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ABSTRACT 
 
In simultaneous multithreaded systems, there are several pipeline resources that are shared amongst multiple 

threads concurrently. Some of these mutual resources to mention are the register-file and the write buffer. 
The Physical Register file is a critical shared resource in these types of systems due to the limited number of 

rename registers available for renaming. The write buffer, another shared resource, is also crucial since it 

serves as an intermediary between the retirement of a store instruction and the writing of its value to cache. 

Both components, if not configured accurately, can serve as a bottleneck in inefficient usage of the resources 

and output undesirable performance.  

 

However, when configuring both shared components concurrently, there is potential to all eviate common 

performance congestion. This paper shows that when implementing a static register capping algorithm 

(limiting the number of physical register entries for each thread), there is a byproduct of increased variety 

in source for the write buffer. This also presents an opportunity for the write buffer to have a higher variety 

to potentially choose for a better suitable thread asit’s source at certain clock cycles. With this presented 

opportunity, this paper proposes a technique to allow the write buffer to both prioritize and enforce the 
choice for low-latency threads by partitioning the write buffer in two sections; cache-hit priority and cache-

hit only partitions, showing that system performance and resource efficiency can be further improved by 

using this technique in a modified SMT environment.  
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1. INTRODUCTION 
 

A Simultaneous Multi-Threading processor (SMT) is a superscalar processor architecture that 

provides an enhanced method for improving overall system performance by processing instructions 
from many threads concurrently, termed thread-level parallelism (TLP) [1], [2]. With the 

characteristic of having parallel pipeline structures, various threads can occupy through separate 

pipeline paths in the processor concurrently in the same clock cycle(s), which allows for better 
resource utilization throughout the system. Subsequently, some pipeline resources are shared and 

may be occupied by various threads at the same time as well. Figure 1 models the pipeline 

organization of a 4-threaded SMT system and accurately depicts the visual difference of the parallel 
and shared components. Shared components, if not configured accurately, can serve as a bottleneck 

in inefficient usage of the resources and output undesirable performance. Therefore, to maximize 

the overall system throughput, its shared resources must be properly managed to avoid newly 

introduced bottle necks due to concurrent execution of threads. 
 

Among the shared components in an SMT system, the shared Physical Rename Register, is 

regarded as the most crucial of mutual components since these registers would be held for the 
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longest time until the respective instruction is ultimately committed. Another shared resource to 
mention is the write buffer, which lies between a core’s pipeline and cache memory, serving as an 

intermediary between the retirement of a store instruction and the writing of its value to cache. 

These two shared components, when not individually designed correctly, can cause inefficient 

resource utilization and poor performance. Modifying both components separately can relieve of a 
probable bottleneck effect, however, later sections will show that there is potential for performance 

increase when both shared components are configured concurrently. 

 
This paper will introduce a technique known as register capping, the effects it has on the write 

buffer, and present an opportunity to modify the write buffer into different partitions for better 

response to the effect. The proposed technique will also rearrange the commit stage allowing a 
difference in priority amongst the threads at different clock cycles. Thus, the primary focus of this 

paper is to determine the maximal portion of physical registers that can be allocated, paired with 

the combination of different partition values in the write buffer for a more latency free and efficient 

SMT system. This combination in turn will maximize IPC throughput and the proposed method 
will show very significant improvement up to 70.6% in a 4-threaded SMT system, and 65.9% in an 

8-threaded SMT system. 

 

 
 

Fig 1. Pipeline stages in a 4-threaded simultaneous multithreaded system. 

 

 

2. RELATED WORKS 
 

There is ample research on different methods of improving an SMT system and enhancing its 

components. Some to mention explore several techniques of resource control at various stages of 

the pipeline. In [3], a resource allocation algorithm is presented that is designed to optimize the 
performance of the physical register file in a computer system. By providing a real-time cap value 

based on each thread’s activity and effectiveness in occupying the registers, the resource is utilized 

more efficiently, leading to an overall improvement of system performance. According to Hily and 
Seznec [4], there is an ideal value pairing for the cache size and workload size in an SMT system. 

In their work, they demonstrated how several cache parameters, such as block size and size relative 

to thread count, could exhibit advantageous behavior when configured differently from usual 
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architectural setups. By employing the technique presented in [5], a dynamic limit is set on how 
many instructions can be occupied in the issue queue (IQ) by a thread to prevent the queue from 

becoming clogged by slower threads. 

