
International Journal of Distributed and Parallel Systems (IJDPS) Vol.7, No.1, January 2016

DOI:10.5121/ijdps.2016.7102 19

PERMISSION BASED GROUP MUTUAL EXCLUSION

ALGORITHMS FOR A CLUSTER TREE NETWORK

Touomguem Nzeumbeu Arlette Sylvie

1
, Kamla Vivient Corneille

2
, and Tcha’wu

Gatsing Elvire Cheryl
1

1
Departement of mathematics and Computer Science, Faculty of Science, the University

of Ngaoundere, Cameroon
2
Departement of mathematics and Computer Science, National School of Agro-industrial

sciences, the University of Ngaoundere, Cameroon

ABSTRACT

Due to the growing application of peer to peer computing, distributed applications are continuously

spreading over an extensive number of nodes. To cope with this large number of participants, various

hierarchical cluster based solutions have been proposed. Cluster or group based solutions are scalable for

a large number of participants. As far as group mutual exclusion solutions are concerned, some of them

have good complexity but do not take into account the growing number of participants. Others take into

account the previous aspect but do not have good complexity. In this paper we present two group mutual

exclusion algorithms namely; TBGMEACα and TBGMEACβ to deal both with the growing number of

nodes and the matter of having a good complexity. The proposed logical structure is a cluster tree. The first

solution uses the partial flooding method, which is the partial propagation of informations available at root

level. In the second solution, informations available at root level are propagated only towards the

processes which issued a request for a session. Both algorithms have complexities of O(p) and O(log p)

respectively (p is the number of clusters in the system).

KEYWORDS

Distributed system, resource management, group mutual exclusion, cluster tree network & partial flooding.

1. INTRODUCTION

1.1 Preliminaries

In a computer system, a process executes one part of his program called critical section (CS)

when it accesses a shared or critical resource. For certain shared resource, the critical section of a

process can be associated to a type or a group. Critical sections belonging to the same group can

be executed concurrently while critical sections belonging to different groups must be executed in

a mutual exclusive manner [1]. Thus, the problem of shared resource appear, when different

groups of processes have to access exclusively to a critical resource. That problem is known since

many decades in computer science research community as mutual exclusion problem. In terms of

the maximal number of processes in a group, two classes of mutual exclusion problem are

distinguished in the literature. The first class, called the basic mutual exclusion problem [2, 3, 4,5,

6, 7, 8, 9], where the maximum size of groups is one, and the second class called group mutual

exclusion (GME) problem, where every group can have more than one process [1,10,11,12, 13,

14, 15, 16].

International Journal of Distributed and Parallel Systems (IJDPS) Vol.7, No.1, January 2016

20

The focus of this paper is the GME problem. The issue of this problem is to manage a mutually

exclusive resource among n processes. Processes are allowed to be in critical section

simultaneously only if they belong to the same group. A conference room, classroom, CD-

jukebox, Internet server, and railway are examples of GME problems. At least one conference can

take place in the conference room at the same time. In this first example, participants are

processes attending the conference, conferences are groups, and the conference room is the

critical resource. With regard to a classroom, only one lesson can be given at the same time. In

this second example, students are processes attending the lesson, lessons are groups, and the

classroom is the critical resource. The example of CD-juke (resp. Internet server) is well

described in [11, 12] (resp. [13]). Regarding the example of the railway, it has only two sides and

trains can leave from one side to another, but only one side is opened at the same time. In this last

example, and in relation with the GME problem, trains are processes, the two sides of railway are

groups, and the railway is the critical resource.

