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ABSTRACT 
 
Monitoring functionality is an essential element of any network system. Traditional monitoring solutions 

are mostly used for manual and infrequent network management tasks. Software-defined networks (SDN) 

have emerged with enabled automatic and frequent network reconfigurations. In this paper, a scalable 

monitoring system for SDN is introduced. The proposed system monitors small, medium, and large-scale 

SDN. Multiple instances of the proposed monitoring system can run in parallel for monitoring many SDN 
slices. The introduced monitoring system receives requests from network management applications, 

collects considerable amounts of measurement data, processes them, and returns the resulting knowledge 

to the network management applications. The proposed monitoring system slices the network (switches and 

links) into multiple slices. The introduced monitoring system concurrently monitors applications for 

various tenants, with each tenant's application running on a dedicated network slice. Each slice is 

monitored by a separate copy of the proposed monitoring system. These copies operate in parallel and are 

synchronized. The scalability of the monitoring system is achieved by enhancing the performance of SDN. 

In this context, scalability is addressed by increasing the number of tenant applications and expanding the 

size of the physical network without compromising SDN performance. 
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1. INTRODUCTION 
 

One of the functions of a Network Monitoring System (NMS) is to monitor an internal network 
for different types of issues or for managing the network. The NMS has the capability to identify 

and assist in resolving various issues, including slow web page downloads, lost emails, 

suspicious user activity, insecure network connections, and server crashes.[1]. 
 

In contrast to Intrusion Detection Systems (IDSs) or Intrusion Prevention Systems (IPSs), which 

primarily focus on detecting and preventing intrusions, Network Monitoring Systems (NMSs) are 

utilized to evaluate the network's performance during regular operations and gather measurement 
data for network management applications, including IDSs. To effectively execute traffic 

monitoring tasks, the NMS should have the capability to monitor various devices from different 

vendors, ranging from mobile phones to hosts, servers, routers, and switches [2]. 
 

The SDN paradigm aims to enhance flexibility by separating the control and data planes of 

conventional networks. The data plane is situated in forwarding devices enabled with SDN, such 

as SDN switches, while the control plane is logically centralized in new entities referred to as 
SDN controllers. This separation of planes in SDN facilitates the establishment of distinct layers 
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of abstraction, enabling a high level of flexibility in network management. Figure 1 illustrates the 
architecture of an SDN-based network, showcasing the various entities, planes, and layers of 

abstraction involved.[1], [3]. 

 

 
 

Figure 1. Software-Defined Networking architecture [1]. 

 

Application plane: SDN applications are granted resources by the SDN controller via Application 

Programming Interfaces (APIs). These applications encompass a range of functionalities, 

business applications, network management, and security management. They can be developed to 
identify issues, malicious activities, anomalies, or authors. [1]. 

 

Control plane: This plane is responsible for assessing the local status of the forwarding devices 
within the network and enforcing appropriate policies for the network's optimal functioning. Such 

policies may include routing, traffic engineering, or security policy enforcement. Unlike 

traditional networks, SDN employs flow-based forwarding decisions instead of destination-based 
forwarding decisions. All packets that meet a specific criterion are handled with the same actions. 

The control plane takes charge of determining the path of traffic and managing all network 

signaling activities to ensure that the network devices are properly configured [1][4]. 

 
Data plane: This plane performs traffic forwarding in network devices like switches based on the 

policies established by the control plane. This includes traffic filtration and various actions that 

can be carried out on incoming packets in a switch. It is noteworthy that in SDN, switches are of 
a general-purpose nature, implying that they implement flow-level policies established by the 

control plane and can combine actions that were previously specific to different types of network 

devices, such as routers and switches, in conventional networks. This plane is also referred to as 

the "forwarding plane."[5]. 
 

