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ABSTRACT 
 
By programming both the data plane and the control plane, network operators can adapt their networks to 

their needs. Thanks to research over the past decade, this concept has more formulized and more 

technologically feasible. However, since control plane programmability came first, it has already been 

successfully implemented in the real network and is beginning to pay off. Today, the data plane 

programmability is evolving very rapidly to reach this level, attracting the attention of researchers and 
developers: Designing data plane languages, application development on it, formulizing software switches 

and architecture that can run data plane codes and the applications, increasing performance of software 

switch, and so on. As the control plane and data plane become more open, many new innovations and 

technologies are emerging, but some experts warn that consumers may be confused as to which of the many 

technologies to choose. This is a testament to how much innovation is emerging in the network. This paper 

outlines some emerging applications on the data plane and offers opportunities for further improvement 

and optimization. Our observations show that most of the implementations are done in a test environment 

and have not been tested well enough in terms of performance, but there are many interesting works, for 

example, previous control plane solutions are being implemented in the data plane.  
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1. INTRODUCTION  
 

Software Defined Networking (SDN) is the beginning of deeply programmable network. Before 
SDN, network elements are only programmed by device vendors. SDN defines two important 

properties in network: first, the isolation of the data plane and the control plane functionalities, 

and second, the control plane on centralized controller(s) can control multiple network elements 
using a well-defined APIs (Application Programming Interface) such as OpenFlow.  This not 

only simplifies network management, but also makes the network more open.  

 

As a result of SDN's development over the last 10 years, we now have open platforms that can 
program every single element of the network. Moreover, network programming capabilities 

shifted from network device manufacturers to network operators, and new updates began to enter 

the network very quickly. In traditional network, it takes 4-7 years for a new technology to be 
approved by a standard organization and introduced into a network. Nowadays, such steps are not 

necessary, so many new technologies and innovations are developing rapidly in the network. 

However, some experts say the downside is that end users or companies are sometimes confused 
as to which of these many innovations to choose. This is a proof that the network is undergoing a 

lot of evolution and change.  
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Therefore, a fully programmable network has two pillars: a programmable data plane and a 
programmable control plane. The data plane programming began to be discussed in the 2000s 

with the advent of the merchant chip, but it became a reality in 2015, and research in this area is 

in great demand today [1]. The fundamental studies to make data plane programming more 

realistic are to develop a plane data programming language, create a programmable switching 
architecture, improve the performance of programmable switches and develop applications on 

data plane. This paper outlines applications on data plane and explores some improvement and 

optimizations on these applications.   
 

The rest of this survey paper is organized as follows. Section 2 provides background information 

on data plane programming, Section 3 describes the data plane applications and future 
optimization ideas, and the final section presents conclusions.  

 

2. BACKGROUND  
 

2.1. Data plane programmability   
 

Network devices use two kinds of algorithms to process packets: control plane and data plane.  

Data plane algorithms define the packet processing pipelines on device, while control plane 
algorithms define rules for manipulating a packet in the data plane, sense network, detect network 

failures, and update packet processing rules. In the SDN network, the control plane algorithms 

running on the controller platform (e.g., server) manage the data plane. For example, routing 
algorithms in the control plane define packet forwarding rules based on the destination IP 

address. These rules are installed in the routing table of the data plane via API. This means 

control plane and data plane are communicated using API. Programmable data planes are the 
latest concept in computer networking, and researchers are paying much attention to this area.  

 

Thanks to the following concepts, technologies, and developments, a programmable data plane is 

becoming more practical.  
 

1. Data plane languages: The key considerations to language design are to improve 

flexibility, support modular programming, and interface with other languages. Domain 
specific programming languages for defining data plane algorithms and functionalities 

(forwarding behaviour) are being developed. Examples include FAST[2], Domino[3], 

Protocol-Oblivious Forwarding[4], and NetKAT [5], P4 [6], with P4 being the most 

successful.   
2. Data plane architecture: To map the data plane algorithm defined by domain-specific 

language to the switch ASIC hardware or software switch, the data plane architecture 

(programmable building blocks and data plane interface between them) must be provided 
by device vendors or language developers[7]. This architecture is also called a data plane 

model or hardware abstraction in some literature. For example, the P4 architecture team 

has recently developing a Portable Switch Architecture (PSA)[8] for the switches, and 
PNA Smart NICs [9].  