1.2 Related work

Several solutions of the GME problem in computer system exist. The main challenge of these

solutions resides in the number of exchanged messages through the computer system in order to

avoid concurrent use of a critical resource by different groups. Many existing solutions for the

GME problem can be classify in permission based and token based categories. Algorithms for

the first category can be found in [11, 17] for the shared memory model and in [12, 18, 19, 20,

21] for the message passing model. In [20, 21] solutions are provided for fully connected network

while in [18, 19] they are provided for ring network. Solutions have been also proposed for tree

network [12] where processes are assumed to be arranged in the form of a tree and groups of

processes are called sessions. Any process interested in session y can enter and exit the session

any number of time till a session x ≠ y is requested. In [12], three algorithms have been proposed

namely GMEα, GMEβ and GMEγ. GMEα has a message complexity of 3 (N-1) + h1 where h1 is

the initial tree height. GMEβ is an improvement of GMEα. The message complexity here has

been reduced to 4h1. GMEγ, which is an improvement of GMEβ has a message complexity of

4hmax (hmax is the Maximum height of the tree). The trick used here is that the root is no longer a

fixed root like in GMEα, and GMEβ; any process can become the root. For the token based

category, solutions can be found in [19, 22, 23]. The solution in [22] uses the notion of priority.

To ensure the GME two tokens are used; a process with the primary token can send the secondary

token to a process wishing to access the same session, while the process holding the secondary

token cannot do so. The algorithm requires 2(N-1) messages per entry in the critical section

where N is the number of nodes. The algorithm in [19] is for an asynchronous ring and its

message complexity is N2. A solution has also been provided for hierarchical structure [23]; here

processes are grouped to form clusters which in turn are used to build a two-level hierarchy. The

algorithm uses the notion of coordinator and requires that these are all connected. Its message

complexity is O (p), where p is the number of clusters.

1.3 Our contributions

We present two permission based group mutual exclusion algorithms for cluster tree networks

(TBGMEAC) ; both solutions have an unbounded degree of concurrency and use fixed root. The

first solution TBGMEACα uses the partial flooding method, which is the partial propagation of

informations available at root level. The message complexity is (4h0+ hmax +3 (P-1)) where p is

the number of clusters, hmax the maximum height of the cluster tree and h0 the distance between a

node and its coordinator. In the second solution TBGMEACβ, informations available at root level

are propagated only towards the processes which issued a request for a session. The message

complexity is 4 (hmax + h0).

International Journal of Distributed and Parallel Systems (IJDPS) Vol.7, No.1, January 2016

21

1.4 Paper organisation

We present our system model and formally describe the group mutual exclusion problem in

section 2. We describe our group mutual exclusion algorithm for a cluster tree network in section

3. In section 4, we give the correctness proof of our GME algorithms. Finally, we present our

conclusion, and future works in section 5.

2. MODEL AND PROBLEM DEFINITION

2.1. System model

We assume an asynchronous distributed system that consist of N nodes numbered 1, 2 …N; the

only way of communication between different nodes is message exchange. We also assume that

each node can communicate directly with every other and that the links are both FIFO (First In

First Out) and infallible. There is neither overall time in the system or shared memory. The

propagation delay of messages between two nodes is finite but unpredictable. A process should

not issue a new request before the old query is satisfied. In the following we assume that the

terms node, site and process designate one and the same thing; the nodes are also assumed not to

crash.

In the network, nodes are logically partitioned into separated groups and each group is called

cluster; clusters are then arranged to form a tree. N nodes are thus divided into P clusters

numbered p1, p2…pp, each cluster containing Ni nodes such as the following equality is

verified: . Each node is represented by its identifier and there is no need to mention

the reference of the cluster to which it belongs, in the course of algorithm. In every cluster, a node

is responsible for the task of leading and has as its parent the cluster leader at the top level, except

for the case of the root cluster leader. A hierarchy of three levels consisting of ten clusters and

sixty-one nodes is presented in the figure 1 below.