 

The ICOUNT policy mentioned in [6] is a method of fetching instructions based on how many 
instructions are in the system before execution, where the thread with the fewest instructions is 

given higher priority. Having multiple threads being executed concurrently makes this fetch policy 

ideal for SMT systems. To prevent performance degradation, [7] allows each thread to use a portion 
of the write buffer rather than all threads having access to all of it, in a sense partitioning. A 

scheduling algorithm presented in [8], prioritizes the order of write buffer commits among threads 

to maximize itsutilization of resources, allowing equal opportunity for all threads to retire their 
instructions. 

 

A multithreading algorithm in [9] prevents some threads from starving while others consume all of 

the processor cycles by implementing a fairness metric into a multithreading method named 
Switch-On Event. This method improves processor throughput by switching threads on execution 

stalls enforced by a fairness ratio of the individual threads' speedups and performance. This 

technique replying on this ration value guarantees fairness at different levels of strictness and 
improved the weighted speedup amongst threads. In [10], to diminish the waste of cores resources 

on instructions that do not need resources that can lead to false ordering dependences, this technique 

efficiently scales instructions through a hybrid microarchitecture that can dispatch instructions in 
in-order scheduling mechanisms. This measures the opportunity to better organize a dispatch and 

evaluate a practical dispatch mechanism. [11] proposes several schemes to improve scalability and 

increase scheduling throughput with a method called "2OP_BLOCK”. This technique takes another 

method called "instruction packing" a step further and completely avoids sending an instruction 
with two source operands that are not ready. This reduces scheduling complexity byeliminating the 

logic required to support instructions with two unprepared source operands. On [12], a method is 

introduced based on a memory monitoring framework that centers the concept ofactivity vectors 
for threads. This allows asystem scheduler to predict cache utilization and inter-thread contention 

using a dynamically tracking program on phase behavior in an autoregressive model. 

 

A register file capping technique in [13] and [14] is applied on the rename stage that limits the 
number of additional physical registers that a thread is allowed to occupy at any point of time with 

a so-called “cap value”. By capping the integer physical register usage of each thread, utilization 

of this critically shared resource can be vastly improved and consequently leads to a very 
considerable performance gain. 

 

Regarding the specific impact on commit stage and the shared write buffer component, [15] 
proposesthat by limiting the number of cache misses that may concurrently occupy the write buffer, 

it can reduce rejection of resources to cache hits. The paper first dissectsthe effect of cache misses 

in the write buffer and its behavior, showing a shared write buffer is routinely occupied by many 

long-latency cache misses in an SMT system. This behavior greatly increases the probability of the 
write buffer being fully occupied, stalling threads that have cache hits ready to commit. The 

proposed technique then aims to limiting the number of cache misses in the write buffer by 

suspending threads which have a cache miss at the head of their ROB when the write buffer is 
heavily occupied can significantly improve system performance in a multithreaded environment. 

With specifically concentrating on works [13], [14] and [15], these related works serve as 

motivation to the proposed technique that works in conjunction in this paper. 
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3. SIMULATION ENVIRONMENT 
 

3.1. Simulator 
 

M-Sim, a simultaneous multi-threaded microarchitectural simulator, was used as the environment 
model for the performance analysis of the proposed technique. M-Sim includes accurate models of 

the pipeline structures of an SMT system, however namely the Register File and Write Buffer will 

be the focus for this paper. The simulation configuration parameters are outlined in Table 1. In this 
paper, buffer sizes of both 16 and 32 entries and register file sizes of 160 and 320 will be used for 

both 4-threaded and 8-threaded workloads respectively.  

 

 

3.2. Workloads 
 

The multi-threaded workloads used for simulations are chosen from the SPEC CPU 2006 
benchmark suite that consists of programs with a combination of ILP levels that present a variety 

of workloads. These benchmarks are chosen in sets of 4 and 8 to simulate the 4-threaded and 8-

threaded workloads and can be referred on their combinations to a corresponding “MIX” number 
identifier. Benchmarks are rated based on their ILP classification also shown in the corresponding 

Tables. The chosen workloads are based upon having a variety of ILP level combinations and the 

following Mixes are shown in Table 2 for 4-threaded workloads, and Table 3 for 8-threaded 
workloads. 

