
International Journal of Distributed and Parallel systems (IJDPS) Vol 15, No. 1, January 2024

DOI: 10.5121/ijdps.2024.15101 1

A SCALABLE MONITORING SYSTEM FOR SOFTWARE

DEFINED NETWORKS

Mahmoud Eissa, Ahmed Yahya, Usama Gad

Department of Electrical Engineering, Al-Azhar University,

Nasr City, Cairo-11371, Egypt.

ABSTRACT

Monitoring functionality is an essential element of any network system. Traditional monitoring solutions

are mostly used for manual and infrequent network management tasks. Software-defined networks (SDN)

have emerged with enabled automatic and frequent network reconfigurations. In this paper, a scalable

monitoring system for SDN is introduced. The proposed system monitors small, medium, and large-scale

SDN. Multiple instances of the proposed monitoring system can run in parallel for monitoring many SDN
slices. The introduced monitoring system receives requests from network management applications,

collects considerable amounts of measurement data, processes them, and returns the resulting knowledge

to the network management applications. The proposed monitoring system slices the network (switches and

links) into multiple slices. The introduced monitoring system concurrently monitors applications for

various tenants, with each tenant's application running on a dedicated network slice. Each slice is

monitored by a separate copy of the proposed monitoring system. These copies operate in parallel and are

synchronized. The scalability of the monitoring system is achieved by enhancing the performance of SDN.

In this context, scalability is addressed by increasing the number of tenant applications and expanding the

size of the physical network without compromising SDN performance.

KEYWORDS

Software Defined Network; monitoring system; monitoring system architecture; network slicing;

measurements data; network management applications.

1. INTRODUCTION

One of the functions of a Network Monitoring System (NMS) is to monitor an internal network
for different types of issues or for managing the network. The NMS has the capability to identify

and assist in resolving various issues, including slow web page downloads, lost emails,

suspicious user activity, insecure network connections, and server crashes.[1].

In contrast to Intrusion Detection Systems (IDSs) or Intrusion Prevention Systems (IPSs), which

primarily focus on detecting and preventing intrusions, Network Monitoring Systems (NMSs) are

utilized to evaluate the network's performance during regular operations and gather measurement
data for network management applications, including IDSs. To effectively execute traffic

monitoring tasks, the NMS should have the capability to monitor various devices from different

vendors, ranging from mobile phones to hosts, servers, routers, and switches [2].

The SDN paradigm aims to enhance flexibility by separating the control and data planes of

conventional networks. The data plane is situated in forwarding devices enabled with SDN, such

as SDN switches, while the control plane is logically centralized in new entities referred to as
SDN controllers. This separation of planes in SDN facilitates the establishment of distinct layers

https://airccse.org/journal/ijdps/current2024.html
https://doi.org/10.5121/ijdps.2024.15101

International Journal of Distributed and Parallel systems (IJDPS) Vol 15, No. 1, January 2024

 2

of abstraction, enabling a high level of flexibility in network management. Figure 1 illustrates the
architecture of an SDN-based network, showcasing the various entities, planes, and layers of

abstraction involved.[1], [3].

Figure 1. Software-Defined Networking architecture [1].

Application plane: SDN applications are granted resources by the SDN controller via Application

Programming Interfaces (APIs). These applications encompass a range of functionalities,

business applications, network management, and security management. They can be developed to
identify issues, malicious activities, anomalies, or authors. [1].

Control plane: This plane is responsible for assessing the local status of the forwarding devices
within the network and enforcing appropriate policies for the network's optimal functioning. Such

policies may include routing, traffic engineering, or security policy enforcement. Unlike

traditional networks, SDN employs flow-based forwarding decisions instead of destination-based
forwarding decisions. All packets that meet a specific criterion are handled with the same actions.

The control plane takes charge of determining the path of traffic and managing all network

signaling activities to ensure that the network devices are properly configured [1][4].

Data plane: This plane performs traffic forwarding in network devices like switches based on the

policies established by the control plane. This includes traffic filtration and various actions that

can be carried out on incoming packets in a switch. It is noteworthy that in SDN, switches are of
a general-purpose nature, implying that they implement flow-level policies established by the

control plane and can combine actions that were previously specific to different types of network

devices, such as routers and switches, in conventional networks. This plane is also referred to as

the "forwarding plane."[5].