Figure 1. A three level hierarchy cluster tree network

2.2. The Group Mutual Exclusion Problem

The group mutual exclusion (GME) problem is an extension to the basic mutual exclusion

problem. It sets the problem of sharing m resources in mutual exclusion by n processes; a group is

then associated with each resource type and critical sections belonging to the same group can run

concurrently, while critical sections belonging to different groups must be executed in mutual

exclusion. The properties of GME algorithms are:

International Journal of Distributed and Parallel Systems (IJDPS) Vol.7, No.1, January 2016

22

Group mutual exclusion (safety): At any time, no two processes that have requested critical

sections belonging to different groups are in their critical sections simultaneously.

Starvation freedom (liveness): A process requesting entry into its critical section should

eventually be able to enter the critical section.

Concurrent entry (non-triviality): If all requests are for critical sections belonging to the same

group, then a requesting process should not be required to wait for entering its critical section

until some other process has left its critical section.

 To measure the performance of a group mutual exclusion algorithm, we use the following

metrics:

The message complexity: it is a measure of the number of messages generated per entry to the

critical section.

The synchronization delay: the time elapsed between when some process leaves its critical

section and some other process can enter its critical section of different type.

The waiting time: the time elapsed between when a process issues a request for critical section

and when it actually enters the critical section.

The system throughput: the number of critical section requests fulfilled per unit time.

The concurrency: the number of processes that are in their critical sections at the same time.

3. OUR ALGORITHMS

Our algorithms are derived from the GMEβ solution proposed in [12]. We modified GMEβ

extending it to take into account the growth in the number of participants while maintaining good

message complexity.

3.1 Overall System Architecture

We assume that there are two layers in the system such as, the application layer (upper layer) and

the GME layer (lower layer). The interface between these two layers is implemented using three

types of messages: Request_Session, Grant_Session and Exit_Session. Thus, when a process p

running at the application layer solicits any X session, it sends Request_session (X) to the GME

layer. Eventually, the GME layer grants access to it by sending Grant_session (X); at the end of

the use of the session X, p sends Exit_session (X) to GME layer.

To maintain the hierarchy processes are divided into two classes such as the non-leaders and

leaders processes. Each process maintain two pointer variable. The non-leaders processes of each

cluster are all connected to their leaders which are their parents. They each maintain a pointer

variable parp that contains a value in Np. Since these processes are leaves in each cluster, they

therefore have no descendants. Leader processes in turn maintain a variable parp that contains this

time a value in Np ᴗ Nil. If parp ϵ Np then, parp contains the link label of a particular neighbor of p,

called the parent of p. Another variable, DP, is a subset of Np \{Parp}, called the set of descendants

of p. The parent pointer of processes form an oriented spanning tree rooted in a particular process,

referred to as the root of the spanning tree, such that Parracine = nil.

3.2. The first algorithm: TBGMEACα

The algorithm proceeds in two phases that are opening and closing of sessions. These phases are

initiated by the root.

Suppose a process P makes a first request (the first in the system) for a session X, which is sent to

the cluster leader through the message ASK (X). The leader records the session X as the requested

session and, sends the request to the next level cluster leader; so, from leader to leader the

message finally reach the root. Once the root receives the ASK (X), it starts the opening operation

International Journal of Distributed and Parallel Systems (IJDPS) Vol.7, No.1, January 2016

23

of session X by sending OS (X) not only towards the process that is causing the ASK (X), but also

to any leader which received no request from their descendants. It is this technique that we call

partial flooding. To achieve this, we introduce a new variable New_Openset which will contain

both all processes that requested a session (the set Openset), and any leader in which did not

receive any request from its descendants. By doing so, those of such leaders who will later

receive requests will in turn serve only those of their descendants which issued requests for the

current session.

To identify the leaders which have not requested (or received requests from their descendants)

session, we must distinguish in a leader’s descent, leaders of lower- level cluster from proper

members of the cluster. So a leader must have as descent D = Dc ᴗ Dinf where Dc contains the

descendants belonging to the cluster of the corresponding cluster leader and Dinf contains the

descendants which are leaders of lower-level clusters so, New_Openset = Openset ᴗ Dinf. From

the moment the root propagated the opening session message for X, process p or other processes

can enter and exit the critical section as many times as they wish.