3. APIs: Providing an interface for connecting the control plane and the programmable data 

plane. For example, the P4 compiler creates an API that connects the data plane to the 

control plane [7].  
4. Performance: Thanks to numerous studies and technologies, the performance of a 

programmable switch has approached/same as that of a fixed-function switch [10].    

5. Applications: Anyone, including universities, startups, and operators, can quickly 
develop more diverse application cases on a programmable data plane. 
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2.2. P4 Language   
 

According to the annual P4 Workshop (2021), P4 has emerged as a leading domain-specific 

language for specifying programmable data planes, and thanks to strong communities and 
research, it has now a rich set of tools for P4 and a number of use cases. However, it still needs 

improvements: some vulnerabilities are identified by use cases and application development and 

are being fixed by the P4 communities. Also, additional features and capabilities are requested 
from industries. For example, Smart NICs have programmable packet processing pipelines and 

google is trying to implement congestion control mechanisms on Smart NIC and to implement it, 

they are requested some additional features from P4 community[11].   

 
P4’s advantages are target and protocol-independency. Target-independency means that P4 

program can run on various targets such as hardware targets (switch and routers), and software 

targets such as BMv2 P4-OvS, and P4-DPDK[12], and number of supported targets are 
increasing. To ensure this feature, the hardware vendor or data plane language developers must 

define architecture and a compiler backend for a given target: provide them to the P4 developer 

[13] and so, the P4 program is easily mapped to the target with help of these. Protocol 
independency means that P4 developers can define their rich set of protocols and data plane 

behaviour/functionalities.    

 
According to the architecture, P4 defines packet processing pipelines. The general architectures 

of the P4 data plane for research purposes are V1model and PSA [7].  Figure 1 describes basic 

pipelines in V1 model architecture including parser, match/action and deparper. Packet 
processing in this architecture is as follows: The parser receives incoming packets and extracts 

the header from them. Then, the match-action pipeline processes packet headers. A match-action 

block can contain one or more tables and actions.   

 

 

 

 
table ipv4_lpm {  
        key = {  
            hdr.ipv4.dstAddr: exact_match;  
        }  
        actions = {             
ipv4_forward;  
            drop;             
NoAction;  
        }  

  
              Figure 1. Abstract packet forwarding in P4                       Figure 2. IPv4 table example 
 
For example, the IPv4 routing table showed in Figure 2 can be created here, and the match key is 

the destination IP address and based on which, corresponding actions such as drop or forward are 

performed. In this block, the header can be added, subtracted, and modified. The deparser builds 

the outgoing packet by assembling the processed headers and the original payload [6]. In the case 
of other architectures, it is possible to define more detailed pipelines with more than one pair of 

parser and deparser for ingress and egress. Also, the match-action tables and external functions 

can be determined between parser and deparser.  
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3. APPLICATIONS ON THE DATA PLANE AND OPTIMIZATIONS  
 
A programmable data plane allows anyone to quickly design, test, and deploy a variety of 

applications on a data plane. Currently, the focus is on the applications such as in-band telemetry, 

load-balancing, in-network computation, deployment of consensus protocols, congestion control, 

queue management and traffic management [14]. Since data centres are early adopters of the 
SDN network, most of these applications are currently designed for data centre networks.  This 

section briefly describes some of these applications, their motivation, approach, challenges, and 

future improvement and optimization possibilities.  
 