 

 

3.3. Metrics 
 

To evaluate the performance of this proposed algorithm, combined IPC (Instruction Per Cycle) is 
a typical metric used to measure the overall performance throughput for each mix, which is defined 

as the sum of each individual thread’s IPC: 

 

                                                                  (1) 
 

where N denotes the number of threads per mix. The new over all IPC of a modified SMT system 

will then be compared to that of the baseline overall IPC measured in the simulation environment 

with no modifications or different adjustments from the new. Both baseline and new overall IPC 
measurements will then serve as variables to find the average IPC improvement defined as function: 

 

              (2) 

 

where M is number of mixes. Throughout this paper, these two formulas (1) and (2) will be used 
to denote the change in performance of each stage in modifying the SMT system. 
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Table 1. Simulated Processor Configuration Setup 

 

 

Table 2. 4-Threaded Workloads For Simulation, Chosen From Spec Cpu2006 Suite 

 

 
 

Table 3. 8-Threaded Workloads For Simulation, Chosen From Spec Cpu2006 Suite 
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4. BACKGROUND 
 

4.1. Physical Register File 
 

As a result of the limited number of rename registers available in SMT systems, the Physical 

Register file is one of the most critical shared resources. Instructions in some threads with high 
latency block the progress of other fast threads, resulting in inefficient use of resources and poor 

performance. Which is why, to avoid bottlenecks during the renaming process, SMT systems 

typically require a much larger physical register file to accommodate multiple threads renaming 
the registers. Simply adding more registers, however, can be a cost-effective solution. 

 

As mentioned, one specific fixed cap technique is proposed in [13] and [14] that gives each thread 

in the system an allotted portion of the additional registers to use for register renaming. This limited 
portion is referred to in this paper as a cap value. Such a cap value, if selected properly, can prevent 

a long-latency thread from dominating the physical register file; that is, faster threads are still 

allowed to proceed with their allotted registers. The technique provides a significant performance 
improvement over a default system. It was found that an optimal fixed cap was usually around 9. 

 

Renaming physical registers will be limited if the size of the physical register file is not much larger 
than the size of the architectural registers. In an SMT system, this limitation is aggravated even 

further as resource sharing among several threads is intended to allow for a reduced number of 

resources than would be required in multiple single-threaded superscalar systems. In our SMT 

simulation, a 4-threaded system requires a minimum of 32 registers for every thread. This equates 
to 128 (4 x 32) physical registers as the baseline with which no renaming is possible. For renaming 

to be possible, allocation of additional registersfor renaming is needed. If a total of 160 physical 

registers are used, 32 registers (160 - (32 x 4) = 32) are available among the 4 threads for renaming. 
Applying the [14] technique of register capping with regards to having 32 rename registers 

available is a reasonable starting parameter. To keep the same ratio of register to threads, the total 

amount of physical register for 4-threads will be 160 and 8-threads will work with 320. 
 

4.2. Write Buffer 
 
When a store instruction is retired from the pipeline, the result that will be written to memory is 

first transferred to the write buffer. A write-allocate cache strategy moves the cache line of the write 

instruction to data level-one (DL1) cache while the value is temporarily kept in a write buffer entry 

[15]. This buffering period in DL1 might range from a single clock cycle for a cache hit to hundreds 
of clock cycles for a cache miss. Due to the low latency in a cache-hit scenario, favoring the write 

buffer to choose a cache-hit will increase performance. The focus is to implement a write buffer 

partitioning algorithm with a modified fixed cap on resource allocation of the rename registers. 
 

5. PROPOSED METHOD 
 

5.1. Approach 
 

A first step to improving a capping environment would be to find a good cap value that will give 

us the highest average IPC gain as a starting ground. A simple application of every different value 
within the range of available registers is shown in Figure 2. As shown, the varying cap values in a 

4-threaded workload also vary in average IPC Improvement percentages. The range with the 

highest improvement is between cap value 7 and 12, but more specifically the highest is when cap 

equal to 9 with IPC Improvement of 37.75%. Therefore, continuing to analyze the effects of register 
capping in other resources with a cap value of 9 is an understanding and straightforward approach. 
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5.2. Analysis 
 

The next phase is to see how capping affects the source of the write buffer, the Re-Order Buffers 

(ROBs) of each thread and visually depict a difference in variety of resources. Figure 3 and 4 both 
show a direct comparison in the different number of threads that are ready to commit for their 

corresponding 9 and 32 cap value. Visually, there is a shift from right to left from having less red 

and orange sections to more and also almost little to no blue in certain mixes, already inferring 
there is transfer in number of threads. Particularly, mixes 4, 7, 8, 10 reveal the most shift in color. 