There are numerous interfaces that exist between these layers, namely the northbound and 

southbound interfaces. The northbound interface facilitates communication between the 
controller and application layers, while the southbound interface enables communication between 

the controller and the data forwarding layer. [6]   

 
The SDN model is founded upon "open interfaces." The controller provides an API accessible to 

control applications, enabling them to verify and change the network's status. Additionally, new 

functionalities can be incorporated by developing new applications. The Controller uses open 

protocols to program network nodes, such as switches and routers, in accordance with application 
criteria. The most widely recognized protocol is OpenFlow, which can be deemed a standard 

protocol. 
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SDN monitoring systems should possess the ability to gather vast quantities of diverse 
measurement data, process them in real-time, and promptly supply the resulting knowledge to 

network decision-making procedures. Meeting the demands of SDN monitoring systems is a 

substantial challenge due to the current networks vast, dynamic traffic volumes, size, and the 

stringent constraints on time and hardware resources, these challenges will be tackled in this 
paper. 

 

It introduces and develops a scalable monitoring system that is capable of monitoring small, 
medium and large size networks. This system extends its monitoring capabilities to an increased 

number of tenant applications, encompassing management applications. It monitors management 

applications and allows to generate accurate and frequent monitoring reports concerning a variety 
of network events and emerging conditions such as network performance bottlenecks, anomaly 

detection and others. The rest of this paper is organized as follows: Section 2 shows related work 

to this paper while Section 3 discusses the proposed architecture and solution. The 

implementation and validation of the proposed system are discussed in section 4.  Proposed 
experiments for enhancing the scalability of monitoring system are discussed in section 5 while 

evaluations of the proposed architecture and solution are discussed in section 6. Section 7 

concludes the paper. 
 

2. RELATED WORK 
 

Several studies have been done to monitor Software Defined Networking. However, there are still 

weaknesses in these approaches. The following section critically reviews existing research related 
to this paper. 

 

J. Suariz proposed a flow monitoring solution for OpenFlow Software-Defined Networks that 
generates reports with flow-level measurements like those provided by NetFlow. To minimize the 

overhead on the controller and reduce the number of flow entries needed in the switch, two traffic 

sampling methods can be implemented in current SDN switches without any modifications to the 
OpenFlow specifications. These methods were then implemented in the OpenDaylight controller 

and their accuracy and overhead were assessed in a testbed using real-world traffic traces. [1]. 

 

B. Isyaku, M. Zahid, M. Kamat, K. A. Bakar, and F. Ghaleb presented cutting-edge research 
offering various solutions to address SDN performance issues stemming from the limited flow 

table. To overcome this, fuzzy theory and machine learning techniques can be leveraged to 

identify frequent flow entries that should be retained in the flow table. Consequently, this paper 
identifies several challenges, including update operations, resource constraints, communication 

overhead, and packet processing delays [3]. 

 

M. Scarlato, on the other hand, employed three tools for network monitoring in Software-Defined 
Networks to determine how these tools could be adapted to SDN. These tools include Ntop, 

Wireshark, and Argus. Their performance was evaluated, and the outcome revealed that Ntop and 

Argus did not behave as anticipated, as they were unable to recognize an OpenFlow traffic, 
despite their capability to identify NetFlow and sFlow traffic [5]. 

 

Although Wireshark has been widely utilized as a comprehensive tool, it possesses a plethora of 
filters specific to OpenFlow packets. Moreover, G. Tangary demonstrated that adaptive 

monitoring functions can be integrated into the packet-processing pipeline to maintain the 

accuracy of monitoring reports in the face of dynamic resource availability in the data plane [7]. 
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M. Alsaeedi, M. Mohamad, and A. AL-Roubaiey have outlined four primary challenges in 
OpenFlow-SDN that contribute to traffic overhead. They also highlighted research challenges 

that must be addressed to develop more adaptive and scalable OpenFlow-SDN solutions under 

large-scale and dynamic network conditions. One of these challenges involves monitoring and 

classifying network flows at the application level [8]. 
 

3. PROPOSED MONITORING  SYSTEM 
 

In this section, the high level architecture, and detailed design of the proposed monitoring system 
are introduced.   

 

3.1. High level architecture   
 

The high-level architecture, as depicted in Figure (2), is arranged in a layered structure where the 

top layer contains management applications. Each management application has two primary 
elements: an information analyzer and a decision maker. The functionality of these two elements 

differs from one management application to another. For example, the functionality of the two 

elements of fault detection is different from that of anomaly detection and performance 

management. The information collected for each application is distinct from the others. The 
decision maker receives the results of the information analyzer and makes a decision that satisfy 

the objectives of the application. This decision should be sent to the routing element of the 

monitor. 
 