3.1. In-band Network Telemetry (INT)    
 
The precise, fine-grained, real-time measurement and monitoring of the network is one of the 

foundations for organizing more optimal network. Traditional monitoring includes active 

methods (ping, traceroute), traffic mirror and SNMP-based inactive methods, and a combination 
of these [hybrid methods] [15]. They are simple to deploy, but the disadvantage is that, for 

example, passive methods have high processing costs, which can lead to performance limitations. 

In other words, the process of measuring the network itself can affect the state of the network.  

 
In-Band Network Telemetry (INT) is a novel framework that collects network telemetry data 

such as the internal state of the switch from the data plane at line speeds. This kind of telemetry 

information is collected using a normal packet over a network or a probe packet (INT packet). 
Each node that receives INT packet embeds its metadata into this packet. Therefore, it does not 

put more strain on the network than traditional measurements. Also, it is more detailed, accurate, 

and close to real-time because it is implemented on data plane.  One disadvantage is that 
metadata is limited by packet’s maximum transmission unit (MTU). INT instructions (header) on 

what to collect from the devices are added to packet at the source INT node and then that packet 

is transmitted through network for collecting device’s state. The metadata and INT header is 

removed from packet on the edge device (INT sink node). The sink node then performs the 
appropriate monitoring or actions, for example, it forwards the collected report to another 

external device or server for further monitoring [16]. Compared to other data plane applications, 

there are a large number of use cases, applications, and studies around INT. In the following part, 
we summarize some optimization works on those applications.  

 

First of all, techniques for optimizing telemetry data include determining the proper size and 

structure of the INT packet within the MTU, minimizing the number of flows/packets for 
telemetry, and filtering unimportant telemetry information. For example, INT-label [17] is a 

lightweight network-wide telemetry architecture without explicitly using probe packets. This 

creates a sample packet by inserting a new field (instead of a protocol field) in the IP header. The 
sample packets are then sent periodically to collect device status. Therefore, it saves monitoring 

bandwidth and adapts seamlessly to topological changes. Preliminary evaluation on BMv2 

software P4 switches  shows that INT-label can achieve 98.54% network-wide visibility coverage 
under a label frequency of 100 times per second.   

 

In addition, choosing optimal collection mechanisms is important, and event-based and 

policybased triggers are considered such mechanisms. For example, this solution [18] only 
triggers network monitoring if certain conditions are met. To achieve this, the Elastic Trie, a new 

data structure, has been introduced that allows the detection of (hierarchical) heavy hitters or 

super spreaders within the data plane. Implemented in P4, it is designed for two different FPGA 
target models and achieves high accuracy in detecting the targeted events with the memory 

constraints imposed by today’s switches.   
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Moreover, optimizing the analysis process involves the use of advanced technology such as 
machine learning, simplifying the analysis process, reducing server load, monitoring server 

storage, and so on. A summary of these can be found in the survey paper [15].  

 

3.2. In-Network Computing  
 

Because traditional network devices are often designed to achieve high throughput, packet 
processing on data plane is limited. With programmable data plane, resource-intensive tasks can 

be run on network devices. This means that it is technically possible to offload a set of computing 

operations from an end-server and middlebox to a network device. Therefore, it might save 

energy for running servers, reduce traffic, thereby reducing network congestion, and process 
upper layer functionalities, such as transport and application layers at line speeds [19].  For 

example, Paxos is a consensus protocol for distributed networks in the application layer. It has 

been implemented in the data plane, and as a result, it improves the performance of the protocol 
itself and the performance of applications based on this protocol service [20].  

 

Another segment that falls into this category is that it is now technically possible to offload most 
of the work on the control plane to the data plane: thus accelerating the control plane. For 

example, this work demonstrates the ability to offload basic tasks on the control plane, such as 

error detection, notification, connection recovery, and even a policy-based routing protocol into 

the data plane [21]. However, some tasks require a lot of resources and are not optimal for 
running on a data plane.  

 

First of all, it is important to determine what type of computation operations or control plane 
tasks are most optimal to run on data plane. According to the application working group in the P4 

community, the most feasible applications are in-network packet aggregation, in-network 

caching, and so on.   
 