Now we suppose that another session, say Y ≠ X is requested by another process, say q; the

request is routed to the root, and it begins the second phase which is that of the closing of X by

sending the message CS (X) to all its descendants contained in New_Openset. Leaders do the

same for their descendants. Upon receipt of CS (X), p (or other processes) and the leaders which

received no request from their descendants must send a message to confirm that they have exited

session X. At this point, it is possible that the message CS (X) reaches a process while it is still in

critical section; in this case, it will delay sending his confirmation and will only do that once out

of the critical section. Once the root has received all the confirmations of the closing of session X,

it organizes the opening operation of session Y.

Since TBGMEACα is derived from GMEβ, as a description of TBGMEACα, we are going to show

the parts which have been modified to obtain our algorithm. For this we present the used

procedures and the used messages firstly for the leader side, then for the non-leader side.

Procedures from the leader’s side

International Journal of Distributed and Parallel Systems (IJDPS) Vol.7, No.1, January 2016

24

Procedures from the non-leader’s side

Message section executed by the leaders

Message section executed by the non-leaders

Complexity analyses

Message complexity: We will consider two cases to compute the message complexity. Assume

that a process P requests the current opened session X; in this case it needs 2h0 messages because

the opening session message have also been sent to the all the leaders in the network. Assume

now that P requests a session Y≠X; this generates (4h0+ hmax +3 (P-1)) messages that is, h0+ hmax

International Journal of Distributed and Parallel Systems (IJDPS) Vol.7, No.1, January 2016

25

messages to send the request of q to the root, 2((p-1) + h0) messages for the closing of the current

opened session (X) and ((p-1) + h0) for the opening of session Y.

The synchronization delay: this complexity measure is considered in our algorithm from the

point of view of sending and receiving messages and generates 3(h0 + (p-1)) messages that is, ((p-

1) + h0) messages from the root to the last process to exit the current opened session, ((p-1) + h0)

messages from that process to the root, and ((p-1) + h0) messages from the root to the waiting

process to enter the new opened session.

The waiting time: this complexity is also considered as for the previous complexity measure.

Assume that P wants to access the current opened session; it will have to wait for 2h0. Assuming

now that it wants to access a different session Y, it will have to wait T (4h0+ hmax +3 (P-1)),

where T is the transfer time of a message.

The degree of concurrency: the degree of concurrency is unbounded because, since a session is

opened processes can enter and exit the critical section as many time as they want.

3.3. The second algorithm: TBGMEACβ

Here we present an algorithm which reduces the message complexity from (4h0+ hmax +3 (P-1) to

2(h max + h0), that is from O (P) to O (log p). The astuteness used to do this is that once the root

receives a request, it sends the consequent messages only towards the processes which issued a

request. This algorithm also proceeds in two phases. Assume a process P requests a session X; the

request is sent towards the root as in the first algorithm. Then root then starts the opening of

session X by sending the OS (X) message only towards the process which issued a request for X;

this time, P can enter and exit session X as many times as it wants. Assume now that q wants to

access a session Y ≠ X; the request normally reaches the root which starts the closing of session X

by sending the message CS (X) towards the process which issued the request for X. Here also,

process p can delay sending the exit message from session X and send it only once out of the

critical session. Once the closing session message now reaches the root, it starts the opening of

session Y.

As the description of the pseudo code of TBGMEACβ the leaders are going to execute entirely

GMEβ, while the non-leaders are going to execute the same code presented previously for the

non-leaders side.

Complexity analyses

Message complexity: We will consider two cases to compute the message complexity. Assume

that a process P requests the current opened session X. in this case it needs 2h0 messages because

the leader has already recorded X as the current session. In the case the request is the first in the

system, this generates 2 (hmax + h0). Assume now that P requests a session Y≠X; this generates 4

(hmax + h0) messages that is, (hmax + h0) messages for the request to reach the root, 2 (hmax + h0)

messages to close the current opened session and (hmax + h0) messages to open the new requested

session.