There are numerous interfaces that exist between these layers, namely the northbound and

southbound interfaces. The northbound interface facilitates communication between the
controller and application layers, while the southbound interface enables communication between

the controller and the data forwarding layer. [6]

The SDN model is founded upon "open interfaces." The controller provides an API accessible to

control applications, enabling them to verify and change the network's status. Additionally, new

functionalities can be incorporated by developing new applications. The Controller uses open

protocols to program network nodes, such as switches and routers, in accordance with application
criteria. The most widely recognized protocol is OpenFlow, which can be deemed a standard

protocol.

International Journal of Distributed and Parallel systems (IJDPS) Vol 15, No. 1, January 2024

 3

SDN monitoring systems should possess the ability to gather vast quantities of diverse
measurement data, process them in real-time, and promptly supply the resulting knowledge to

network decision-making procedures. Meeting the demands of SDN monitoring systems is a

substantial challenge due to the current networks vast, dynamic traffic volumes, size, and the

stringent constraints on time and hardware resources, these challenges will be tackled in this
paper.

It introduces and develops a scalable monitoring system that is capable of monitoring small,
medium and large size networks. This system extends its monitoring capabilities to an increased

number of tenant applications, encompassing management applications. It monitors management

applications and allows to generate accurate and frequent monitoring reports concerning a variety
of network events and emerging conditions such as network performance bottlenecks, anomaly

detection and others. The rest of this paper is organized as follows: Section 2 shows related work

to this paper while Section 3 discusses the proposed architecture and solution. The

implementation and validation of the proposed system are discussed in section 4. Proposed
experiments for enhancing the scalability of monitoring system are discussed in section 5 while

evaluations of the proposed architecture and solution are discussed in section 6. Section 7

concludes the paper.

2. RELATED WORK

Several studies have been done to monitor Software Defined Networking. However, there are still

weaknesses in these approaches. The following section critically reviews existing research related
to this paper.

J. Suariz proposed a flow monitoring solution for OpenFlow Software-Defined Networks that
generates reports with flow-level measurements like those provided by NetFlow. To minimize the

overhead on the controller and reduce the number of flow entries needed in the switch, two traffic

sampling methods can be implemented in current SDN switches without any modifications to the
OpenFlow specifications. These methods were then implemented in the OpenDaylight controller

and their accuracy and overhead were assessed in a testbed using real-world traffic traces. [1].

B. Isyaku, M. Zahid, M. Kamat, K. A. Bakar, and F. Ghaleb presented cutting-edge research
offering various solutions to address SDN performance issues stemming from the limited flow

table. To overcome this, fuzzy theory and machine learning techniques can be leveraged to

identify frequent flow entries that should be retained in the flow table. Consequently, this paper
identifies several challenges, including update operations, resource constraints, communication

overhead, and packet processing delays [3].

M. Scarlato, on the other hand, employed three tools for network monitoring in Software-Defined
Networks to determine how these tools could be adapted to SDN. These tools include Ntop,

Wireshark, and Argus. Their performance was evaluated, and the outcome revealed that Ntop and

Argus did not behave as anticipated, as they were unable to recognize an OpenFlow traffic,
despite their capability to identify NetFlow and sFlow traffic [5].

Although Wireshark has been widely utilized as a comprehensive tool, it possesses a plethora of
filters specific to OpenFlow packets. Moreover, G. Tangary demonstrated that adaptive

monitoring functions can be integrated into the packet-processing pipeline to maintain the

accuracy of monitoring reports in the face of dynamic resource availability in the data plane [7].

International Journal of Distributed and Parallel systems (IJDPS) Vol 15, No. 1, January 2024

 4

M. Alsaeedi, M. Mohamad, and A. AL-Roubaiey have outlined four primary challenges in
OpenFlow-SDN that contribute to traffic overhead. They also highlighted research challenges

that must be addressed to develop more adaptive and scalable OpenFlow-SDN solutions under

large-scale and dynamic network conditions. One of these challenges involves monitoring and

classifying network flows at the application level [8].

3. PROPOSED MONITORING SYSTEM

In this section, the high level architecture, and detailed design of the proposed monitoring system
are introduced.

3.1. High level architecture

The high-level architecture, as depicted in Figure (2), is arranged in a layered structure where the

top layer contains management applications. Each management application has two primary
elements: an information analyzer and a decision maker. The functionality of these two elements

differs from one management application to another. For example, the functionality of the two

elements of fault detection is different from that of anomaly detection and performance

management. The information collected for each application is distinct from the others. The
decision maker receives the results of the information analyzer and makes a decision that satisfy

the objectives of the application. This decision should be sent to the routing element of the

monitor.