Second, thanks to the flexibility of programmability, network functionalities and applications can 

be chained in any order on data plane. But each one have its own requirement to work on the 

target: performance, computations ability, and so on. Therefore, it may not be possible to run 
them all on the same target due to different requirements. One interesting tool, Flightplan [22], is 

designed for disaggregating data plane programs and mapping them to suitable targets. This tool 

gives a possibility to run the programs in a distributed system that uses a variety of data plane 
targets that offer diverse computation and performance. The paper states that the idea has been 

implemented and achieved reasonable results.  

 

3.2.1. In-Network Packet Aggregation   
 

The search, query processing, dataflow computing, graph processing, and stream processing, and 

deep learning frameworks are the group of applications with partition/aggregation patterns in the 
data centre network. During the partitioning phase, job requests are subdivided into concurrent 

sub-tasks on different worker servers, and each worker server produces partial results. In order to 

obtain the final result, the partial results are collected and aggregated at the aggregation stage. In 
the aggregation phase, partial results must be passed between a large numbers of workers, which 

puts a significant load on the network. For example, Facebook's data trace shows that 46 percent 

of total traffic is generated during the aggregation phase. Furthermore, it leads to network 

congestion [23].  
 

Therefore, traffic congestion can be reduced if the data aggregation function, which is usually 

performed on the application layer, is performed on a network path. Other reasons for in-network 
packet aggregation are that behind these functions are usually simple arithmetic logic operations, 
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so placing them on a switch is simple, and there is no need to consider packet sequencing because 
these algorithms are associated associative functions.  

 

SwitchML [24], using a programmable Tofino switch data plane, is designed to accelerate 

distributed parallel training in a machine learning model: reducing the volume of data exchanged 
from multiple workers on the network.  

 

The next beneficial segment to use in-network aggregation is the integration of a small-sized and 
large number of packets. For example, merging IoT packets into a single transmission unit can 

reduce the additional computational costs associated with each transfer. Wang et al. [25] 

introduce proof-of-concept designs and implementations on IoT packet aggregation and 
disaggregation purely in P4 pipelines of the switching ASIC. The idea has been around for a long 

time, and now the opportunity to make it a reality may come with a programmable data plane.  

 

3.2.2. In-Network Caching   

 

You may need to access hundreds or thousands of storage servers in the background to view a 
single website. Understandably, there are a huge number of storage systems behind modern 

networking services, such as search engines, social networking and e-commerce, which are used 

by billions of users. An important way to improve storage system performance is to create a 

cache, where high-access items (hot items) are temporarily stored in the cache to allow users to 
access items on the storage system more quickly, and the cache must be constantly updated. One 

of the problems here is that hot items can change suddenly, which can lead to network flow 

imbalances when users start accessing those hot items in large quantities. For example, 60-70 
percent of Facebook users access 10 percent of the total content [26]. Therefore, when building a 

caching system, these issues need to be considered.   

 
Traditional networks use flash-based caches, disk-based caches, and server-based caches, and 

data plane programming provides new opportunity to create a cache on a programmable network 

device. Because network devices are naturally located on the path between the client and the 

server, creating a cache on it can further reduce latency.  
 

The key-value storage data structure is often used to create a database in the cache. Netcache [27] 

is new key-value store architecture by leveraging flexibility, and the power of a modern 
programmable switch to handle queries on hot items of the storage server. It is built on top of 

rack (ToR) switch in the data centre network. Therefore, ToR switch plays important role and has 

3 main modules: L2/L3 routing, on-path caching for key-value items, and query statistics. The 

Query statistic module identifies the hot items, and based on these statistics, the controller 
updates the cache. The core of Netcache is packet-processing pipeline which detect, index, store 

and serve key-value items. For example match-action table classify key on packet header and 

values are stored in register array, on-chip memory in programmable switch. One ToR switch can 
cache items on a storage server only connected to it, and cannot work with other ToR switches in 

a coherent way.   

