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ABSTRACT 

 
Due to the growing application of peer to peer computing, distributed applications are continuously 

spreading over an extensive number of nodes. To cope with this large number of participants, various 

hierarchical cluster based solutions have been proposed. Cluster or group based solutions are scalable for 

a large number of participants. As far as group mutual exclusion solutions are concerned, some of them 

have good complexity but do not take into account the growing number of participants. Others take into 

account the previous aspect but do not have good complexity. In this paper we present two group mutual 

exclusion algorithms namely; TBGMEACα and TBGMEACβ to deal both with the growing number of 

nodes and the matter of having a good complexity. The proposed logical structure is a cluster tree. The first 

solution uses the partial flooding method, which is the partial propagation of informations available at root 

level. In the second solution, informations available at root level are propagated only towards the 

processes which issued a request for a session. Both algorithms have complexities of O(p) and O(log p) 

respectively (p is the number of clusters in the system).  
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1. INTRODUCTION 
 

1.1 Preliminaries 
 

In a computer system, a process executes one part of his program called critical section (CS) 

when it accesses a shared or critical resource. For certain shared resource, the critical section of a 

process can be associated to a type or a group. Critical sections belonging to the same group can 

be executed concurrently while critical sections belonging to different groups must be executed in 

a mutual exclusive manner [1]. Thus, the problem of shared resource appear, when different 

groups of processes have to access exclusively to a critical resource. That problem is known since 

many decades in computer science research community as mutual exclusion problem. In terms of 

the maximal number of processes in a group, two classes of mutual exclusion problem are 

distinguished in the literature. The first class, called the basic mutual exclusion problem [2, 3, 4,5, 

6, 7, 8, 9], where the maximum size of groups is one, and the second class called  group mutual 

exclusion (GME)  problem, where every group can have more than one process [1,10,11,12, 13, 

14, 15, 16].  
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The focus of this paper is the GME problem. The issue of this problem is to manage a mutually 

exclusive resource among n processes. Processes are allowed to be in critical section 

simultaneously only if they belong to the same group. A conference room, classroom, CD-

jukebox, Internet server, and railway are examples of GME problems. At least one conference can 

take place in the conference room at the same time. In this first example, participants are 

processes attending the conference, conferences are groups, and the conference room is the 

critical resource. With regard to a classroom, only one lesson can be given at the same time. In 

this second example, students are processes attending the lesson, lessons are groups, and the 

classroom is the critical resource. The example of CD-juke (resp. Internet server) is well 

described in [11, 12] (resp. [13]). Regarding the example of the railway, it has only two sides and 

trains can leave from one side to another, but only one side is opened at the same time. In this last 

example, and in relation with the GME problem, trains are processes, the two sides of railway are 

groups, and the railway is the critical resource. 

 

1.2 Related work 

 
Several solutions of the GME problem in computer system exist. The main challenge of these 

solutions resides in the number of exchanged messages through the computer system in order to 

avoid concurrent use of a critical resource by different groups. Many existing solutions for the 

GME problem can be classify in permission based and token based categories.  Algorithms for 

the first category can be found in [11, 17] for the shared memory model and in [12, 18, 19, 20, 

21] for the message passing model. In [20, 21] solutions are provided for fully connected network 

while in [18, 19] they are provided for ring network. Solutions have been also proposed for tree 

network [12] where processes are assumed to be arranged in the form of a tree and groups of 

processes are called sessions. Any process interested in session y can enter and exit the session 

any number of time till a session x ≠ y is requested.  In [12], three algorithms have been proposed 

namely GMEα, GMEβ and GMEγ. GMEα has a message complexity of 3 (N-1) + h1 where h1 is 

the initial tree height. GMEβ is an improvement of GMEα. The message complexity here has 

been reduced to 4h1. GMEγ, which is an improvement of GMEβ has a message complexity of 

4hmax (hmax is the Maximum height of the tree). The trick used here is that the root is no longer a 

fixed root like in GMEα, and GMEβ; any process can become the root. For the token based 

category, solutions can be found in [19, 22, 23]. The solution in [22] uses the notion of priority. 