The monitor software layer has an information collector, a routing element, and collected

information tables. The information collector receives requests from management applications
and collects the necessary measurement data. The data needed for each application differs, so the

information collector can collect various types of data for each management application (calling

application). All collected data is stored in the collected information tables and returned to the

calling management application. The routing element receives a decision request from each
application to call the southbound interface (API Function) for reconfiguring the infrastructure

switches and links to satisfy the received decision. The detailed design of the information

collector element is shown in the figure (3).

International Journal of Distributed and Parallel systems (IJDPS) Vol 15, No. 1, January 2024

 5

Figure 2. The proposed architecture of the monitor software system

The information collector retrieves information about the infrastructure's state by sending a call to
the controller that invokes the southbound interface APIs and stores the retrieved information in

the collected information tables. The information analyzer of the management application reads

the collected information and analyzes it based on certain measurements. The analyzer's results are

sent to the decision maker, which determines the new states of the infrastructure to solve problems
such as enhancing performance. The routing element calls the controller, which in turn calls the

Southbound interface APIs to implement changes in the flows. The infrastructure layer is

simulated by a tool such as Mininet and controlled by a controller like Floodlight.

International Journal of Distributed and Parallel systems (IJDPS) Vol 15, No. 1, January 2024

 6

Figure 3: The proposed Architecture of monitor system design

The monitoring system consists of many modules: requester manipulator, translator, openflow
API caller, results collector, and results returner. The requester manipulator receives requests

from Management Applications (MAs) and stores them in the requests table. The translator

module translates each high-level request using topology tables into a low-level request and
stores it in the low-level request table. The OpenFlow API caller module sends the low-level

request to the controller, creating an OpenFlow thread to execute the required operation function

(request).

The measurement results produced by the OpenFlow threads are collected by the results collector

module. The collected results are then stored in the results table. The results returner module

associates the relevant high-level target and delivers (returns) each result to its MA request.

3.2. The Synchronization module (interface)

The synchronization interface is provided to synchronize monitoring information in a distributed

and scalable data plane. It facilitates the exchange of monitoring data between different

monitoring system instances.

3.3. The database schema of data plane topology

The topologies of data planes are represented as graphs. Each graph (data plane topology) is

represented as a set of database tables. The schema of data plane topology is represented as

follows:
Host (Host-ID, IPv4addres, IPv6address, Switch, Port)

Link (Direction, SourcePort, SourceSwitch, DestinationPort, DestinationSwitch, Type)

Switch (Switch-ID, IPv4address, Role)

International Journal of Distributed and Parallel systems (IJDPS) Vol 15, No. 1, January 2024

 7

3.4. High-Level- Requests Table schema

The requests from management applications are received by monitoring module and stored in the

high-level requests table. The schema of the high level requests table is as follows:
High-level-requests (MA-id, Req-id, task, and HL- target, Intervals).

Each high level request in the schema has the ID of the management Application (MA-id) that

sent the request followed by an identifier (Req-id). Each request has a task (needed measurements
data function), followed by the high level name of the target (node, or link). Intervals field

represents the frequencies of executing the request.

3.5. Low-level requests Table schema

This table schema is as follows:
Low-Level-requests (MA-id, Req-id, Op –code, and LL-target, Intervals).

The op-code field is the corresponding Openflow function of a task in High-Level- request.The

Low-level-target (LL-target) field is the physical address (targets) corresponding to the High-

Level -target in the High-Level -requests. Intervals field represents the frequencies of executing
the request.

3.6. Results-table schema

This schema of this table is as follows:

MA-id, Req-id, measurments-data, and timestamp.
Where MA-id is the identifier of the calling management application.The algorithm of

information collector module is shown as follows:

While there is a request from MAs // MA=Management Application
 Call request manipulator ()

 {

 Request manipulator ()

 {

 Receive a request // high level request

 Store the request in HLR table //HLR=High Level Request

 Call translator ()

 }

 Translator ()

 {

 While HLR table != empty

 { Read HLR // HLR= High Level Request
 Search in topology database for mapping

 Map HLR to LLR //LLR=Low Level Request

 Store LLR in LLR database

 Call openflowAPIcaller ()

 }

 }

 openflowAPIcaller (

 {

 While LLR in low-level-request-table

 {

 execute openflow API equivalent to LLR

 call results collector (

 }

 }

International Journal of Distributed and Parallel systems (IJDPS) Vol 15, No. 1, January 2024

 8

 Results collector (

 {

 While (results

 {

 Receive results from openflow thread
 Store results in results table

 Call results returner ()

 }

 }

 Results returner ()

 {

 While (result table != empty

 {

 Return results to its MA caller

 Call synchronization-interface (results)

 }

 }
Synchronization-Interface (information)

 {

 Exchange information with other monitors.