 

 
 

Fig 2. Average IPC Change for 10 4-threaded mixes with varying cap values. 

 

 
 

Fig 3. Number of unique threads ready to commit in a default system (Cap = 32) 

 

 
 

Fig 4. Number of unique threads ready to commit in a capped system (Cap = 9) 
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Comparing the combined average number of threads for all mixes would tell us the overall average 
of what the write buffer would encounter throughout the simulation. In that perspective, in a default, 

no capping environment, there is 14.8% of the simulation having 0 threads ready to commit, 27.3% 

having only 1 thread ready to commit, 31.8% for 2 threads, 21.2% with 3 threads, and only 4.9% 

for 4 threads. When applying cap value to 9, there are 0, 1, 2, 3, and 4 threads ready to commit 
through the whole simulation with 11.6%, 19.4%, 29.2%, 29.2%, and 10.7% respectively. 

Comparing both scenarios with having a no capping as a baseline, there is a decrease of 3.2% of 0 

threads ready to commit, 7.9% decrease of 1 thread, 2.6% decrease for 2 threads, a healthy 7.9% 
increase for 3 threads, and great 5.8% increase on 4 threads which is a significant difference 

considering any change on 4 threads supersedes other number of threads. The shift from a default 

variety of threads to a larger one throughout the simulation infers that the write buffer now has a 
bigger variety pool source of ROB heads to choose from. Having a higher variety provides not only 

a higher chance to encounter a cache hit entry among the threads, but also an opportunity to filter 

out threads at any given time. This choice of exclusion comes at a smaller risk of inefficiency 

compared to default, again, due to the higher variety and number of entries flowing into the write 
buffer. When capping to 9, rather than having a write buffer have a first come first serve through a 

round robin selection, the write buffer is allowed to choose which thread to choose from to commit.  

 
This gives the opportunity to prioritize threads having potential cache hit instruction over their non-

cache hit thread counter parts. A thing to note on how capping affects the source of a write buffer 

is the actual size of the ROBs for each thread in every mix. Analyzing the ROB size in Figure 4 
and 5, with no capping, the average for each mix barely reaches 20, the max size with around 50-

55 occurred twice, and the highest total number of entries for a mix was 94 on mix 7. In comparison, 

with cap value 9, the average size exceeds 20 numerously, the max size exceeding 55 occurred 8 

times, and the highest total number of entries for a mix was 145 on mix 6. Although the proposed 
algorithm does not manipulate ROB size as a factor, it directly affects the potential of improvement. 

 

 

Fig. 5. Size of ROB for each thread and average size per Mix for a default system. (Cap = 32) 

 

 

Fig .6. Size of ROB for each thread and average size per Mix for a capped system. (Cap = 9) 
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6. PROPOSED ALGORITHM 
 
Previously, it has been shown that when register capping with 9, both the variety of the threads and 

average size of ROB increase. Therefore, the proposed algorithm aims to filter in the higher variety 

as the most suitable threads with a cache-hit at the head of ROB. The approach to this is to first 

depict the process of a default commit process. 
 

Figure 7 visually depicts the normal process used in an SMT system during the commit stage where 

a store instruction gets committed in a round robin-ordered fashion for each thread. Figure 8 also 
shows the pseudo code associated with Figure 7 and additional detailed actions associated in the 

commit phase of an SMT system. In this commit portion, a thread is selected to be the new current 

thread as a source for the rest of the commit cycle, chosen by round robin formula, c modulo N, 

having c depict the current clock cycle of commit initiation and N representing the number of 
concurrent threads. Once a thread is selected, the first entry (head) of the ROB of the selected thread 

must be committed first, assuming this entry is ready to be committed. If the current thread does 

not have an ROB head ready to be committed, the thread is immediately excluded for consideration 
for that clock cycle and checks to see if a next thread is available to repeat the process of checking 

if the ROB head is ready to be committed. Once a ROB entry is verified to be ready and commit 

bandwidth is available, the next step is ensuring the ROB head is a store is crucial as it is the only 
way the entry can be entered into the write buffer. If the entry is not a store, there is no need for a 

write buffer, so the instruction immediately gets committed to commit stage. Now, available 

commit bandwidth is decremented, and the next entry in the same thread that is now the new ROB 

head is checked. Finally, if ROB instruction has been verified to be a store and if the write buffer 
is not full to even have the availability to accept an entry, the store value will be written to the write 

buffer and the workflow continues until commit bandwidth is used up or there are no more threads 

remaining to choose from. One thing to emphasize is that if the write buffer is full, the thread is 
completely disregarded and no longer in consideration for the rest of the commit process cycle. 