To ensure the GME two tokens are used; a process with the primary token can send the secondary 

token to a process wishing to access the same session, while the process holding the secondary 

token cannot do so. The algorithm requires 2(N-1) messages per entry in the critical section 

where N is the number of nodes. The algorithm in [19] is for an asynchronous ring and its 

message complexity is N2. A solution has also been provided for hierarchical structure [23]; here 

processes are grouped to form clusters which in turn are used to build a two-level hierarchy. The 

algorithm uses the notion of coordinator and requires that these are all connected. Its message 

complexity is O (p), where p is the number of clusters. 

 

1.3 Our contributions 

 
We present two permission based group mutual exclusion algorithms for cluster tree networks 

(TBGMEAC) ;  both solutions have an unbounded degree of concurrency and use fixed root. The 

first solution TBGMEACα uses the partial flooding method, which is the partial propagation of 

informations available at root level. The message complexity is (4h0+ hmax +3 (P-1)) where p is 

the number of clusters, hmax the maximum height of the cluster tree and h0 the distance between a 

node and its coordinator. In the second solution TBGMEACβ, informations available at root level 

are propagated only towards the processes which issued a request for a session. The message 

complexity is 4 (hmax + h0). 
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1.4 Paper organisation 
 

We present our system model and formally describe the group mutual exclusion problem in 

section 2. We describe our group mutual exclusion algorithm for a cluster tree network in section 

3. In section 4, we give the correctness proof of our GME algorithms. Finally, we present our 

conclusion, and future works in section 5. 

 

2. MODEL AND PROBLEM DEFINITION 
 

2.1. System model 

 
We assume an asynchronous distributed system that consist of N nodes numbered 1, 2 …N; the 

only way of communication between different nodes is message exchange. We also assume that 

each node can communicate directly with every other and that the links are both FIFO (First In 

First Out) and infallible. There is neither overall time in the system or shared memory. The 

propagation delay of messages between two nodes is finite but unpredictable. A process should 

not issue a new request before the old query is satisfied. In the following we assume that the 

terms node, site and process designate one and the same thing; the nodes are also assumed not to 

crash. 

 

In the network, nodes are logically partitioned into separated groups and each group is called 

cluster; clusters are then arranged to form a tree. N nodes are thus divided into P clusters 

numbered p1, p2…pp, each cluster containing Ni nodes such as the following equality is 

verified: . Each node is represented by its identifier and there is no need to mention 

the reference of the cluster to which it belongs, in the course of algorithm. In every cluster, a node 

is responsible for the task of leading and has as its parent the cluster leader at the top level, except 

for the case of the root cluster leader. A hierarchy of three levels consisting of ten clusters and 

sixty-one nodes is presented in the figure 1 below. 

  

 
 

Figure 1. A three level hierarchy cluster tree network 

 

2.2. The Group Mutual Exclusion Problem 

 
The group mutual exclusion (GME) problem is an extension to the basic mutual exclusion 

problem. It sets the problem of sharing m resources in mutual exclusion by n processes; a group is 

then associated with each resource type and critical sections belonging to the same group can run 

concurrently, while critical sections belonging to different groups must be executed in mutual 

exclusion. The properties of GME algorithms are: 
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Group mutual exclusion (safety): At any time, no two processes that have requested critical 

sections belonging to different groups are in their critical sections simultaneously.  

Starvation freedom (liveness): A process requesting entry into its critical section should 

eventually be able to enter the critical section. 

Concurrent entry (non-triviality): If all requests are for critical sections belonging to the same 

group, then a requesting process should not be required to wait for entering its critical section 

until some other process has left its critical section. 

 To measure the performance of a group mutual exclusion algorithm, we use the following 

metrics:    

The message complexity: it is a measure of the number of messages generated per entry to the 

critical section. 

The synchronization delay: the time elapsed between when some process leaves its critical 

section and some other process can enter its critical section of different type.  

The waiting time: the time elapsed between when a process issues a request for critical section 

and when it actually enters the critical section.  

The system throughput: the number of critical section requests fulfilled per unit time.  

The concurrency: the number of processes that are in their critical sections at the same time. 

 

3. OUR ALGORITHMS 

 
Our algorithms are derived from the GMEβ solution proposed in [12]. We modified GMEβ 

extending it to take into account the growth in the number of participants while maintaining good 

message complexity. 

 

3.1 Overall System Architecture 

 
We assume that there are two layers in the system such as, the application layer (upper layer) and 

the GME layer (lower layer). The interface between these two layers is implemented using three 

types of messages: Request_Session, Grant_Session and Exit_Session. Thus, when a process p 

running at the application layer solicits any X session, it sends Request_session (X) to the GME 

layer. Eventually, the GME layer grants access to it by sending Grant_session (X); at the end of 

the use of the session X, p sends Exit_session (X) to GME layer. 