 }

4. IMPLEMENTATION AND VALIDATION

For implementing and testing the proposed monitoring architecture we used the following:

1. Python programming language

2. OpenFlow:
 Originally, OpenFlow defined the communication protocol in SDN architectures that allowed

the SDN controller to directly interact with network device forwarding planes, including physical

and virtual (hypervisor-based) switches and routers. This enables the network to better adapt to
changing business requirements [1].

3. Floodlight controller
 The Floodlight controller is a widely used SDN controller written in Java and primarily

developed by Big Switch Networks. It is responsible for controlling and managing the SDN

network. The controller supports REST applications that can perform its functions. These REST

applications utilize Floodlight's REST API to interact with the controller, allowing them to retrieve
information from the controller and send network configurations to it. Additionally, the Floodlight

controller comes equipped with a web-based GUI [9].

4. Mininet

Mininet is a network emulator that can create a virtual network comprising hosts, switches,
controllers, and links. The hosts in Mininet run standard Linux network software, and the switches

support OpenFlow, allowing for highly customizable routing and Software-Defined Networking.

Mininet is useful for research, development, learning, prototyping, testing, debugging, and any
other tasks that could benefit from having an experimental network on a laptop or other PC [10].

International Journal of Distributed and Parallel systems (IJDPS) Vol 15, No. 1, January 2024

 9

4.1. Implementing a topology

To create the topology shown in Figure 4a, we implemented the Mininet emulator code in Figure

4b. The topology comprises four hosts, four switches, and eight links. We utilized the created
topology to collect measurement data for validating the proposed monitoring system. Figure 5

illustrates the metadata of the hosts in the created topology, while Figure 6 shows the metadata of

the topology links. Figure 7 represents the metadata of the topology switches.

Figure 4.a: The topology graph

Figure 4.b. An example for topology created using the Mininet

International Journal of Distributed and Parallel systems (IJDPS) Vol 15, No. 1, January 2024

 10

Figure 5. Metadata of the hosts of the created topology

Figure 6. Metadata of the topology links.

Figure 7. Metadata of the topology switches.

International Journal of Distributed and Parallel systems (IJDPS) Vol 15, No. 1, January 2024

 11

4.2. Test cases for validating the proposed monitoring system

In this section, two test cases as concrete examples of validating the monitoring system have been

given.

4.3. Test case1 (normal case)

In this test case, as shown in Figure 8, all links are available. The proposed monitoring system

retrieved measurement data of all links between the four switches.

Figure 8: Retrieved measurement data by Proposed monitoring system in normal case

4.4. Test case 2 (error case)

In this test case as shown in figure 9, the link between switch1 and switch2 is down (not available)

but other links are available. Therefore as shown in the Figure 9, the measurement data on the

available links retrieved by the proposed monitoring system. We notice also there is no
measurement data retrieved from the down link.

Figure 9. Retrieved measurement data by proposed monitoring system in in abnormal case

(link between swtch1 and switch2 s down).

5. ENHANCING SCALABILITY OF THE PROPOSED SDN MONITORING

SYSTEM

We address the scalability issue in different dimension enhancing the performance of SDN by

increasing TCP throughput and reducing latency supporting a large number of tenant’s

applications.

International Journal of Distributed and Parallel systems (IJDPS) Vol 15, No. 1, January 2024

 12

The scalability of proposed monitoring system and SDN achieved by slicing the physical resources
(data plane) to many slices. Each slice is controlled by a controller and monitored by a copy of the

proposed monitoring system. Large number of tenants applications can run in parallel on different

slices. Each application calls the proposed monitoring system that is installed on the target slice for

collecting measurement data needed by the application.

In this paper to achieve the scalability by slicing the physical resources, the FlowVisor has been

used. The flowvisor is a special OpenFlow controller that can slice the physical network into
multiple (potentially overlapping) virtual slices.

5.1. Slicing experiment.

We used the miniNet emulator for creating the topology shown in Figure 10. The topology has 4

hosts, 4 switches and 8 links. By using the flowvisor, this topology sliced into two slices: slice-1
(upper-slice) and slice-2 (lower-slice). To use the FlowVisor to slice the topology in Figure 10 to

two slices (upper and lower), we implemented the following code shown in Figure 11.