The monitor software layer has an information collector, a routing element, and collected 

information tables. The information collector receives requests from management applications 
and collects the necessary measurement data. The data needed for each application differs, so the 

information collector can collect various types of data for each management application (calling 

application). All collected data is stored in the collected information tables and returned to the 

calling management application. The routing element receives a decision request from each 
application to call the southbound interface (API Function) for reconfiguring the infrastructure 

switches and links to satisfy the received decision. The detailed design of the information 

collector element is shown in the figure (3). 
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Figure 2. The proposed architecture of the monitor software system 

 

The information collector retrieves information about the infrastructure's state by sending a call to 
the controller that invokes the southbound interface APIs and stores the retrieved information in 

the collected information tables. The information analyzer of the management application reads 

the collected information and analyzes it based on certain measurements. The analyzer's results are 

sent to the decision maker, which determines the new states of the infrastructure to solve problems 
such as enhancing performance. The routing element calls the controller, which in turn calls the 

Southbound interface APIs to implement changes in the flows. The infrastructure layer is 

simulated by a tool such as Mininet and controlled by a controller like Floodlight. 
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Figure 3: The proposed Architecture of monitor system design 

 

The monitoring system consists of many modules: requester manipulator, translator,   openflow 
API caller, results collector, and results returner. The requester manipulator receives requests 

from Management Applications (MAs) and stores them in the requests table. The translator 

module translates each high-level request using topology tables into a low-level request and 
stores it in the low-level request table. The OpenFlow API caller module sends the low-level 

request to the controller, creating an OpenFlow thread to execute the required operation function 

(request).  
 

The measurement results produced by the OpenFlow threads are collected by the results collector 

module. The collected results are then stored in the results table. The results returner module 

associates the relevant high-level target and delivers (returns) each result to its MA request. 
 

3.2. The Synchronization module (interface) 
 

The synchronization interface is provided to synchronize monitoring information in a distributed 

and scalable data plane. It facilitates the exchange of monitoring data between different 

monitoring system instances. 
 

3.3. The database schema of data plane topology 
 

The topologies of data planes are represented as graphs. Each graph (data plane topology) is 

represented as a set of database tables. The schema of data plane topology is represented as 

follows: 
Host (Host-ID, IPv4addres, IPv6address, Switch, Port) 

Link (Direction, SourcePort, SourceSwitch, DestinationPort, DestinationSwitch, Type) 

Switch (Switch-ID, IPv4address, Role) 
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3.4. High-Level- Requests Table schema 
 

The requests from management applications are received by monitoring module and stored in the 

high-level requests table. The schema of the high level requests table is as follows: 
High-level-requests (MA-id, Req-id, task, and HL- target, Intervals). 

Each high level request in the schema has the ID of the management Application (MA-id) that 

sent the request followed by an identifier (Req-id). Each request has a task (needed measurements 
data function), followed by the high level name of the target (node, or link). Intervals field 

represents the frequencies of executing the request. 

 

3.5. Low-level requests Table schema 
 

This table schema is as follows: 
Low-Level-requests (MA-id, Req-id, Op –code, and LL-target, Intervals). 

The op-code field is the corresponding Openflow function of a task in High-Level- request.The 

Low-level-target (LL-target) field is the physical address (targets) corresponding to the High-

Level -target in the High-Level -requests. Intervals field represents the frequencies of executing 
the request. 

 

3.6. Results-table schema 
 

This schema of this table is as follows: 

MA-id, Req-id, measurments-data, and timestamp. 
Where MA-id is the identifier of the calling management application.The algorithm of 

information collector module is shown as follows: 

 
While there is a request from MAs // MA=Management Application 
        Call request manipulator () 

         { 

          Request manipulator ( ) 

              { 

               Receive a request // high level request 

               Store the request in HLR table //HLR=High Level Request 

               Call translator () 

             } 

           Translator ( ) 

             { 

                While HLR table != empty 

                 { Read HLR // HLR= High Level Request 
                     Search in topology database for mapping 

                     Map HLR to LLR     //LLR=Low Level Request 

                     Store LLR in LLR database 

                    Call openflowAPIcaller ( ) 