 
IncBricks [28] is another in-network, key-value store system built in a programmable data plane. 

What distinguishes it from Netcache is that it is implemented in the core, aggregation and ToR 

switch of the data centre network, as well as end-host server, and maintains the cache coherence 

using a directory-based cache coherence protocol.  
 

These works are good start for in-network caching and both reduce latency by a certain 

percentage. The Netcache architecture was created on a Tofino and commodity server-based 
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switch with a P4 pipeline, while IncCache was developed on Cavium XPliant switch and the 
forwarding plane was defined in a proprietary language.   

 

According to the discussion on those works, the following questions can be open in the future: 

Mostly network requests (read) are processed from the cache. So, can write/delete requests be 
processed from cache? Do you need compression to reduce the cache size?, and so on.   

 

3.3. Load Balancing Applications   
 

The main purpose of a load balancer is to efficiently distribute the load to multiple parts of the 

network infrastructure to increase throughput, reduce response time, and prevent the overloading 
of a single resource. There are two main balancers: the layer 3 (L3) load balancer (s) selects one 

of the many routes that can direct the packet, while the layer 4 (L4) load balancer (s) chooses the 

one of serving instances (servers) for the incoming service request [29]. The data centre network 
has many redundant resources, so load balancers play an important role.  

 

L3 load balancing mechanisms in the Data Centre network and Internet try to choose the 
congestion-free and optimal path from the multiple paths, so that bisection bandwidth can be used 

more efficiently. These mechanisms are usually implemented on the data plane. The most 

commonly used method is the Equal-Cost Multi-path Routing (ECMP), and because each flow is 

randomly allocated one of the same cost routes, performance may be reduced if elephant flows 
are allocated in the same path [30]. Another disadvantage is that ECMP does not track the 

overused path and ignores congestion (congestion-oblivious). Conga [31] has improved ECMP, a 

mechanism that detects congestion and maintains the congestion status of each path on the 
leaf/spine switch in the data centre network. However, this is not a scalable mechanism due to the 

limited memory of the leaf switch. Also, it is expensive to redesign because it uses custom 

hardware (chip architecture needs to be modified).  
 

There are currently some ideas and implementations of the L3 load balancer on a programmable 

data plane: The improved ECMP [32] on P4 tries to make the ECMP path selection more flexible 

by slightly modifying path selecting procedure. It has been tested on NS2, which increases 
performance, but there are still design limitations. Another solution on P4 is W-ECMP [30] and 

the main feature is that it incorporates traffic congestion information into a normal flow, similar 

to P4's Inband Network Telemetry (INT) concept, which increases the update rate as the network 
load increases.  

 

HULA [33], programmed in P4, is explicitly designed for the programmable switch architecture 

and it is scalable and congestion-aware. Conga centralizes the congestion track at one point (leaf 
switch), while HULA does it in a distributed manner. In addition, it can automatically detect 

network failures.   

 
In this section, I will briefly describe some of the issues about L4 load balancer solutions on 

programmable data plane that are typically implemented on commodity servers. There are two 

main aspects to the design of an L4 load balancer. First, evenly distribute incoming connections 
through networks and servers. Second, providing per connection consistency (PCC): the ability to 

map packets belonging to the same connection to the same server, even if there are presence 

changes to the active servers and load balancers. But, meeting both these requirements at the 

same time has been an elusive goal [34].  
 

It was not easy to ensure the PCC because the switch ASIC does not have enough memory to 

store a large number of connection states. However, the amount of memory is constantly 
increasing. SilkRoad [35] was proposed as a load balancer on a programmable switching ASIC 
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and implemented using 400 lines of P4 code. The performance measurement on SilkRoad show 
that it can balance 10 million connections at line speed. SHELL [36] tried to implement a 

stateless load balancer on P4-NetFPGA programmable switch, and it is easier to deploy on a 

network device than a statefulsolution. Moreover, SHELL is application-agnostic and load-

awareness.  
 

