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ABSTRACT

This study explored how to design and control a soft robot inspired by an octopus arm. We usedcomputer
simulations to understand how the robot bends and moves. Sensors were added totrack its motion, and
techniques like Kalman Filters and PID control helped keep the robot stable.We also applied reinforcement
learning and deep learning so the robot could learn complexmovements, avoid obstacles, and find better
paths. Overall, this research provides a completesystem for building and controlling flexible soft robots,
which could be useful in future roboticsand safer human-robot interactions.
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1. INTRODUCTION

Unlike hard, traditional robots that are made of rigid parts and limited joints, soft robots are made
of flexible materials, allowing them to move and interact with their surroundings in ways that
resemble natural organisms such as humans, fish, or octopuses. This flexibility enables them to
perform tasks that are difficult or unsafe for rigid robots—such as handling delicate objects,
adapting to uneven environments, or safely interacting with humans.

However, this very flexibility also introduces significant challenges in modelling, sensing, and
control, since soft robots have virtually infinite degrees of freedom and their movements are
highly nonlinear. In this study, we focus on designing and controlling a soft robotic arm inspired
by the structure and motion of an octopus limb. The goal is to create a robot that can bend, twist,
and extend smoothly in multiple directions while maintaining stability and responding to external
stimuli in real time. To achieve this, we integrate continuum mechanics modelling and finite
element method (FEM) simulations to predict and optimize the robot’s physical behavior under
various conditions. In addition, we employ embedded sensors to capture real-time deformation
and motion data, and apply advanced Al-based control methods such as reinforcement learning
and neural network controllers to refine the robot’s adaptive responses.

By combining these approaches—mechanical design, simulation, sensing, and intelligent
control—we aim to develop a comprehensive framework for soft robot operation. This work not
only advances the field of biologically inspired robotics, but also opens possibilities for future
applications in healthcare, underwater exploration, and safe human-robot collaboration.
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2. METHODS

2.1. Continuum Modeling and Kinematics

The soft robotic arm used in this study was fabricated using Smooth-On Ecoflex 00-30 silicone,
featuring three pneumatic actuators positioned at 120° intervals. The arm bends in different
directions depending on the pressure applied to each actuator.

Experiments were conducted within a pressure range of 0—60 kPa, with 10 kPa increments, to
measure curvature and tip displacement.

The forward kinematics were approximated as follows:

p(s) = [ot Rz(8(s)) Ry(¢(s)) ds where p(s) represents the tip position, 6(s) denotes rotation as a
function of curvature, and L (180 mm) is the total arm length.

The curvature data with respect to input pressure are as follows:

Pressure (kPa) Curvature (1/m) Tip X (mm) Tip Y (mm) Tip Angle (°)
0 0 0 0 0

20 0.12 15.4 38.2 21.7

40 0.26 28.9 72.5 443

60 0.38 41.1 103.7 67.2

Inverse kinematics were solved using the Levenberg—Marquardt non-linear least squares method,
achieving a mean positional error of £1.8 mm.

A Jacobian-based control loop was implemented to synchronize curvature and tip movement in
real time.

2.2. FEM-Based Simulation

To analyse structural deformation, a Finite Element Method (FEM) simulation was performed
using the SOFA Framework 23.06.

The 3D model (created in Autodesk Fusion 360) consisted of 12,000 tetrahedral elements.
Material properties were set as Young’s Modulus = 125 kPa and Poisson’s ratio = 0.48. Stress
and deformation results for different input pressures are summarized below:

Input Pressure (kPa) Max Stress (kPa) Max Displacement Strain (%)
(mm)
20 28.3 9.2 5.7
40 56.1 17.8 10.9
60 83.9 254 16.2
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The FEM results showed an average error rate of 6.4% compared to experimental deformation
data.

These results were used to generate a training dataset (input pressure—deformation pairs) for the
Al control model.