The synchronization delay: this complexity measure is considered in our algorithm from the

point of view of sending and receiving messages and generates 3(h0 + hmax) messages that is, (h0

+ hmax) messages from the root to the last process to exit the current opened session, (h0 + hmax)

messages from that process to the root, and (h0 + hmax) messages from the root to the waiting

process to enter the new opened session.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.7, No.1, January 2016

26

The waiting time: this complexity is also considered as for the previous complexity measure.

Assume that P wants to access the current opened session; it will have to wait for 2h0. Assuming

now that it wants to access a different session Y, it will have to wait 4T (h0+ hmax) where T is the

transfer time of a message.

The degree of concurrency: the degree of concurrency is unbounded because, since a session is

opened processes can enter and exit the critical section as many time as they want.

4. CORRECTNESS PROOF

For a GME algorithm to be deemed correct, it must satisfy the properties of safety, liveness and

concurrent entry.

4.1 Safety

Here we want to show that if two processes p and q are running simultaneously their critical

sections Sp and Sq then Sp= Sq. for this we designed the lemma and theorem that follow.

Lemma 4.1: If two leaders say Cpi, and Cpj grant access to a session in their respective clusters,

then they do so for the same session.

Proof: Only the root is responsible of both the opening and the closing of sessions; thus in one

case or another, the root sends the same information to all its descendants in New_Openset. By

this way the lemma 4.1 holds.

Theorem 3.1: If two processes p and q are simultaneously in critical section, then they are for the

same session.

Proof: The only condition for a process to be in critical section is to receive the message OS(X)

from its leader. According to lemma 3.1 whichever the leader, the opened session is the same;

consequently processes which are concurrently in critical section are for the same session.

4.2 Liveness

Here the purpose is to proof that if a process, say p wants to access a session then, it finally

executes its critical section.

Lemma 4.2: A request sent by a leader, say Cpi eventually reaches the root or a leader which has

received the message OS(X).

Proof: Once a leader receives the message ASK (S) from its descendants, it has to do the test “if

Open^Current S=S” that is to say, if the current opened session is S. In case of unfavorable

opinion, the leader has to send in turn an ASK (S) message to its parent; in the case the opinion is

still unfavorable a leader has to react as previously until the request reaches the root. By this way

the request of a leader will be satisfied in case of favorable opinion or in the case its request

reaches the root. Consequently, a request sent by a leader, say Cpi eventually reaches the root or a

leader which has received the message OS(S).

Lemma 4.3: If there is a conflicting request in the system, then the current opened session

terminates in a finite time.

Proof: If there is a conflicting request in the system, then according to lemma4.2 it will finally

reach the root or a leader which have received the message OS(S) in a finite time.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.7, No.1, January 2016

27

Again, in of reception of a request for a session different from the current session the root stops

sending OS(S) messages to its cluster members and to any other process which requested the

current session. It after sends the closing session messages to its descendants; these messages will

reach the descendants at a finite time as it was the case during the forwarding of the request to the

root, according to lemma4.2. By the same way, the descendants in turn will send the closing

session messages towards the root in a finite time. Consequently, if there is a conflicting in the

system, then the current session terminates in a finite time.

Theorem4.2: If a process p requests a session X, then p finally enters in critical section.

Proof: Assume that p can suffer from starvation. P can suffer from starvation if its leader did not

receive the message OS (S) after it received the request.

This can happen in the following cases:

i) The request of the leader did not reach the root or any other process which received the

message OS (S). This is not possible according to the lemma4.2.

ii) The request of the leader reached the root but the requested session has not been chosen

as the next session to be opened.

The case (ii) is possible in the following cases:

a) The current session did not terminate in a finite time. This is not possible according to

lemma4.3.

b) The other sessions different from the current session are selected one after another.

