain: The Dark Menace: Characterizing Network-

based Attacks in the Cloud. Internet Measurement Conference 2015: 169-182

[9] Sepp Hochreiter, Jürgen Schmidhuber: Long Short-Term Memory. Neural Comput. 9(8): 1735-1780

(1997)

[10] Alon Halevy and Peter Norvig and Fernando Pereira, "The Unreasonable Effectiveness of Data", IEEE

Intelligent Systems, vol.24, pp8-12, 2009

[11] Jon Stearley, Sophia Corwell, and Ken Lord. Bridging the gaps: Joining information sources with

splunk. In Workshop on Managing Systems via Log Analysis and Machine Learning Techniques, 2010.

[12] Ledion Bitincka, Archana Ganapathi, Stephen Sorkin,and Steve Zhang. Optimizing data analysis with

a semistructured time series database. In Workshop on Managing Systems via Log Analysis and

Machine Learning Techniques, 2010.

[13] J. D. LUEBKE OWENS, D.GOVINDARAJU, N.HARRIS, M.KRGER, J.LEFOHN, , and T. J.
PURCELL. A survey of general-purpose computation on graphics hardware. In Computer Graphics

Forum 26, 1 (2007), pages 80–113, 2007.

[14] SHOJANIA H., LI B, , and WANG X. Nuclei. Gpuaccelerated many-core network coding. In IEEE

Infocom, pages 459–467, 2009.

[15] R. SMITH, GOYAL N., ORMONT J., SANKARALINGAM. K, and ESTAN. C. Evaluating gpus for

network packet signature matching. In Ie International Symposium on Performance Analysis of

Systems and Software, 2009.

[16] Ruo Ando, A lock-free algorithm of tree-based reduction for large scale clustering on GPGPU. In
Proceedings of the 2nd International Conference on Artificial Intelligence and Pattern Recognition,

ACM 2019, ISBN 978-1-4503-7229-9, AIPR 2019, pp129-133, 2019

[17] Ruo Ando, "Multi-GPU Accelerated Processing of Time-Series Data of Huge Academic Backbone

Network in ELK Stack", Usenix LISA 2019 (33th Large Installation System Administration

Conference Large Installation System Administration Conference) October 28– 30, 2019 Portland, OR,

USA 10 2019

[18] Ruo Ando, Yoshiyasu Takefuji: “A constrained recursion algorithm for batch normalization of tree-

sturctured LSTM”, CoRR abs/2008.09409 (2020)