                } 

            } 

          openflowAPIcaller (  

            { 

                While LLR in low-level-request-table 

               { 

       execute openflow API equivalent to LLR 
 

                    call results collector ( 

               } 

            } 
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       Results collector ( 

           {    

             While (results 

             { 

                    Receive results from openflow thread 
           Store results in results table 

      Call results returner () 

                                      } 

                                   } 

               Results returner ( ) 

                     { 

                      While (result table != empty 

                         { 

    Return results to its MA caller 

                 Call synchronization-interface ( results ) 

                          } 

                      } 
Synchronization-Interface ( information) 

                  {  

         Exchange information with other monitors. 

                  } 

 

4. IMPLEMENTATION AND VALIDATION 
 

For implementing and testing the proposed monitoring architecture we used the following:  
 

1. Python programming language 

 

2. OpenFlow: 
 Originally, OpenFlow defined the communication protocol in SDN architectures that allowed 

the SDN controller to directly interact with network device forwarding planes, including physical 

and virtual (hypervisor-based) switches and routers. This enables the network to better adapt to 
changing business requirements [1]. 

 

3. Floodlight controller 
 The Floodlight controller is a widely used SDN controller written in Java and primarily 

developed by Big Switch Networks. It is responsible for controlling and managing the SDN 

network. The controller supports REST applications that can perform its functions. These REST 

applications utilize Floodlight's REST API to interact with the controller, allowing them to retrieve 
information from the controller and send network configurations to it. Additionally, the Floodlight 

controller comes equipped with a web-based GUI [9]. 

 
 

 

4. Mininet 

Mininet is a network emulator that can create a virtual network comprising hosts, switches, 
controllers, and links. The hosts in Mininet run standard Linux network software, and the switches 

support OpenFlow, allowing for highly customizable routing and Software-Defined Networking. 

Mininet is useful for research, development, learning, prototyping, testing, debugging, and any 
other tasks that could benefit from having an experimental network on a laptop or other PC [10]. 
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4.1. Implementing a topology  
 

To create the topology shown in Figure 4a,   we implemented the Mininet emulator code in Figure 

4b. The topology comprises four hosts, four switches, and eight links.  We utilized the created 
topology to collect measurement data for validating the proposed monitoring system. Figure 5 

illustrates the metadata of the hosts in the created topology, while Figure 6 shows the metadata of 

the topology links. Figure 7 represents the metadata of the topology switches. 
 

 
 

Figure 4.a: The topology graph 

 

 
 

Figure 4.b. An example for topology created using the Mininet 
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Figure 5. Metadata of the hosts of the created topology 

 

 
 

Figure 6. Metadata of the topology links. 

 

 

 
Figure 7. Metadata of the topology switches. 
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4.2. Test cases for validating the proposed monitoring system 
 

In this section, two test cases as concrete examples of validating the monitoring system have been 

given. 
 

4.3. Test case1 (normal case) 
 
In this test case, as shown in Figure 8, all links are available. The proposed monitoring system 

retrieved measurement data of all links between the four switches. 

 

 
 

Figure 8: Retrieved measurement data by Proposed monitoring system in normal case 

 

4.4. Test case 2 (error case) 
 
In this test case as shown in figure 9, the link between switch1 and switch2 is down (not available) 

but other links are available. Therefore as shown in the Figure 9, the measurement data on the 

available links retrieved by the proposed monitoring system. We notice also there is no 
measurement data retrieved from the down link. 

 

 
 

Figure 9. Retrieved measurement data by proposed monitoring system in in abnormal case  

(link between swtch1 and switch2 s down). 

 

5. ENHANCING SCALABILITY OF THE PROPOSED SDN MONITORING 

SYSTEM  
 
We address the scalability issue in different dimension enhancing the performance of SDN by 

increasing TCP throughput and reducing latency supporting a large number of tenant’s 

applications. 
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The scalability of proposed monitoring system and SDN achieved by slicing the physical resources 
(data plane) to many slices. Each slice is controlled by a controller and monitored by a copy of the 

proposed monitoring system. Large number of tenants applications can run in parallel on different 

slices. Each application calls the proposed monitoring system that is installed on the target slice for 

collecting measurement data needed by the application.  
 