Since the links are FIFO, the root will not select the sessions different from X during an

infinite long time after the request for X has been added to the root’s queue. Thus the

situations (a) and (b) are not possible and consequently (ii) is not possible. Since (i) and (ii)

are not possible, then our initial assumption is false and consequently the theorem holds.

4.3 Concurrent entry

The aim here is to show that if processes want to access a session and no other processes want to

access a different session, then these processes can access the session concurrently. The following

theorem demonstrates it.

Theorem 4.3: If processes request a session and no other one request a different session, then

all of them execute their critical section concurrently.

Proof: Assume that a process p requests a session X while no other process requests a session

different from X. Two cases must be considered at this level:

a) Session X is not opened when p requests it. According to theorem 4.2, once the request of

p reaches the root, it starts the opening of session X; then all the processes that have

requested X can concurrently enter the critical section once they received the OS (X)

message.

b) Session X is opened when p requests it. In this case either p has received the OS (X)

message, or has not received. In the first case, p enters immediately in critical section. In

the second case, p can concurrently enter in critical section with other processes once it

receives OS (X). Consequently the theorem 4.3 holds.

The previous correctness proof also holds for the second algorithm.

7. CONCLUSION AND FUTURE WORK

We have presented two group mutual exclusion solutions for cluster tree networks. The first

solution TBGMEACα is very efficient in terms of concurrency since the degree of concurrency is

unbounded; each entry in the critical section generates between 0 and O(p) messages. The second

International Journal of Distributed and Parallel Systems (IJDPS) Vol.7, No.1, January 2016

28

solution TBGMEACβ achieves the average number of messages per entry in a critical section in

O(log p). It also provides an unbounded degree of concurrency. Both TBGMEACα and

TBGMEACβ use a fixed root.

A comparison of our solutions with the one of Swaroop [23] is given in the table 1.

Table1. Results comparison

Algorithms and authors Swaroop

HGME algorithm

Our TBGMEACα

algorithm

Our TBGMEACβ

algorithm

Year 2009 2016 2016

Type Token based Permission based Permission based

Message complexity O(p) O(p) O(log p)

Degree of concurrency Bounded Unbounded Unbounded

In our two solutions only the root has the task of opening and closing of sessions even if a process

in the root cluster is not interested in the requested session. As future work, we want to rebuild

the solution so that it can take into account the dynamic root cluster. Also, we considered that the

links are all infallible; it will be very interesting to reconsider that nodes can crash in order to

build a fault tolerant solution.

REFERENCES

[1] A. Swaroop and A. K. Singh, (2013) “A Hybrid Algorithm to Solve Group Mutual Exclusion

Problem in Message passing Distributed Systems”, International Journal of Computer Applications

(0975 – 8887) Volume 67– No.9 pp 51-59.

[2] Aoxueluo, W. Wu, J. Cao, and M. Raynal, (2013) “A generalized mutual exclusion problem and its

algorithm”, In Parallel Processing (ICPP), 42nd International Conference, pp 300–309.

[3] J. Lejeune, L. Arantes, J. Sopena and P. Sens, (2012) “Service level agreement for distributed mutual

exclusion in cloud computing”, In 12
th

 IEEE/ACM International Conference on Cluster, cloud and

Grid Computing (CCGRID’12), pp 180-187.

[4] J. Lejeune, (2014), Algorithme distribué d’exclusion mutuelle: vers une gestion efficace des

ressources, PhD thesis, Université Pierre et Marie Curie.

[5] M. A. Rahman and M. Mostofa, (2010), “Permission Based Hierarchical Algorithm for Mutual

Exclusion”, Journal of Computers (JCP), Academy Publisher, Vol. 5, No. 12, pp 1789-1799.