 

To maintain the hierarchy processes are divided into two classes such as the non-leaders and 

leaders processes. Each process maintain two pointer variable. The non-leaders processes of each 

cluster are all connected to their leaders which are their parents. They each maintain a pointer 

variable parp that contains a value in Np. Since these processes are leaves in each cluster, they 

therefore have no descendants. Leader processes in turn maintain a variable parp that contains this 

time a value in Np ᴗ Nil. If parp ϵ Np then, parp contains the link label of a particular neighbor of p, 

called the parent of p. Another variable, DP, is a subset of Np \{Parp}, called the set of descendants 

of p. The parent pointer of processes form an oriented spanning tree rooted in a particular process, 

referred to as the root of the spanning tree, such that Parracine = nil. 

 

3.2. The first algorithm: TBGMEACα  

 
The algorithm proceeds in two phases that are opening and closing of sessions. These phases are 

initiated by the root. 

 

Suppose a process P makes a first request (the first in the system) for a session X, which is sent to 

the cluster leader through the message ASK (X). The leader records the session X as the requested 

session and, sends the request to the next level cluster leader; so, from leader to leader the 

message finally reach the root. Once the root receives the ASK (X), it starts the opening operation 
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of session X by sending OS (X) not only towards the process that is causing the ASK (X), but also 

to any leader which received no request from their descendants. It is this technique that we call 

partial flooding. To achieve this, we introduce a new variable New_Openset which will contain 

both all processes that requested a session (the set Openset), and any leader in which did not 

receive any request from its descendants. By doing so, those of such leaders who will later 

receive requests will in turn serve only those of their descendants which issued requests for the 

current session. 

 

To identify the leaders which have not requested (or received requests from their descendants) 

session, we must distinguish in a leader’s descent, leaders of lower- level cluster from proper 

members of the cluster. So a leader must have as descent D = Dc ᴗ Dinf where Dc contains the 

descendants belonging to the cluster of the corresponding cluster leader and Dinf contains the 

descendants which are leaders of lower-level clusters so, New_Openset = Openset ᴗ Dinf. From 

the moment the root propagated the opening session message for X, process p or other processes 

can enter and exit the critical section as many times as they wish. 

 

Now we suppose that another session, say Y ≠ X is requested by another process, say q; the 

request is routed to the root, and it begins the second phase which is that of the closing of X by 

sending the message CS (X) to all its descendants contained in New_Openset. Leaders do the 

same for their descendants. Upon receipt of CS (X), p (or other processes) and the leaders which 

received no request from their descendants must send a message to confirm that they have exited 

session X. At this point, it is possible that the message CS (X) reaches a process while it is still in 

critical section; in this case, it will delay sending his confirmation and will only do that once out 

of the critical section. Once the root has received all the confirmations of the closing of session X, 

it organizes the opening operation of session Y.   

 

Since TBGMEACα is derived from GMEβ, as a description of TBGMEACα, we are going to show 

the parts which have been modified to obtain our algorithm. For this we present the used 

procedures and the used messages firstly for the leader side, then for the non-leader side. 

 

Procedures from the leader’s side 
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Procedures from the non-leader’s side 

 

 
 

Message section executed by the leaders 

 

 
 

Message section executed by the non-leaders 
 

 
 

Complexity analyses 

 
Message complexity: We will consider two cases to compute the message complexity. Assume 

that a process P requests the current opened session X; in this case it needs 2h0 messages because 

the opening session message have also been sent to the all the leaders in the network. Assume 

now that P requests a session Y≠X; this generates (4h0+ hmax +3 (P-1)) messages that is, h0+ hmax 
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messages to send the request of q to the root, 2((p-1) + h0) messages for the closing of the current 

opened session (X) and ((p-1) + h0) for the opening of session Y. 

 

The synchronization delay: this complexity measure is considered in our algorithm from the 

point of view of sending and receiving messages and generates 3(h0 + (p-1)) messages that is, ((p-

1) + h0) messages from the root to the last process to exit the current opened session, ((p-1) + h0) 

messages from that process to the root, and ((p-1) + h0) messages from the root to the waiting 

process to enter the new opened session. 