Figure 10. The non-sliced topology

Figure 11. The slicing code

The metadata and topologies of the two slices (slie-1 and slice-2) are shown in Figures 12.a & b,

and Figures 13.a & b respectively. The slice-1 is controlled by a Floodlight controller and

monitored by a copy of the proposed monitoring system. The slice-2 is controlled by another
copy of Floodlight controller and monitored by another copy of the monitoring system.

International Journal of Distributed and Parallel systems (IJDPS) Vol 15, No. 1, January 2024

 13

Figure (12.a). The slice-1(upper-slice) Metadata

Figure (12. b). The Slice-1 (upper Slice) graph

As shown in Figures (12.a&b) the upper slice contains three switches and two hosts. The physical

addresses of these switchesand hosts are shown in Figure (12. a).

Figure (13.a) .The slice-2 (Lower Slice) metadata

International Journal of Distributed and Parallel systems (IJDPS) Vol 15, No. 1, January 2024

 14

As shown in Figures (13.a & b) the slice-2 contains three switches. The addresses of the switches
are shown in the lower slice metadata (Figure 13.b).

5.2. Throughput and latency of non-sliced (scenario-1) and sliced (scenario-2)

topologies

We have conducted two scenarios to compare between non-sliced topology performance and the
two sliced topologies (higher and lower) performance. The performance metrics are TCP

throughput and latency.

Figure (13.b). The slice-2 (Lower Slice) Graph

In the first scenario the non-slicing topology is managed by only one floodlight controller and

monitored by one copy of the proposed monitoring system and many TCP-packets have been sent
between switches.

As shown in Figure 14, the non-slice topology is controlled by a Floodlight controller and

monitored by a copy of the proposed monitoring system that collects measurement data to tenant
applications.

International Journal of Distributed and Parallel systems (IJDPS) Vol 15, No. 1, January 2024

 15

Figure 14.Tenant’s applications run on the non-sliced topology

In the second scenario, two slices have been created and each slice is controlled by a separate

floodlight controller and monitored by a copy of the proposed monitoring system. Each
monitoring copy synchronizes with each other for data exchange

Figure 15. Tenant’s applications run in parallel on the slices using different

copies of the monitoring system.

International Journal of Distributed and Parallel systems (IJDPS) Vol 15, No. 1, January 2024

 16

As shown in Figure 15, each slice is controlled by a Floodlight controller and monitored by a
copy of the proposed monitor where the two monitoring copies are synchronized. Each

monitoring copy collects measurement data to tenant applications. These applications run on the

two slices in parallel.

The performance of scenario-1 and scenario-2 has been measured by measuring the throughput
and latency metrics. The results of measuring the throughput of each scenario are shown in

Figure.16 (a,b,c,d) and results of measuring the latency of each scenario are shown in Figures 17

(a,b,c,d)

Figure.16.a: Switch2 to switch1 TCP throughput without slicing

Figure.16.b: Switch2 to switch1 TCP throughput slice 1 (upper slice)

From Figure 16.a and Figure 16.b, we notice that the throughput of slice-1 (upper slice) is greater

than the throughput of non-slicing topology. This is because the overhead of the slice controller is
reduced due to the reduction of traffic collision. The same thing the throughput of slice2 (lower

slice) is greater than the throughput of non-sliing topology as shown in Figures 16.c and 16.d

International Journal of Distributed and Parallel systems (IJDPS) Vol 15, No. 1, January 2024

 17

Figure.16.c: Switch3 to switch1 TCP throughput without slicing

Figure.16.d: Switch3 to switch1 TCP throughput of slice2

In addition to increasing the throughput, more than one tenant applications run in parallel on the

generated slices (slice-1 and slice-2 in scenario-2) as shown in Figure 15, which verifies multi-

tenants applications.
The latency of scenario-1 (based non-sliced topology) and latency of scenario-2 (based on the two

slices) have been measured. The results are shown in Figures 17 (a, b,c, and d).In the following

figures, RTT stands for Round Trip Time.