[6] M. A. Rahman and M. Mostofa, (2012), “A Permission based Multilevel Parallel Solution for

Distributed Mutual Exclusion”, Journal of Computers (JCP), Academy Publisher, Vol. 7, No. 8, pp

1831-1846.

[7] M. Naimi, M. Tréhel, and A. Arnold, (1996) “Distributed mutual exclusion algorithm based on path

reversal”, Journal of Parallel and Distributed Computing, Vol. 34, pp. 1-13.

[8] G. Richa, G. Shikha, and D. Pooja, (2011) “NTBCBT: a distributed mutual exclusion algorithm”,

International Journal of Peer to Peer Networks (IJP2P), Vol. 2, No. 3, pp. 25-31.

[9] V. C. Kamla, Souleymanou and I. Damakoa, (2014) “PBCBT: An improvement of NTBCBT

algorithm”, International Journal of Peer to Peer Networks (IJP2P), Vol. 5, No 1, pp 1-8 .

[10] Y. Joung, (1998) “Asynchronous group mutual exclusion algorithm (extended abstract)”. Proc.in the

17t h annual ACM symposium on principles of distributed computing.

[11] Y. J. Joung, (2000), “Asynchronous group mutual exclusion”, Distributed Computing, Vol. 13, pp.

189-206.

[12] J. Beauquier, S. Cantarell, A. K. Datta, and F. Petit, (2003), “Group mutual exclusion in tree

networks”, Journal of Information Science and Engineering, Vol. 19, pp. 415-432.

[13] O. Thiare, (2007), “Exclusion Mutuelle de Groupe dans les Systèmes distribués”, Thèse, Laboratoire

Informatique de Cergy-Pontoise (LICP) EA 2175.

International Journal of Distributed and Parallel Systems (IJDPS) Vol.7, No.1, January 2016

29

[14] V. Madenur and N. Mittal, (2008), “A Delay-Optimal Group Mutual Exclusion Algorithm for a Tree

Network”, Journal of Information Science and Engineering, Vol. 24, pp. 573-583.

[15] S. Dehghan and A.M. Rahmani, (2010), “A New Extended Group Mutual Exclusion Algorithm with

Low Message Complexity in Distributed Systems”, International Journal of Computer, Electrical,

Automation, Control and Information Engineering Vol: 4, No: 4, pp 748-753.

[16] A. Swaroop and A. k. singh, (2010), “An Improved Quorum-Based Algorithm for Extended GME

Problem in Distributed Systems”, Journal of Information Science and Engineering Vol 26, pp 57-69.

[17] V. Hadzilacos, (2001) “A note on group mutual exclusion”, in Proceedings of the 20th ACM

Symposium on Principles of Distributed Computing, pp. 100-106.

[18] K. P. Wu and Y. J. Joung, (2000) “Asynchronous group mutual exclusion in ring networks”, in IEE

Proceedings of Computers and Digital Techniques, Vol. 147, pp. 1-8.

[19] S. Cantarell, A. K. Datta, F. Petit, and V. Villain, (2001) “Token based group mutual exclusion for

asynchronous rings”, in Proceedings of the IEEE International Conference on Distributed Computing

Systems, pp. 691-694,.

[20] Y. J. Joung, (2002) “The congenial talking philosophers problem in computer networks” Distributed

Computing, pp. 155-175.

[21] N. Mittal and P. K. Mohan, (2005) “An efficient distributed group mutual exclusion algorithm for

non-uniform group access”, in Proceedings of the IASTED International Conference on Parallel and

Distributed Computing and Systems, pp. 367-372.

[22] N. Mittal and Mohan (2007) “A priority-based distributed group mutual exclusion when group access

is non-uniform”, Journal of parallel and distributed computing, vol 67, no 7, pp 796-815.

[23] A. Swaroop, (2009) “Efficient Group Mutual Exclusion Protocols for Message Passing Distributed

computing Systems”, PhD thesis, National Institute of technology, Kurukshetra, Haryana, India, PIN-

136119.