 

The waiting time: this complexity is also considered as for the previous complexity measure. 

Assume that P wants to access the current opened session; it will have to wait for 2h0. Assuming 

now that it wants to access a different session Y, it will have to wait T (4h0+ hmax +3 (P-1)), 

where T is the transfer time of a message. 

 

The degree of concurrency: the degree of concurrency is unbounded because, since a session is 

opened processes can enter and exit the critical section as many time as they want. 

 

3.3. The second algorithm: TBGMEACβ  

 

Here we present an algorithm which reduces the message complexity from (4h0+ hmax +3 (P-1) to 

2(h max + h0), that is from O (P) to O (log p). The astuteness used to do this is that once the root 

receives a request, it sends the consequent messages only towards the processes which issued a 

request. This algorithm also proceeds in two phases. Assume a process P requests a session X; the 

request is sent towards the root as in the first algorithm. Then root then starts the opening of 

session X by sending the OS (X) message only towards the process which issued a request for X; 

this time, P can enter and exit session X as many times as it wants. Assume now that q wants to 

access a session Y ≠ X; the request normally reaches the root which starts the closing of session X 

by sending the message CS (X) towards the process which issued the request for X. Here also, 

process p can delay sending the exit message from session X and send it only once out of the 

critical session. Once the closing session message now reaches the root, it starts the opening of 

session Y. 

 

As the description of the pseudo code of TBGMEACβ the leaders are going to execute entirely 

GMEβ, while the non-leaders are going to execute the same code presented previously for the 

non-leaders side. 

 

Complexity analyses 

 
Message complexity: We will consider two cases to compute the message complexity. Assume 

that a process P requests the current opened session X. in this case it needs 2h0 messages because 

the leader has already recorded X as the current session. In the case the request is the first in the 

system, this generates 2 (hmax + h0). Assume now that P requests a session Y≠X; this generates 4 

(hmax + h0) messages that is, (hmax + h0) messages for the request to reach the root, 2 (hmax + h0) 

messages to close the current opened session and (hmax + h0) messages  to open the new requested 

session. 

 

The synchronization delay: this complexity measure is considered in our algorithm from the 

point of view of sending and receiving messages and generates 3(h0 + hmax) messages that is, (h0 

+ hmax) messages from the root to the last process to exit the current opened session, (h0 + hmax) 

messages from that process to the root, and (h0 + hmax) messages from the root to the waiting 

process to enter the new opened session. 
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The waiting time: this complexity is also considered as for the previous complexity measure. 

Assume that P wants to access the current opened session; it will have to wait for 2h0. Assuming 

now that it wants to access a different session Y, it will have to wait 4T (h0+ hmax) where T is the 

transfer time of a message.  

 

The degree of concurrency: the degree of concurrency is unbounded because, since a session is 

opened processes can enter and exit the critical section as many time as they want. 

 

4. CORRECTNESS PROOF 
 

For a GME algorithm to be deemed correct, it must satisfy the properties of safety, liveness and 

concurrent entry. 
 

4.1 Safety  
 

Here we want to show that if two processes p and q are running simultaneously their critical 

sections Sp and Sq then Sp= Sq. for this we designed the lemma and theorem that follow. 
 

Lemma 4.1: If two leaders say Cpi, and Cpj grant access to a session in their respective clusters, 

then they do so for the same session.  
 

Proof: Only the root is responsible of both the opening and the closing of sessions; thus in one 

case or another, the root sends the same information to all its descendants in New_Openset. By 

this way the lemma 4.1 holds. 

 

Theorem 3.1: If two processes p and q are simultaneously in critical section, then they are for the 

same session. 
 

Proof: The only condition for a process to be in critical section is to receive the message OS(X) 

from its leader. According to lemma 3.1 whichever the leader, the opened session is the same; 

consequently processes which are concurrently in critical section are for the same session.  
 

4.2 Liveness  
 

Here the purpose is to proof that if a process, say p wants to access a session then, it finally 

executes its critical section. 

 

Lemma 4.2: A request sent by a leader, say Cpi eventually reaches the root or a leader which has 

received the message OS(X). 
 