In this paper to achieve the scalability by slicing the physical resources, the FlowVisor has been 

used. The flowvisor is a special OpenFlow controller that can slice the physical network into 
multiple (potentially overlapping) virtual slices. 

 

5.1. Slicing experiment. 
 

We used the miniNet emulator for creating the topology shown in Figure 10.  The topology has 4 

hosts, 4 switches and 8 links.    By using the flowvisor, this topology sliced into two slices: slice-1 
(upper-slice) and slice-2 (lower-slice). To use the FlowVisor to slice the topology in Figure 10 to 

two slices (upper and lower), we implemented the following code shown in Figure 11. 

 

 
 

Figure 10. The non-sliced topology 

 

 
 

Figure 11. The slicing code 

 

The metadata and topologies of the two slices (slie-1 and slice-2) are shown in Figures 12.a & b, 

and Figures 13.a & b respectively. The slice-1 is controlled by a Floodlight controller and 

monitored by a copy of the proposed monitoring system. The slice-2   is controlled by another 
copy of Floodlight controller and monitored by another copy of the monitoring system. 
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Figure (12.a). The slice-1(upper-slice) Metadata 

 

 
 

Figure (12. b). The Slice-1 (upper Slice) graph 

 

As shown in Figures (12.a&b) the upper slice contains three switches and two hosts. The physical 

addresses of these switchesand hosts are shown in Figure (12. a).  
 

 

 
 

Figure (13.a) .The slice-2 (Lower Slice)  metadata 
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As shown in Figures (13.a & b) the slice-2 contains three switches. The addresses of the switches 
are shown in the lower slice metadata (Figure 13.b).  

 

5.2. Throughput and latency of non-sliced (scenario-1) and sliced (scenario-2) 

topologies  
 

We have conducted two scenarios to compare between non-sliced topology performance and the 
two sliced topologies (higher and lower) performance. The performance metrics are TCP 

throughput and latency. 

 

 
 

Figure (13.b). The slice-2 (Lower Slice) Graph 

 

In the first scenario the non-slicing topology is managed by only one floodlight controller and 

monitored by one copy of the proposed monitoring system and many TCP-packets have been sent 
between switches.  

 

As shown in Figure 14, the non-slice topology is controlled by a Floodlight controller and   

monitored by a copy of the proposed monitoring system that collects measurement data to tenant 
applications. 
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Figure 14.Tenant’s applications run on the non-sliced topology 

 

In the second scenario, two slices have been created and each slice is controlled by a separate 

floodlight controller and monitored by a copy of the proposed monitoring system. Each 
monitoring copy synchronizes with each other for data exchange 

 

 
 

Figure 15.  Tenant’s applications run in parallel on the slices using different  

copies of the monitoring system. 
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As shown in Figure 15, each slice is controlled by a Floodlight controller and   monitored by a 
copy of the proposed monitor where the two monitoring copies are synchronized.  Each 

monitoring copy collects measurement data to tenant applications. These applications run on the 

two slices in parallel. 

The performance of scenario-1 and scenario-2 has been measured by measuring the throughput 
and latency metrics.  The results of measuring the throughput of each scenario are shown in 

Figure.16 (a,b,c,d) and results of measuring the latency of each scenario are shown in Figures 17 

(a,b,c,d) 
 

 
 

Figure.16.a: Switch2 to switch1 TCP throughput without slicing 

 

 
 

Figure.16.b: Switch2 to switch1 TCP throughput slice 1 (upper slice) 

 

From Figure 16.a and Figure 16.b, we notice that the throughput of slice-1 (upper slice) is greater 

than the throughput of non-slicing topology. This is because the overhead of the slice controller is 
reduced due to the reduction of traffic collision. The same thing the throughput of slice2 (lower 

slice) is greater than the throughput of non-sliing topology as shown in Figures 16.c and  16.d 
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Figure.16.c: Switch3 to switch1 TCP throughput without slicing 

 

 
 

Figure.16.d: Switch3 to switch1 TCP throughput of slice2 

 
In addition to increasing the throughput, more than one tenant applications run in parallel on the 

generated slices (slice-1 and slice-2 in scenario-2) as shown in Figure 15, which verifies multi-

tenants applications. 
The latency of scenario-1 (based non-sliced topology) and latency of scenario-2 (based on the two 

slices) have been measured. The results are shown in Figures 17 (a, b,c, and d).In the following 

figures, RTT stands for Round Trip Time. 