Figure 17.a Latency of s2 to s1 in non-sliced

International Journal of Distributed and Parallel systems (IJDPS) Vol 15, No. 1, January 2024

 18

Figure 17.b Latency of s2 to s1 in slice-1

In Figure 17.a, and 17.b we can see that the latency between the two switches S2 and S1 in

scenario-1 (non-sliced topology-based) is greater than the value of latency between the same two
switches in slice-1 (scenario-2). The maximum value of latency in Scenario-1 (non-sliced

topology-based) nearly equal 0.04ms but in slice-1 (scenario-2) is nearly equal 0.0275ms (i.e. less

than 0.03ms). This means the latency (factor of performance) of the slice-1(scenario-1) is better

than the latency of scenario-1(non-sliced topology-based).

Also, in Figures 17.c, and 17.d, we notice that the latency of slice 2 (scenario-2) between switch 3

and switch 1 is between 0.04ms and 0.045ms but the latency of scenario-1 (non-sliced topology-
based) between switch 3 and switch 1 is nearly equals 0.07ms. This means that the latency of

slice-2 (scenario-2) is better than the latency of scenario-1(non-sliced topology-based).

Figure 17.c Latency of s3 to s1 in non-sliced

Figure 17.d Latency of s3 to s1 in slice-2

International Journal of Distributed and Parallel systems (IJDPS) Vol 15, No. 1, January 2024

 19

Since the throughput of each slice (scenario-2) is better than the throughput of scenario-1 (non-
sliced topology-based) and the latency of each slice (scenario-2) also better than the latency of

scenario-1(non-sliced topology –based), then the performance of scenario-2 (slices-based) is better

than the scenario-1 (non-sliced network-based). Also the number of tenant’s applications that run

in parallel on the slices of scenario -2 are increased and monitored by copies of the synchronized
proposed monitoring system.

From the above discussion, the proposed monitoring system is scalable in two dimensions (i)
increasing the size of data-plane without sacrificing the performance. This is by slicing the data-

plane where each slice monitored by a copy of the proposed monitoring system where all copies

are synchronized together. (ii) Increasing the number of tenant applications that run in parallel
and monitored by the proposed monitor. By experiments that have been conducted in this research

we noticed that the throughput and latency of each slice is better than the non-sliced. Thus, in

addition to the above two dimensions the performance (throughput and latency of SDN) of slicing

scenario is better than non-sliced scenario.

6. PERFORMANCE EVALUATIONS

We have implemented and tested the proposed scalable monitoring system, which can retrieve
measurement data from the simulated data plane based on the management application request.

The monitor can receive a request from a management application to collect measurement data,

which may differ from one application to another.

The proposed monitoring system is scalable, capable of managing large-scale networks by

dividing them into multiple slices. Each slice is managed by a copy of the proposed monitoring

system, and all copies are synchronized for exchanging information through the synchronization
module of the monitoring system. Also, the proposed monitoring system monitors multitenant

applications. The proposed scalable monitoring system has high throughput and low latency than

the non-slicing based monitoring system. The limitation of the proposed monitoring system is
working only on Floodlight SDN controller. In the future, it will be enhanced to work with other

SDN controllers.

Based on the common criteria between our proposed monitoring system solution and other solutions
we compared between our proposed scalable monitoring solution and Vivi Monita solution [11] in

table -1. Also we compared our proposed monitoring solution with Tangari's Research in table-2.

In the first comparative study, we conducted a side-by-side examination of our research and the
notable work conducted by Vivi Monita, as outlined in the 2023 paper titled "Network Slicing Using

FlowVisor for Enforcement of Bandwidth Isolation in SDN Virtual Networks." [9]. Our study

concentrates on creating a scalable monitoring system for Software-Defined Networks (SDNs),

strategically employing FlowVisor to facilitate network slicing and enhance scalability without
compromising performance. Conversely, Vivi Monita's research is centered on achieving tenant

isolation and enforcing bandwidth isolation in SDN virtual networks through the adept utilization of

FlowVisor. By closely analyzing the methodologies and outcomes of each study, we aim to detect the
distinctive contributions and methodologies employed in the dynamic field of our proposed solution

and Vivi Monita's Study [11]

International Journal of Distributed and Parallel systems (IJDPS) Vol 15, No. 1, January 2024

 20

Table 1: Acomparative study between our proposed monitoring solution and Vivi Monita solution

Aspect Our proposed monitoring solution Vivi Monita's Study [11]

Aims of

Study
A scalable monitoring system for SDNs.

Ensuring tenant isolation in SDN using

FlowVisor and an SDN controller.

Methodology

 Utilized FlowVisor for effective network
slicing

Two types of renters and testing
procedures were used for connectivity and

functionality.

Key findings
Scalable monitoring system for various SDN

scales.