 

With the presented byproduct of increased variety or number of different threads ready to commit 
when register capping to the most efficient cap value, the current default algorithm in the commit 

stage does not take full advantage to be able to choose which thread is best to choose from. In other 

words, with this default algorithm, the write buffer does not discriminate if the current ROB entry 

of the thread is a cache hit/miss and regardless if ROB head of the thread will potentially degrade 
performance of by having a long latency write buffer entry for several hundred clock cycles, the 

write buffer will always choose the first entry when it gets to that section of the commit process. 

 
The goal of this technique is to allow the write buffer to choose what ROB head entry from a certain 

threadto prioritize cache hit entries, prevent potentially blocked cache hits, and maximize commit 

bandwidth, before filling up and decreasing efficiency. Therefore, modifying the commit stage and 

partitioning the write buffer into prioritized sections along with finding the optimal prioritizing 
level values for each partition will be the key with this technique. 
 

Applying the proposed method, Figure 9 in illustration form now shows the modified process 

during the commit stage where a store instruction still gets committed in a round robin ordered 
fashion for each thread. Figure 10 again, also shows the associated pseudo code with Figure 9, with 

detailed actions in incorporating modifications. In this redesigned commit stage, a thread is still 

selected by round robin formula, c modulo N. The process of checking to see if the ROB head of a 
thread is a store and requirements before that are still the same as default, but the algorithm starts 

to change once the process starts to involve the write buffer. Instead of the non-full write buffer 

simply allowing the instruction to commit once it gets to that point, it checks to see if the entry is 
a data cache level 1 hit. If a cache-hit is true, then entry will be committed to write buffer and 

written to cache within the next few clock cycles. If entry is not a cache-hit, this is where the 
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partition values come into play. Condition functions 3 and 4 below are the conditions of the 
proposed partitioned write buffer and the M and N values that trigger different paths in the new 

modified commit stage. 

 

 
Fig. 7. Unmodified round robin commit stage algorithm. 

 

 
 

Fig. 8. Pseudocode for unmodified commit stage. 
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Fig. 9. Modified round robin commit stage algorithm with write buffer partitioning.  
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Fig. 10. Modified round robin commit stage algorithm with write buffer partitioning 

 

Initially, if the write buffer encounters a non-cache hitting thread when the cache hit priority 

condition is met, meaning the current size of the write buffer is greater or equal to the maximum 

size a write buffer can be minus value of M, the thread in question starts a process. Rather than 

completely disregarding the thread in a default commit stage, a thread is first suspended to a 
different pool of suspended threads and removed from the original pool of non-suspended threads. 

Suspended threads are still accounted for but are held at a lower priority than non- suspended 

(untouched or unvisited) threads. To ensure every thread is considered, a suspended thread, as 
shown in the Figure 9, is only considered when either all non-suspended threads have been 

suspended, or there are no more non-suspended threads to choose from. Although this M partition 

gives priority to thread with ROB head as cache hit, if no cache-hit thread is available or all have 
already been committed, suspended threads have another opportunity to be considered. Assuming 

bandwidth is available and all threads have been accounted for and suspended, the pool of 

suspended threads can now re-enter the commit stage at with the condition that they now follow a 

different path. Since they are marked as suspended and have been filtered before, they now follow 
the cache hit only partition that is dependent on the value N. This partition is comparable to [15], 

in which this section forces the write buffer to only accept cache-hit threads if capacity and 

condition is met. If the N partition however has not been met but a thread has is currently suspended 
and filtered by the M partition, the thread is committed regardless as to not waste commit bandwidth 

on enforcing a cache-hit that is not available at the current clock cycle. This methodology in turn 

prioritizes threads with cache hit but also allows threads with no cache-hit at a given clock cycle 

and second opportunity to be able to commit the store instruction. As explained, the only way a 
thread is suspended is when it encounters the write buffer at M partition value. Therefore, the only 

viable values for M and N are that M must always be greater than N. In other words, a thread must 
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first be given a second chance in order to be considered in the second phase. The difference between 
M and N is a inevitable buffer on how many threads will be given a second opportunity. 