 

 
 

Figure 17.a   Latency of s2 to s1 in non-sliced 
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Figure 17.b   Latency of s2 to s1 in slice-1 

 

In Figure 17.a, and 17.b we can see that the latency between the two switches S2 and S1 in 

scenario-1 (non-sliced topology-based) is greater than the value of latency between the same two 
switches in slice-1 (scenario-2). The maximum value of latency in Scenario-1 (non-sliced 

topology-based) nearly equal 0.04ms but in slice-1 (scenario-2) is nearly equal 0.0275ms (i.e. less 

than 0.03ms). This means the latency (factor of performance) of the slice-1(scenario-1) is better 

than the latency of scenario-1(non-sliced topology-based). 
 

Also, in Figures 17.c, and 17.d, we notice that the latency of slice 2 (scenario-2) between switch 3 

and switch 1 is between 0.04ms and 0.045ms but the latency of scenario-1 (non-sliced topology-
based) between switch 3 and switch 1 is nearly equals 0.07ms. This means that the latency of 

slice-2 (scenario-2) is better than the latency of scenario-1(non-sliced topology-based). 

 

 
 

Figure 17.c   Latency of s3 to s1 in non-sliced 

 

 
 

Figure 17.d   Latency of s3 to s1 in slice-2 



International Journal of Distributed and Parallel systems (IJDPS) Vol 15, No. 1, January 2024 

   19 

 

Since the throughput of each slice (scenario-2) is better than the throughput of scenario-1 (non-
sliced topology-based) and the latency of each slice (scenario-2) also better than the latency of 

scenario-1(non-sliced topology –based), then the performance of scenario-2 (slices-based) is better 

than the scenario-1 (non-sliced network-based). Also the number of tenant’s applications that run 

in parallel on the slices of scenario -2 are increased and monitored by copies of the synchronized 
proposed monitoring system.    

 

From the above discussion, the proposed monitoring system is scalable in two dimensions (i) 
increasing the size of data-plane without sacrificing the performance. This is by slicing the data-

plane where each slice monitored by a copy of the proposed monitoring system where all copies 

are synchronized together.   (ii) Increasing the number of tenant applications that run in parallel 
and monitored by the proposed monitor.  By experiments that have been conducted in this research 

we noticed that the throughput and latency of each slice is better than the non-sliced.  Thus, in 

addition to the above two dimensions the performance (throughput and latency of SDN) of slicing 

scenario is better than non-sliced scenario. 
 

6. PERFORMANCE EVALUATIONS 
 

We have implemented and tested the proposed scalable monitoring system, which can retrieve 
measurement data from the simulated data plane based on the management application request. 

The monitor can receive a request from a management application to collect measurement data, 

which may differ from one application to another.  

 
The proposed monitoring system is scalable, capable of managing large-scale networks by 

dividing them into multiple slices. Each slice is managed by a copy of the proposed monitoring 

system, and all copies are synchronized for exchanging information through the synchronization 
module of the monitoring system. Also, the proposed monitoring system monitors multitenant 

applications. The proposed scalable monitoring system has high throughput and low latency than 

the non-slicing based monitoring system. The limitation of the proposed monitoring system is 
working only on Floodlight SDN controller. In the future, it will be enhanced to work with other 

SDN controllers. 

 

Based on the common criteria between our proposed monitoring system solution and other solutions 
we compared between our proposed scalable monitoring solution and Vivi Monita solution [11] in 

table -1. Also we compared our proposed monitoring solution with Tangari's Research in table-2. 