Correct host linkage achieved without

turning on FlowVisor.

Multitenancy

approach

Multiple copies run in parallel. Hosts can only communicate within the

same tenant.

Contribution
Addressing scalability concerns in SDNs. Correct host linkage and tenant isolation

through network slicing.

In the second comparison (Table 2), we compared our research on scalable SDN monitoring with
Tangari's [7] work on resource-efficient monitoring for future networks. Our emphasis lies in

scalability without compromising performance, while Tangari introduces innovative

methodologies for accurate monitoring. We assess key aspects, including scalability models,
monitoring frameworks, adaptive solutions, and performance metrics, aiming to highlight

distinctive contributions and advancements in both studies, offering insights into the evolving

landscape of SDN monitoring

Table 2: A comparative study between our proposed monitoring solution and Tangari's solution

Aspect The proposed scalable monitoring system Tangari's Research [7]

Objective Scalable SDN monitoring system. Accurate and resource-efficient

monitoring for future networks.

Scalability Increasing the number of tenant applications

and the size of the physical network without

sacrificing SDN performance.

Increasing network sizes, avoiding

processing bottlenecks in large-scale

networks.

Monitoring

Framework

Slices the network using FlowVisor tool,

synchronized copies using OpenFlow protocol.

Decentralized and self-adaptive

monitoring framework (SAM) with

modular architecture for diverse

management applications.

Adaptive

Solutions

Synchronized copies running in parallel,
adaptive solution for efficient data extraction

(SAM).

SAM for dynamic reconfiguration under
dynamic traffic conditions, MONA for

resilience to bottlenecks in software

dataplanes.

Measurement

Technique

Processing measurement data from different

slices in parallel.

Classifiers used to reduce measurement

data-processing costs for various

monitoring queries.

Performance

Metrics

Performing scalability without sacrificing SDN

performance. High throughput and low latency

Enhanced monitoring accuracy levels for

various measurement tasks.

7. CONCLUSION

In this paper, a scalable monitoring system for SDN is proposed.The scalability has been

addressed in two dimensions without sacrificing the performance of SDN. The two dimensions

are increasing the size of SDN and increasing the number of tenants and their applications.

The monitoring system is a vendor-independent, capable of retrieving measurement data from

any infrastructure device, including switches, routers, links, and others. This is because the

International Journal of Distributed and Parallel systems (IJDPS) Vol 15, No. 1, January 2024

 21

monitoring system uses the OpenFlow protocol for retrieving measurement data, which is
infrastructure-independent. The scalability has been achieved by slicing the topology of SDN to

slices using flowvisor tool. Each slice has been controlled by a floodlight controller and

monitored by a copy of the proposed monitoring system. MutliTenant applications run in parallel

on multi-slices.

The proposed scalable monitoring system has been tested and evaluated. The results of evaluation

show that the number of tenants’ applications can be increased without sacrificing the
performance. Also, the size of the network can be increased without sacrificing the performance

by slicing the networks to slices monitored by the proposed monitoring system. The scalable

monitoring system is working only with Floodlight SDN controller.In the future the proposed
monitoring system will be enhanced to be adaptable (i.e. it works with more than one SDN

controller).

Statements and Declarations

• Funding: no funding was received to assist with the preparation of this manuscript.

• Financial interests: The authors declare they have no financial interests.

The authors have no competing interests to declare that are relevant to the content of this

article.

• Consent to participate: not applicable

• Conflict of interest: The authors declare they have no Conflict of interest.

REFERENCES

[1] Jose Su ´ arez-Varela, Pere Barlet-Ros, Flow monitoring in Software- ´Defined Networks, Computer

Networks (2018), doi:10.1016/j.comnet.2018.02.020.
[2] Andres J. Aparcana-Tasayco ; Fredy Mendoza-Cardenas ; Daniel Diaz-Ataucuri “Open and Interactive

NMS for Network Monitoring in Software Defined Networks” 2022 International Conference,

Publisher: IEEE.

[3] Isyaku, B., Zahid, M.S., Kamat, M., Bakar, K.A., & Ghaleb, F.A. (2020). Software Defined Networking

Flow Table Management of OpenFlow Switches Performance and Security Challenges: A Survey.

Future Internet, 12, 147.

[4] C. Lee, C. Yoon, S. Shin, and S. K. Cha, “INDAGO : A New Framework For Detecting Malicious SDN

Applications,” 2018 IEEE 26th Int. Conf. Netw. Protoc. pp. 220–230, 2018, doi:

10.1109/ICNP.2018.00031.