Proof: Once a leader receives the message ASK (S) from its descendants, it has to do the test “if 

Open^Current S=S” that is to say, if the current opened session is S. In case of unfavorable 

opinion, the leader has to send in turn an ASK (S) message to its parent; in the case the opinion is 

still unfavorable a leader has to react as previously until the request reaches the root. By this way 

the request of a leader will be satisfied in case of favorable opinion or in the case its request 

reaches the root. Consequently, a request sent by a leader, say Cpi eventually reaches the root or a 

leader which has received the message OS(S). 
 

Lemma 4.3: If there is a conflicting request in the system, then the current opened session 

terminates in a finite time. 
 

Proof: If there is a conflicting request in the system, then according to lemma4.2 it will finally 

reach the root or a leader which have received the message OS(S) in a finite time. 
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Again, in of reception of a request for a session different from the current session the root stops 

sending OS(S) messages to its cluster members and to any other process which requested the 

current session. It after sends the closing session messages to its descendants; these messages will 

reach the descendants at a finite time as it was the case during the forwarding of the request to the 

root, according to lemma4.2. By the same way, the descendants in turn will send the closing 

session messages towards the root in a finite time. Consequently, if there is a conflicting in the 

system, then the current session terminates in a finite time. 
 

Theorem4.2: If a process p requests a session X, then p finally enters in critical section. 
 

Proof: Assume that p can suffer from starvation. P can suffer from starvation if its leader did not 

receive the message OS (S) after it received the request. 

This can happen in the following cases: 

i) The request of the leader did not reach the root or any other process which received the 

message OS (S). This is not possible according to the lemma4.2. 

ii) The request of the leader reached the root but the requested session has not been chosen 

as the next session to be opened. 

The case (ii) is possible in the following cases: 

a) The current session did not terminate in a finite time. This is not possible according to 

lemma4.3. 

b) The other sessions different from the current session are selected one after another.  

Since the links are FIFO, the root will not select the sessions different from X during an 

infinite long time after the request for X has been added to the root’s queue. Thus the 

situations (a) and (b) are not possible and consequently (ii) is not possible. Since (i) and (ii) 

are not possible, then our initial assumption is false and consequently the theorem holds. 
 

4.3 Concurrent entry 
 

The aim here is to show that if processes want to access a session and no other processes want to 

access a different session, then these processes can access the session concurrently. The following 

theorem demonstrates it. 
 

Theorem 4.3: If processes request a session and no other one request a different session, then 

all of them execute their critical section concurrently. 
 

Proof: Assume that a process p requests a session X while no other process requests a session 

different from X. Two cases must be considered at this level:  
 

a) Session X is not opened when p requests it. According to theorem 4.2, once the request of 

p reaches the root, it starts the opening of session X; then all the processes that have 

requested X can concurrently enter the critical section once they received the OS (X) 

message. 

b) Session X is opened when p requests it. In this case either p has received the OS (X) 

message, or has not received. In the first case, p enters immediately in critical section. In 

the second case, p can concurrently enter in critical section with other processes once it 

receives OS (X). Consequently the theorem 4.3 holds. 
 

The previous correctness proof also holds for the second algorithm. 
 

7. CONCLUSION AND FUTURE WORK 
 
We have presented two group mutual exclusion solutions for cluster tree networks. The first 

solution TBGMEACα is very efficient in terms of concurrency since the degree of concurrency is 

unbounded; each entry in the critical section generates between 0 and O(p) messages. The second 



International Journal of Distributed and Parallel Systems (IJDPS) Vol.7, No.1, January 2016 

 

 

28 

solution TBGMEACβ achieves the average number of messages per entry in a critical section in 

O(log p). It also provides an unbounded degree of concurrency. Both TBGMEACα and 

TBGMEACβ use a fixed root.  

 

A comparison of our solutions with the one of Swaroop [23] is given in the table 1. 

 
Table1. Results comparison 

 

Algorithms and authors Swaroop 

HGME algorithm 

Our TBGMEACα  

algorithm 

Our TBGMEACβ 

algorithm 

Year 2009 2016 2016 

Type Token based Permission based Permission based 

Message complexity O(p) O(p) O(log p) 

Degree of concurrency Bounded Unbounded Unbounded 

 

In our two solutions only the root has the task of opening and closing of sessions even if a process 

in the root cluster is not interested in the requested session. As future work, we want to rebuild 

the solution so that it can take into account the dynamic root cluster. Also, we considered that the 

links are all infallible; it will be very interesting to reconsider that nodes can crash in order to 

build a fault tolerant solution. 
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