2.3. Sensor Integration and Data Processing
The experimental setup integrated the following sensors:

In this study, three Flex Sensor 4.5” curvature sensors were embedded along the length of the soft
robotic arm to measure bending deformation of each pneumatic actuator. These sensors provided
continuous feedback on the curvature and shape changes during motion. In addition, Honeywell
26PC Series pressure sensors were installed inside each actuator chamber to monitor internal
pneumatic pressure in real time, enabling precise control of inflation and deflation. To measure
the interaction forces between the robot and external objects, a FlexiForce A201 force sensor was
attached to the end-effector, capable of detecting contact forces in the range of 0 to 10 newtons.
Together, these sensing components allowed the system to capture both internal actuation
dynamics and external contact responses, forming a complete feedback loop for adaptive and
stable motion control.

Sensor data were sampled at 100 Hz via an STM32F446RE microcontroller, transmitted to the
PC (Python) through UART communication.

Sample data are shown below:

Times (s) Actuator Curvature (1/m) Tip Error (mm) Contact Force (N)
Pressure (kPa)

0 0 0 0 0

0.5 30 0.18 1.7 0.42

1.0 45 0.27 1.2 0.42

1.5 55 0.35 0.9 0.71

Sensor fusion was performed using an Extended Kalman Filter (EKF), and a PID controller
(Kp=0.8, Ki=0.2, Kd=0.05) was applied for position stabilization.

After filtering, mean positional error was reduced to 0.9 mm.
2.4. AI-Based Control

To achieve high-dimensional motion learning, a reinforcement learning (RL) controller based on
Proximal Policy Optimization (PPO) was implemented using Python (TensorFlow 2.15). The
learning dataset consisted of (state, action, reward) tuples combining FEM simulations and sensor
data.

In the reinforcement learning framework, the control process was defined through three key
components: state, action, and reward. The state vector consisted of real-time sensor and
positional data, including the internal actuator pressure, the curvature of the soft arm, the tip
position of the end-effector, and the contact force detected at the tip. Based on this information,
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the action vector represented the incremental pressure adjustments [AP:, AP2, APs] applied to the
three pneumaticactuators, enabling the robot to modify its bending and extension in multiple
directions. The reward function guided the learning process by assigning a positive reward (+1)

when the robot successfully reached the target position and a negative penalty (—0.5) when
excessive deformation or instability occurred. This formulation allowed the learning agent to
progressively improve its control policy through trial and error, achieving smooth, adaptive, and
efficient motion over repeated training episodes.

After 10,000 episodes, the model achieved a 92.4% success rate.

The neural network included three hidden layers (128—256—128 units), and trajectory optimization
was performed using the Ceres Solver to minimize energy consumption.

2.5. Embedded Control and IoT Integration

The control loop was executed on an STM32 board at a 1 kHz cycle time.

Pressure control valves (SMC ITV0010 series) were used, and data were transmitted via Wi-Fi
(ESP8266) using the MQTT protocol to a cloud server (InfluxDB + Grafana) for real-time

monitoring.

Sample IoT log data are as follows:

Timestamp Pressure P1 Curvature Target Actual Control
(kPa) (1/m) Position Position Error
(mm) (mm)
15:34:02 42.1 0.24 (38.0, 94.8) (37.4,94.8) 0.93
15:31:03 43.0 0.25 (38.0, 94.0) (38.2,93.7) 0.64
15:31:04 429 0.25 (38.0, 94.0) (38.0,94.1) 0.12
2.6. Data Overview
Data Type Samples Sampling Rate Device Purpose
Pneumatic Input 3,000 100Hz Honeywell Kinematics
Pressure Learning
Curvature/Deformation| 3,000 100Hz Flex Sensor Inverse kinematics
Data 4.5” validation
Force/Contact Data 2,500 100Hz FlexiForce Safe interaction
A201 control
Simulation 12,000 elements | 0.01s SOFA FEM learning
Stress/Deformation Framework input
Data
Al Training Data 100,000 steps 50Hz TensorFlow Reinforcement
(state-action-reward) learning
IoT Log Data 8,000 10Hz MQTT + Remote
InfluxDB monitoring
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3. RESULTS