[5] Scarlato, Michele. (2014). Network Monitoring in Software Defined Network, Master on New

Technologies in Computer Science. Itinerary Networks and Telematics, Università degli studi di
Cagliari Cagliari, Sardinia, Italy

[6] Y. Liu, B. Zhao, P. Zhao, P. Fan, and H. Liu, “A survey: Typical security issues of software-defined

networking,” China Commun., vol. 16, no. 7, pp. 13–31, 2019, doi: 10.23919/j.cc.2019.07.002.

[7] Tangari, Gioacchino; (2019) Accurate and Resource-Efficient Monitoring for Future Networks.

Doctoral thesis (Ph.D), UCL (University College London).

[8] Alsaeedi, M., Mohamad, M. M., & Al-Roubaiey, A. A. (2019). Toward Adaptive and Scalable

OpenFlow-SDN Flow Control: A Survey. IEEE Access, 7, 107346–107379..

[9] Hasan ÖZER 1*, İbrahim Taner OKUMUŞ “A Scalable and Efficient Port-Based Adaptive Resource

Monitoring Approach in Software Defined Networks” The Journal of Graduate School of Natural and

Applied Sciences of Mehmet Akif Ersoy University 13(1): 9-26 (2022).

[10] http://pakiti.com/sdn-101-mininet-openflow-and-

gns3/#:~:text=Mininet%20is%20a%20network%20emulator,routing%20and%20Software%2DDefined
%20NetworkingM. Young, The Technical Writer’s Handbook. Mill Valley, CA: University Science,

1989.

https://www.researchgate.net/institution/Universita-degli-studi-di-Cagliari?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6Il9kaXJlY3QiLCJwYWdlIjoiX2RpcmVjdCJ9fQ
https://www.researchgate.net/institution/Universita-degli-studi-di-Cagliari?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6Il9kaXJlY3QiLCJwYWdlIjoiX2RpcmVjdCJ9fQ

International Journal of Distributed and Parallel systems (IJDPS) Vol 15, No. 1, January 2024

 22

[11] Monita, V., Wendato, W.& Anggiratih, E. “Network Slicing Using FlowVisor for Enforcement of

Bandwidth Isolation in SDN Virtual Networks “.Jurnal Ilmiah Teknik Elektro Komputer dan

Informatika, Vol. 9, No. 3, September 2023.

AUTHORS

Mahmoud Eissa, a dedicated master's student in Electrical Engineering at Al Azhar University,

Cairo, Egypt. He earned his Bachelor's from Future University, Egypt, with a 'good' grade in

2015 specializing in Electrical and Communication. His outstanding graduation project,

"Performance Evaluation of Routing Protocols for Mobile Ad-hoc Network," received an

excellent grade, showcasing his commitment to advancing the field.

Ahmed Yahya [ORCID: 0000-0002-3271-058X], is currently working as a Professor in the
Department of Electrical Engineering, A-Azhar University, Cairo, Egypt. He obtained his Ph.D.

from Ain Shams University, Cairo, Egypt. He has published many research papers, which
contributed significantly to the development of his field. He had been working as As Professor in
various reputed Institution’s in Abroad and Egypt. His research area focuses on Distributed Cloud
Edge Computing, 5G Testbeds, LoRaWAN Networks, V2X Communications, Reconfigurable
System-on-chip Design, Metamaterial-based Reconfigurable Antenna and Intelligent Cognitive
Radio Networks.

Usama Gad, an Assistant Professor in the Department of Electrical Engineering, Electronics and
Electrical Communications program, Faculty of Engineering, Al Azhar University, cairo, Egypt. He
obtained his Ph.D. in Electronics and Communications in 2014, focusing on "Image Processing using
Residue Number System."he earned an M.Sc. in Electronics and Communications (2008), exploring
"Realization of digital filters using residue number system," and a B.Sc. with honors (2002) for his

project on "Optical Voice Link."

	Abstract
	Keywords
	Software Defined Network; monitoring system; monitoring system architecture; network slicing; measurements data; network management applications.

	1. Introduction
	2. Related work
	3. Proposed Monitoring System
	Figure 2. The proposed architecture of the monitor software system

	4. Implementation and Validation
	5. Enhancing scalability of the proposed SDN Monitoring system
	Figure 10. The non-sliced topology
	6. Performance Evaluations
	7. Conclusion
	References

