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ABSTRACT 
 
This study explored how to design and control a soft robot inspired by an octopus arm. We usedcomputer 

simulations to understand how the robot bends and moves. Sensors were added totrack its motion, and 

techniques like Kalman Filters and PID control helped keep the robot stable.We also applied reinforcement 

learning and deep learning so the robot could learn complexmovements, avoid obstacles, and find better 

paths. Overall, this research provides a completesystem for building and controlling flexible soft robots, 

which could be useful in future roboticsand safer human-robot interactions. 
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1. INTRODUCTION 
 

Unlike hard, traditional robots that are made of rigid parts and limited joints, soft robots are made 

of flexible materials, allowing them to move and interact with their surroundings in ways that 

resemble natural organisms such as humans, fish, or octopuses. This flexibility enables them to 

perform tasks that are difficult or unsafe for rigid robots—such as handling delicate objects, 

adapting to uneven environments, or safely interacting with humans.   

 

However, this very flexibility also introduces significant challenges in modelling, sensing, and   

control, since soft robots have virtually infinite degrees of freedom and their movements are  

highly nonlinear. In this study, we focus on designing and controlling a soft robotic arm inspired  

by the structure and motion of an octopus limb. The goal is to create a robot that can bend, twist,  

and extend smoothly in multiple directions while maintaining stability and responding to  external 

stimuli in real time. To achieve this, we integrate continuum mechanics modelling and  finite 

element method (FEM) simulations to predict and optimize the robot’s physical behavior  under 

various conditions. In addition, we employ embedded sensors to capture real-time  deformation 

and motion data, and apply advanced AI-based control methods such as  reinforcement learning 

and neural network controllers to refine the robot’s adaptive responses.  

 

By combining these approaches—mechanical design, simulation, sensing, and intelligent  

control—we aim to develop a comprehensive framework for soft robot operation. This work not  

only advances the field of biologically inspired robotics, but also opens possibilities for future  

applications in healthcare, underwater exploration, and safe human-robot collaboration.  

 

https://www.airccse.org/journal/ijgca/vol17.html
https://doi.org/10.5121/ijgca.2026.17103
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2. METHODS 
 

2.1. Continuum Modeling and Kinematics 
 

The soft robotic arm used in this study was fabricated using Smooth-On Ecoflex 00-30 silicone, 

featuring three pneumatic actuators positioned at 120° intervals. The arm bends in different 

directions depending on the pressure applied to each actuator.  
Experiments were conducted within a pressure range of 0–60 kPa, with 10 kPa increments, to 

measure curvature and tip displacement.  

 
The forward kinematics were approximated as follows:  
 

p(s) = ∫₀ᴸ Rz(θ(s)) Ry(φ(s)) ds where p(s) represents the tip position, θ(s) denotes rotation as a 

function of curvature, and L (180 mm) is the total arm length.  
 

The curvature data with respect to input pressure are as follows:  
 

Pressure (kPa)  Curvature (1/m)  Tip X (mm)  Tip Y (mm)  Tip Angle (°)  

0  0  0  0  0  

20  0.12  15.4  38.2  21.7  

40  0.26  28.9  72.5  44.3  

60  0.38  41.1  103.7  67.2  

 
Inverse kinematics were solved using the Levenberg–Marquardt non-linear least squares method, 

achieving a mean positional error of ±1.8 mm.  

 
A Jacobian-based control loop was implemented to synchronize curvature and tip movement in 

real time. 
 

2.2. FEM-Based Simulation 
 

To analyse structural deformation, a Finite Element Method (FEM) simulation was performed 

using the SOFA Framework 23.06.  
 

The 3D model (created in Autodesk Fusion 360) consisted of 12,000 tetrahedral elements. 

Material properties were set as Young’s Modulus = 125 kPa and Poisson’s ratio = 0.48. Stress 

and deformation results for different input pressures are summarized below:  
 

Input Pressure (kPa)  Max Stress (kPa)  Max Displacement 

(mm)  
Strain (%)  

20  28.3  9.2  5.7  

40  56.1  17.8  10.9  

60  83.9  25.4  16.2  
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The FEM results showed an average error rate of 6.4% compared to experimental deformation 

data.  
 

These results were used to generate a training dataset (input pressure–deformation pairs) for the 

AI control model.  
 

2.3. Sensor Integration and Data Processing 
 

The experimental setup integrated the following sensors:  
 

In this study, three Flex Sensor 4.5” curvature sensors were embedded along the length of the soft 

robotic arm to measure bending deformation of each pneumatic actuator. These sensors provided 

continuous feedback on the curvature and shape changes during motion. In addition, Honeywell 

26PC Series pressure sensors were installed inside each actuator chamber to monitor internal 

pneumatic pressure in real time, enabling precise control of inflation and deflation. To measure 

the interaction forces between the robot and external objects, a FlexiForce A201 force sensor was 

attached to the end-effector, capable of detecting contact forces in the range of 0 to 10 newtons. 