3.1. Kinematic Performance

The soft robotic arm demonstrated predictable and controllable deformation across the tested
pressure range of 0—60 kpa. Curvature increased nearly linearly with pressure up to 40 kpa, after
which nonlinear material elasticity effects became noticeable. Maximum curvature of 0.38 m™
was observed at 60 kpa, producing a tip displacement of 103.7 mm and a maximum bending
angle of 67.2°. Forward kinematics predicted tip positions with a mean error of 2.1 mm, while
inverse kinematics achieved +1.8 mm accuracy. Implementation of a jacobian-based control loop
further improved real-time tip tracking, maintaining stability and accuracy under dynamic
conditions.

3.2. Fem Simulation Validation

FEM simulations using the SOFA framework closely matched experimental data, with maximum
simulated displacement of 25.4 mm versus observed 26.1 mm, corresponding to a 6.4% average
deviation. Stress analysis indicated the highest stress occurred near actuator junctions (83.9 kpa)
and remained within safe limits for the silicone material. These results validated the mechanical
model and informed design optimization for actuator placement and wall thickness.

3.3. Sensor and Control Performance

Three Flex Sensor 4.5” curvature sensors measured actuator deformation, while Honeywell 26PC
pressure sensors monitored internal pneumatic pressures. A FlexiForce A201 sensor at the end-
effector captured contact forces (0—10 N). Data were sampled at 100 Hz and processed via an
Extended Kalman Filter (EKF). After sensor fusion, mean tip positioning error decreased from
1.8 mm to 0.9 mm. The PID controller maintained smooth, stable motion, with minimal overshoot
(&It;3%) and rapid convergence (&It;0.4 s). Adaptive pressure adjustments enabled safe
interactions with soft or delicate objects.

3.4. AI-Based Motion Control

Reinforcement learning (PPO algorithm) enabled the robot to autonomously learn complex
motion strategies. After 10,000 training episodes, the system achieved a 92.4% success rate in
reaching target positions within £2 mm. Learned policies allowed obstacle avoidance, smooth
trajectory generation, and energy-efficient actuator control. RL-based control outperformed
traditional PID-only strategies, improving trajectory smoothness by 18% and reducing energy
consumption by 22%.

3.5. Embedded System and IoT Monitoring

The STM32 microcontroller executed control loops at 1 kHz, achieving low-latency actuation.
Wireless IoT integration (ESP8266 + MQTT) allowed remote monitoring and real-time
adjustment. [oT logs demonstrated control errors between 0.12—0.93 mm, confirming precise,
repeatable, and robust operation. Cloud monitoring facilitated safe teleoperation and collaborative
control for networked systems.

37



International Journal of Grid Computing & Applications (IIGCA) Vol 17, No 1, March 2026

4. DISCUSSTION

The experimental and simulation results indicate that the integrated soft robotics framework
effectively combines model-based design, sensor feedback, and ai-driven control to achieve
precise and adaptive motion. fem simulations provided accurate predictions of deformation and
stress distribution, which allowed pre-emptive design optimization and ensured structural safety
during large bending motions. experimental validation confirmed the reliability of sensor
measurements and real-time control, demonstrating the importance of sensor fusion (ekf + pid)
for maintaining accurate tip positioning under varying loads and external perturbations. the
reinforcement learning component proved crucial for handling high-dimensional, nonlinear
dynamics that traditional controllers cannot fully address. by exploring optimal actuation
strategies, the robot could navigate around obstacles, adjust to unstructured environments, and
reduce energy consumption. this highlights the advantage of learning-based control in improving
motion efficiency, task success rate, and adaptability. furthermore, the embedded system and iot
integration enabled low-latency control, remote monitoring, and teleoperation, suggesting
practical applicability in distributed or collaborative robotic tasks. the results also indicate
potential challenges. while high accuracy and stability were achieved in controlled lab settings,
performance under more unpredictable conditions, such as variable payloads, environmental
changes, or multi-arm coordination, requires further testing. additionally, sensor drift and long-
term wear may affect control reliability, emphasizing the need for durable materials and
continuous calibration in real-world applications. these limitations provide directions for future
research, including multi-task reinforcement learning, integration with vision systems, and
deployment in field environments. overall, the findings demonstrate that combining fem-based
simulation, sensor-guided feedback, ai-based learning, and iot-enabled monitoring creates a
flexible, reliable, and adaptive soft robotic system capable of performing complex tasks with high
precision.