In the first comparative study, we conducted a side-by-side examination of our research and the 
notable work conducted by Vivi Monita, as outlined in the 2023 paper titled "Network Slicing Using 

FlowVisor for Enforcement of Bandwidth Isolation in SDN Virtual Networks." [9]. Our study 

concentrates on creating a scalable monitoring system for Software-Defined Networks (SDNs), 

strategically employing FlowVisor to facilitate network slicing and enhance scalability without 
compromising performance. Conversely, Vivi Monita's research is centered on achieving tenant 

isolation and enforcing bandwidth isolation in SDN virtual networks through the adept utilization of 

FlowVisor. By closely analyzing the methodologies and outcomes of each study, we aim to detect the 
distinctive contributions and methodologies employed in the dynamic field of our proposed solution 

and Vivi Monita's Study [11] 
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Table 1: Acomparative study between our proposed monitoring solution and Vivi Monita solution 

 
Aspect Our proposed monitoring solution Vivi Monita's Study [11] 

Aims of  

Study 
A scalable monitoring system for SDNs. 

Ensuring tenant isolation in SDN using 

FlowVisor and an SDN controller. 

Methodology 

 Utilized FlowVisor for effective network 
slicing 

Two types of renters and testing 
procedures were used for connectivity and 

functionality. 

Key findings 
Scalable monitoring system for various SDN 

scales. 

Correct host linkage achieved without 

turning on FlowVisor. 

Multitenancy 

approach 

Multiple copies run in parallel. Hosts can only communicate within the 

same tenant. 

Contribution 
Addressing scalability concerns in SDNs. Correct host linkage and tenant isolation 

through network slicing. 

 

In the second comparison (Table 2), we compared our research on scalable SDN monitoring with 
Tangari's [7] work on resource-efficient monitoring for future networks. Our emphasis lies in 

scalability without compromising performance, while Tangari introduces innovative 

methodologies for accurate monitoring. We assess key aspects, including scalability models, 
monitoring frameworks, adaptive solutions, and performance metrics, aiming to highlight 

distinctive contributions and advancements in both studies, offering insights into the evolving 

landscape of SDN monitoring 
 

Table 2: A comparative study between our proposed monitoring solution and Tangari's solution 

 
Aspect The proposed scalable monitoring system Tangari's Research [7] 

Objective Scalable SDN monitoring system. Accurate and resource-efficient 

monitoring for future networks. 

Scalability Increasing the number of tenant applications 

and the size of the physical network without 

sacrificing SDN performance. 

Increasing network sizes, avoiding 

processing bottlenecks in large-scale 

networks. 

Monitoring 

Framework 

Slices the network using FlowVisor tool, 

synchronized copies using OpenFlow protocol. 

Decentralized and self-adaptive 

monitoring framework (SAM) with 

modular architecture for diverse 

management applications. 

Adaptive 

Solutions 

Synchronized copies running in parallel, 
adaptive solution for efficient data extraction 

(SAM). 

SAM for dynamic reconfiguration under 
dynamic traffic conditions, MONA for 

resilience to bottlenecks in software 

dataplanes. 

Measurement 

Technique 

Processing measurement data from different 

slices in parallel. 

Classifiers used to reduce measurement 

data-processing costs for various 

monitoring queries. 

Performance 

Metrics 

Performing scalability without sacrificing SDN 

performance. High throughput and low latency 

Enhanced monitoring accuracy levels for 

various measurement tasks. 

 

7. CONCLUSION 
 
In this paper, a scalable monitoring system for SDN is proposed.The scalability has been 

addressed in two dimensions without sacrificing the performance of SDN. The two dimensions 

are increasing the size of SDN and increasing the number of tenants and their applications.  
 

The monitoring system is a vendor-independent, capable of retrieving measurement data from 

any infrastructure device, including switches, routers, links, and others. This is because the 
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monitoring system uses the OpenFlow protocol for retrieving measurement data, which is 
infrastructure-independent. The scalability has been achieved by slicing the topology of SDN to 

slices using flowvisor tool. Each slice has been controlled by a floodlight controller and 

monitored by a copy of the proposed monitoring system. MutliTenant applications run in parallel 

on multi-slices.  
 

The proposed scalable monitoring system has been tested and evaluated. The results of evaluation 

show that the number of tenants’ applications can be increased without sacrificing the 
performance. Also, the size of the network can be increased without sacrificing the performance 

by slicing the networks to slices monitored by the proposed monitoring system. The scalable 

monitoring system is working only with Floodlight SDN controller.In the future the proposed 
monitoring system will be enhanced to be adaptable (i.e. it works with more than one SDN 

controller). 
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