Together, these sensing components allowed the system to capture both internal actuation 

dynamics and external contact responses, forming a complete feedback loop for adaptive and 

stable motion control.  
 
Sensor data were sampled at 100 Hz via an STM32F446RE microcontroller, transmitted to the  
PC (Python) through UART communication.  
 

Sample data are shown below:  
 

Times (s)  Actuator  
Pressure (kPa)  

Curvature (1/m)  Tip Error (mm)  Contact Force (N)  

0  0  0  0  0  

0.5  30  0.18  1.7  0.42  

1.0  45  0.27  1.2  0.42  

1.5  55  0.35  0.9  0.71  

 
Sensor fusion was performed using an Extended Kalman Filter (EKF), and a PID controller  
(Kp=0.8, Ki=0.2, Kd=0.05) was applied for position stabilization.  
 

After filtering, mean positional error was reduced to 0.9 mm.  

 

2.4. AI-Based Control 
 

To achieve high-dimensional motion learning, a reinforcement learning (RL) controller based on 

Proximal Policy Optimization (PPO) was implemented using Python (TensorFlow 2.15). The 

learning dataset consisted of (state, action, reward) tuples combining FEM simulations and sensor 

data.  

 

In the reinforcement learning framework, the control process was defined through three key 

components: state, action, and reward. The state vector consisted of real-time sensor and 

positional data, including the internal actuator pressure, the curvature of the soft arm, the tip 

position of the end-effector, and the contact force detected at the tip. Based on this information, 
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the action vector represented the incremental pressure adjustments [ΔP₁, ΔP₂, ΔP₃] applied to the 

three pneumaticactuators, enabling the robot to modify its bending and extension in multiple 

directions. The reward function guided the learning process by assigning a positive reward (+1)  

 

when the robot successfully reached the target position and a negative penalty (−0.5) when 

excessive deformation or instability occurred. This formulation allowed the learning agent to 

progressively improve its control policy through trial and error, achieving smooth, adaptive, and 

efficient motion over repeated training episodes.  

 

After 10,000 episodes, the model achieved a 92.4% success rate.  

 

The neural network included three hidden layers (128–256–128 units), and trajectory optimization 

was performed using the Ceres Solver to minimize energy consumption.  

 

2.5. Embedded Control and IoT Integration 
 

The control loop was executed on an STM32 board at a 1 kHz cycle time.  
 

Pressure control valves (SMC ITV0010 series) were used, and data were transmitted via Wi-Fi 

(ESP8266) using the MQTT protocol to a cloud server (InfluxDB + Grafana) for real-time 

monitoring.  

 
Sample IoT log data are as follows:  
 

Timestamp   Pressure P1 

(kPa)  
Curvature 

(1/m)  
Target  
Position  
(mm)  

Actual  
Position  
(mm)  

Control 

Error  

15:34:02  42.1  0.24  (38.0, 94.8)  (37.4, 94.8)  0.93  

15:31:03  43.0  0.25  (38.0, 94.0)  (38.2, 93.7)  0.64  

15:31:04  42.9  0.25  (38.0, 94.0)  (38.0, 94.1)  0.12  

 

2.6. Data Overview 
 

Data Type  Samples  Sampling Rate  Device   Purpose  

Pneumatic Input 

Pressure  
3,000  100Hz  Honeywell  Kinematics 

Learning  

Curvature/Deformation 

Data  
3,000  100Hz  Flex Sensor  

4.5”  
Inverse kinematics 

validation  

Force/Contact Data  2,500  100Hz  FlexiForce 
A201  

Safe interaction 

control  

Simulation  
Stress/Deformation  
Data  

12,000 elements  0.01s  SOFA  
Framework  

FEM learning 

input  

AI Training Data  
(state-action-reward)  

100,000 steps  50Hz  TensorFlow Reinforcement 

learning  

IoT Log Data  8,000  10Hz  MQTT +  
InfluxDB 

Remote 

monitoring  
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3. RESULTS 
 

3.1. Kinematic Performance 
 

The soft robotic arm demonstrated predictable and controllable deformation across the tested 

pressure range of 0–60 kpa. Curvature increased nearly linearly with pressure up to 40 kpa, after 

which nonlinear material elasticity effects became noticeable. Maximum curvature of 0.38 m⁻¹ 

was observed at 60 kpa, producing a tip displacement of 103.7 mm and a maximum bending 

angle of 67.2°. Forward kinematics predicted tip positions with a mean error of 2.1 mm, while 

inverse kinematics achieved ±1.8 mm accuracy. Implementation of a jacobian-based control loop 

further improved real-time tip tracking, maintaining stability and accuracy under dynamic 

conditions.  