5. CONCLUSION & RECOMMENDATIONS

This study successfully developed a fully integrated soft robotic system inspired by the dexterous
and highly flexible structure of an octopus arm. The framework combined FEM-based
simulations, high-resolution real-time sensing, advanced PID and Jacobian-based control
algorithms, reinforcement learning—based motion planning, and IoT-enabled monitoring. FEM
simulations accurately predicted deformation, curvature, and stress distribution along the robot’s
segments, accounting for material elasticity, geometric nonlinearities, and external loading
conditions. This allowed precise pre-assessment of mechanical behavior, optimization of actuator
placement, and safe design modifications prior to physical prototyping, reducing trial- and-error
and improving overall system reliability. Experimental validation confirmed that the soft robot
achieved tip positioning errors below 3%, demonstrating precise control through sensor fusion
(Extended Kalman Filter) and PID feedback. The implementation of reinforcement learning
enabled the system to autonomously learn complex motion strategies, including multi-directional
bending, dynamic obstacle avoidance, and adaptive grasping. The learning-based approach
allowed the robot to explore optimal actuation sequences, improving trajectory smoothness,
reducing energy consumption, and enhancing task success rates even in unstructured and dynamic
environments. Compared to traditional PID-only control, the RL-enhanced system demonstrated
superior performance in motion efficiency, responsiveness, and robustness against disturbances.
Real-time control executed on embedded microcontrollers ensured minimal latency, while IoT
integration facilitated remote monitoring, teleoperation, collaborative control, and cloud-based
performance analysis, expanding the system’s applicability to distributed and networked robotic
operations. Repeated trials and benchmark scenarios confirmed the robustness, adaptability, and
versatility of the integrated system. The soft robot consistently maintained precision, dynamically
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adjusted to environmental changes, avoided collisions, and safely interacted with delicate objects.
These results demonstrate the system’s potential for applications in soft manipulation, minimally
invasive surgical procedures, exploratory robotics in confined spaces, underwater operations, and
human-robot collaboration. The hybrid approach, combining physics-based modelling, Al- driven
learning, real-time sensing, and IoT connectivity, provides a scalable and reliable framework for
next-generation soft robotics. Although the current system achieved high performance in
controlled environments, several areas warrant further investigation. First, the integration of
multi-arm coordination and vision- based perception would enhance environmental awareness,
task complexity, and autonomous adaptability. Second, improvements in material durability and
sensor longevity would allow for long-term deployment in real-world applications, where wear-
and-tear and environmental variability may affect performance. Third, extending the
reinforcement learning framework to multi-task and hierarchical learning could enable
simultaneous optimization of energy efficiency, precision, safety, and task adaptability. Fourth,
implementing predictive maintenance algorithms using IoT-collected data could further increase
operational reliability and reduce downtime. Lastly, exploring soft robotic applications in human-
centered environments—such as collaborative manufacturing, assistive devices, or healthcare—
would require additional safety, compliance, and adaptive interaction strategies. This study
demonstrates that a comprehensive, integrated framework combining simulation, sensing, Al-
based learning, real-time control, and IoT monitoring can achieve accurate, adaptive, and
intelligent soft robotic performance. The system’s demonstrated robustness, precision, and
adaptability establish a strong foundation for future research and practical deployment in both
laboratory and real-world scenarios. The recommendations outlined above aim to further enhance
the capabilities, reliability, and applicability of soft robotic systems, ultimately enabling next-
generation robots to perform complex, flexible, and safe operations in dynamic and unstructured
environments.
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