 

The focus is to determine the maximal number of rename registers that can be issued to each thread, 

paired with the combination of M and N partitioning values that can maximize IPC. The process to 
maximal M and N values involves simulating the fixed capped system and extrapolating every 

possible M and N value. With the established cap value of 9 for 4-threaded workloads to combine 

this algorithm with, Figure 11-14 plot all the possible combinations of partition M and N values as 
the x and y axis, and the average increase percentage as z-axis. 

 

 

Fig. 11. 3D Representation of the varying partition values M and N when cap = 9 

 

 

Fig. 12. Cache-hit only partition N as x-axis, & percentage improvement as y-axis. 
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Fig. 13. Cache-hit priority partition M in the x-axis, & percentage improvement as y-axis. 

 

 
 

Fig. 14. Cache-hit priority partition M as x-axis, & cache-hit only partition N as y-axis 

 

What can be inferred for the 3-D surface graphs (Figure 11-14) is that the usual peak at to get the 
highest percentage is when the cache-hit only partition value N reaches 2 with having the cache-hit 

priority partition M value range between 3 and 16. According to the actual raw data, the actual 
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combination that gave the highestaverage IPC value was M = 15 and N = 2. In other words, in a 4-
threaded SMT system with a 16-entry write buffer, the highest performance increase when 

implementing the modified commit and write buffer partitioned algorithm with a static when 15 

out of the 16 entries of the write buffer are prioritized for cache-hit threads (not enforced), and 2 

entries are reserved only for cache-hit threads (enforced). 
 

 

 

7. SIMULATION RESULTS 
 

The proposed algorithm will be tested with the following different parameters of an SMT system. 

As mentioned before, the register file size will remain at 160 registers for 4-threaded workloads, 

and 320 for 8-threaded workloads, keeping the same ratio of number of registers per thread. 
 

The same guided process of choosing a cap value for the system and finding M and N partition 

values in the write buffer will be done for each system configuration. The following results will be 
listed showing the following data, in order. First, a per-mix IPC change percentage between a 

capping plus write buffer algorithm, and mixes with a capping adjustment only (no algorithm). 

Second, an average IPC change percentage, with a default system with no capping (cap = 32) as 
baseline, for varying cap values applying the best combination of M and N in the write buffer 

partitioning algorithm (tested with the best cap value). 

 

 
 

7.1. 4-Threaded Workloads | 16 Write Buffer Entry 
 

 
 

Fig. 15. Per-mix IPC change with capping = 9, M=15, and N=2, compared to just capping = 9. 

 

As guided, the best cap value that was tested to bring the highest IPC average was 9, and the best 
partition values were M=15 and N=2. The average IPC (improvement) change for the above figure 

was 20.5% when in contrast to a just capping system with value 9. In Figure 15, visual analysis 
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tells the specific mixes that had the most change, namely 5, 7, 8, and 10. These mixes are also 
depicted in Figure 3 and 4 to have the most “shift” on the number of different threads ready to 

commit which corresponds to our initial inference.  

 

With Figure 16, as the cap value nears a default state, the write buffer algorithm does not perform 
very well and does not produce an additional improvement. This is entirely because as the cap value 

digresses from the optimal value (cap = 9), the variety of threads and ROB size decrease. Since the 

source of the algorithm suffers depletion, so does the algorithm itself. Together with capping and 
the proposed algorithm, there was a peak 70.6% increase compared to default with no modification. 

 

 
 

Fig. 16. Both capping only and capping with algorithm compared to default system 

 

 

7.2. 4-Threaded Workloads | 32 Write Buffer Entry 
 

The best cap value tested to bring the highest IPC average was 9. After, it was tested that the best 
values of M and N were 30 and 2 respectively. The average IPC improvement for the above figure 

was 7.25% compared to just capping with value 9. In Figure 17, the same specific mixes that had 

the most change (5, 7, 8, and 10), also showing around the same ratios as before. However, 
compared to its 16-entry counterpart with the same 4-threaded workload, the percentage for each 

significant thread has decreased significantly, by a bouthalf. 

 

As reflected from the per-mix analysis previously, Figure 18 shows how much of a difference in 
the size limitof the write buffer can affect the algorithm results. With double the write buffer entries 

with same 4 threaded workload, the algorithm gains little throughout the varying cap values, but 

barely significant enough in certain cap range. 
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Fig. 17. Per-mix IPC change with capping = 9, M=30, and N=2, compared to just capping = 9. 