The main advantage of implementing it on programmable switch is that there is no additional 

software load balancer in between application traffic and application server. This allows 
balancing load at line rate. Network traffic is constantly changing, so load balancing mechanisms 

need to be congestion-aware, dynamic, and with low latency. The results of empirical analysis of 

these implementations seem reasonable. In the future, the researchers can do an analytical study 
in terms of optimality and scalability on these in order to look for opportunities improving 

dynamic nature. 

 

3.4. In-Network Congestion Control   
 

Congestion control is a mechanism that controls the entry of data packets into the network, 
enabling better use of shared network infrastructure and avoiding congestive collapse. Different 

types of congestion control methods are used in the Internet and data center networks because 

these networks have different characteristics and requirements [37]. The Internet uses TCP-based 

end-to-end congestion control, while the data centre network initially used improved transport 
protocols such as DCTCP, but more recently RDMA over Converged Ethernet v2 [25] that use 

Ethernet flow control in switches. In addition, data centres have other architectures based on 

random path selection to reduce congestion. The problems with current solutions are that 
Ethernet-based versions do not provide low latency and high throughput at the same time, and the 

random selection of path-based solutions can cause serious congestion and transfer delays due to 

the elephant packets.  
 

Data plane programming capabilities also allow the development of other advanced solutions. For 

example, NDP [38], the new congestion control architecture of the data centre network, claims to 

provide low latency and high throughput in all traffic conditions. To achieve this, they used some 
techniques including a modified switch queuing algorithm, together with per-packet multipath 

forwarding, and a novel transport protocol that takes advantage of these network mechanisms. 

But they reported some problems such as being moderately expensive in terms of CPU resources 
required from end systems. NDP was implemented in Linux hosts, in a software switch, in a 

hardware switch based on NetFPGA SUME, in P4, and in simulation.   

 

QCN (Quantized Congestion Notification) is a type of Ethernet-based congestion control that 
uses a three-point algorithm architecture that sends congestion feedback from receiver to sender. 

P4QCN [39] is a flow-level, rate-based, network-assisted congestion control protocol, 

implemented in the P4. It extends the QCN protocol to IP-routed networks and uses a two-point 
(CP-RP) architecture, which reduces the end-to-end latency and the packet loss rate.  Its 

performance is compared to other algorithms in the simulation network environment.   

 
The main requirements for the congestion control mechanism are simplicity, dynamic nature, 

high performance, and fairness in data flows. A promising technology that can enable all of this 

could be a programmable data plane. 
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4. CONCLUSIONS 
 
With the help of open data plane programmability, it is possible to redesign (some of) network 

applications on the data plane. The P4 application working group and other developers explored 

promising applications such as in-band network telemetry, traffic aggregation, caching, and load 

balancing, creating several applications cases in the experimental environment and few in the 
practical environment. A common problem with current solutions are that they have not been 

fully tested in the real world, have not been adequately analysed for performance, and only 

consider network layer optimization that is not harmonized with the upper layer.  
 

Today, data centres are a major player in this area, and there are many implementations in the real 

data centre network. Therefore, there are many opportunities to develop new applications for 

other networks. For example, industrial networks and applications are unique and require strict 
requirements such as very low latency, almost zero losses, and high reliability. Here are some of 

the works around this network, and the authors say it has increased performance: moving time 

critical computations like event-detection to the field devices [40] and in-network traffic 
reduction method that filters out the unnecessary data traffic [41].   

 

There are possibilities for chaining data plane functionalities (encryption/compression) or data 
plan applications in an optimal way: for example, advanced routing and congestion control based 

on INT monitoring.  

 

Data plane programmability allows for tight integration between the application and the network 
but, the developers should always consider how network-level optimization affects the top level.  

When designing applications, the main considerations are network topology, device position, 

target capabilities, network policy, and application-specific requirements. Optimization in the 
application revolves around these topics. This study outlines emerging data plane applications 

and opportunities for further improvement and optimization.  
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