 

 
 

Fig. 18. Both capping only and capping with algorithm compared to default system. 

 

 

7.3. 8-Threaded Workloads | 16 Write BufferEntry 
 
The best cap value tested to bring the highest IPC average was 9. After, it was tested that the best 

values of M and N were 16 and 2. In Figure 19, there is a significant increase in IPC percentage 

among all Mixes. In the previous scenarios for a 4-threaded system, only 3 Mixes were able to 
exceed a minimum percentage increase of 40%, but in this result, there is nearly 50 percent of all 

mixes reaching or exceeding 40%. The average IPC improvement for this section was 35.8% which 

is a huge bump in gain so far. 
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Figure 20 shows the biggest margin of difference between only capping and capping plus algorithm. 

Although it is the biggest increase due to the proposed algorithm being implemented, it does not 

hold to be the highest increase percentage with capping and write buffer algorithm combined when 

compared to default c= 32. 
 

 
 

Fig. 19. Per-mix IPC change with cap=9, M=16, and N=2, compared to just capping c=9. 

 

 
 

Fig. 20. Both capping only and capping with algorithm compared to default system 
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7.4. 8-Threaded Workloads | 32 Write Buffer Entry 
 

The best cap value tested to for the highest IPC average was again, 9. It was then tested for the best 

values of M and N, which was found to be 32 and 2. 
 

 
 

Fig. 21. Per-mix IPC change with cap=9, M=32, and N=2, compared to just capping c=9. 

 

In Figure 21, the average IPC improvement above was 13.02%. Figure 22 shows that even though 

ourpreliminary testing on deciding which cap value is best, when applying M = 32 and N = 2, even 
though the values were tailored for a cap value of 9, there is a higher IPC percentage gain on cap 

value number 10, having 28.2% and 28.35% for 9 and 10, respectively. 

 

 
Fig. 22. Both capping only and capping with algorithm compared to default system. 
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7.5. Results Summary 
 

Table 4. Highest peak performance compared to default for each system configuration. 

 

 
 

In Table 4, the different results for each configured system are shown. In workload 1, comparison 
from default shows the highest overall IPC improvement percentage with 70.6%. This includes 

both capping and write buffer/commit modifications combined and working concurrently. 

However, when showing the marginal difference from just capping, there is a decent 20.49%. This 
infers that in this environment, the capping algorithm does most of the improvement and the 

proposed algorithm adds a decent improvement as well. In workload 2, overall IPC improvement 

percentage was 60.3%, but only 7.75% with capping as baseline. This marginal increase is the 

lowest in the bunch in terms of just capping comparison. In workload 3, the overall IPC 
improvement percentage with 65.93%, and a healthy and highest marginal difference compared to 

cap only of 35.8% This infers that in this environment, the capping algorithm, and the proposed 

algorithm work cohesively and efficiently together and both add around the same effort and gain. 
In workload 4, IPC improvement percentage with 28.35% and marginal difference from just 

capping at 13.02%. Although the worst in overall gain from default, the marginal percent difference 

is not the lowest. 

 
 

 

8. CONCLUSION 
 
In simultaneous multithreaded systems, there are several pipeline resources shared among multiple 

threads con- currently. If these shared resources are not configured correctly, they can serve as a 

bottleneck in inefficientresource usage and generate undesirable performance. As shown in this 

paper, there is the potential to alleviate common performance congestion by configuring the mutual 
resources, register file and write buffer, concurrently. 

 

This paper has shown that when implementing a static register capping algorithm, that is limiting 
the number of per-thread physical register entries, a byproduct of increased variety in the source to 

the write buffer. This allowed for an algorithm for the write buffer to have a higher variety to 

potentially choose a more suitable thread as it’s source at certain clock cycles. Partitioning the write 
buffer into two sections; cache-hit priority and cache-hit only, has shown that system performance 

can be further improved by using this technique. Essentially having all of the write buffer entries 

to prioritize cache hit and leaving one or two entries for cache-hits only resulted in the best 

improvement in a capped system. The one drawback of this proposal, however, is that depending 
on the parameters of the system, the algorithm may be limited to improvement. In comparison to a 

default SMT system, peak overall IPC was increased by nearly 71% with this proposed method. 
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