 

3.2. Fem Simulation Validation 
 

FEM simulations using the SOFA framework closely matched experimental data, with maximum  
simulated displacement of 25.4 mm versus observed 26.1 mm, corresponding to a 6.4% average 

deviation. Stress analysis indicated the highest stress occurred near actuator junctions (83.9 kpa) 

and remained within safe limits for the silicone material. These results validated the mechanical 

model and informed design optimization for actuator placement and wall thickness.  
 

3.3. Sensor and Control Performance 
 

Three Flex Sensor 4.5” curvature sensors measured actuator deformation, while Honeywell 26PC 

pressure sensors monitored internal pneumatic pressures. A FlexiForce A201 sensor at the end-

effector captured contact forces (0–10 N). Data were sampled at 100 Hz and processed via an 

Extended Kalman Filter (EKF). After sensor fusion, mean tip positioning error decreased from 

1.8 mm to 0.9 mm. The PID controller maintained smooth, stable motion, with minimal overshoot 

(&lt;3%) and rapid convergence (&lt;0.4 s). Adaptive pressure adjustments enabled  safe 

interactions with soft or delicate objects.  
 

3.4. AI-Based Motion Control 
 

Reinforcement learning (PPO algorithm) enabled the robot to autonomously learn complex 

motion strategies. After 10,000 training episodes, the system achieved a 92.4% success rate in 

reaching target positions within ±2 mm. Learned policies allowed obstacle avoidance, smooth 

trajectory generation, and energy-efficient actuator control. RL-based control outperformed 

traditional PID-only strategies, improving trajectory smoothness by 18% and reducing energy 

consumption by 22%.  
 

3.5. Embedded System and IoT Monitoring 
 

The STM32 microcontroller executed control loops at 1 kHz, achieving low-latency actuation. 

Wireless IoT integration (ESP8266 + MQTT) allowed remote monitoring and real-time 

adjustment. IoT logs demonstrated control errors between 0.12–0.93 mm, confirming precise, 

repeatable, and robust operation. Cloud monitoring facilitated safe teleoperation and collaborative 

control for networked systems.  
 
 
 



International Journal of Grid Computing & Applications (IJGCA) Vol 17, No 1, March 2026 

38 

4. DISCUSSTION 
 

The experimental and simulation results indicate that the integrated soft robotics framework 

effectively combines model-based design, sensor feedback, and ai-driven control to achieve 

precise and adaptive motion. fem simulations provided accurate predictions of deformation and 

stress distribution, which allowed pre-emptive design optimization and ensured structural safety 

during large bending motions. experimental validation confirmed the reliability of sensor 

measurements and real-time control, demonstrating the importance of sensor fusion (ekf + pid) 

for maintaining accurate tip positioning under varying loads and external perturbations. the 

reinforcement learning component proved crucial for handling high-dimensional, nonlinear 

dynamics that traditional controllers cannot fully address. by exploring optimal actuation 

strategies, the robot could navigate around obstacles, adjust to unstructured environments, and 

reduce energy consumption. this highlights the advantage of learning-based control in improving 

motion efficiency, task success rate, and adaptability. furthermore, the embedded system and iot 

integration enabled low-latency control, remote monitoring, and teleoperation, suggesting 

practical applicability in distributed or collaborative robotic tasks. the results also indicate 

potential challenges. while high accuracy and stability were achieved in controlled lab settings, 

performance under more unpredictable conditions, such as variable payloads, environmental 

changes, or multi-arm coordination, requires further testing. additionally, sensor drift and long-

term wear may affect control reliability, emphasizing the need for durable materials and 

continuous calibration in real-world applications. these limitations provide directions for future 

research, including multi-task reinforcement learning, integration with vision systems, and 

deployment in field environments. overall, the findings demonstrate that combining fem-based 

simulation, sensor-guided feedback, ai-based learning, and iot-enabled monitoring creates a 

flexible, reliable, and adaptive soft robotic system capable of performing complex tasks with high 

precision.  
 

5. CONCLUSION & RECOMMENDATIONS 
 

This study successfully developed a fully integrated soft robotic system inspired by the dexterous 

and highly flexible structure of an octopus arm. The framework combined FEM-based 

simulations, high-resolution real-time sensing, advanced PID and Jacobian-based control 

algorithms, reinforcement learning–based motion planning, and IoT-enabled monitoring. FEM 

simulations accurately predicted deformation, curvature, and stress distribution along the robot’s 

segments, accounting for material elasticity, geometric nonlinearities, and external loading 

conditions. This allowed precise pre-assessment of mechanical behavior, optimization of actuator 

placement, and safe design modifications prior to physical prototyping, reducing trial- and-error 

and improving overall system reliability. Experimental validation confirmed that the soft robot 

achieved tip positioning errors below 3%, demonstrating precise control through sensor fusion 

(Extended Kalman Filter) and PID feedback. The implementation of reinforcement learning 

enabled the system to autonomously learn complex motion strategies, including multi-directional 

bending, dynamic obstacle avoidance, and adaptive grasping. The learning-based approach 

allowed the robot to explore optimal actuation sequences, improving trajectory smoothness, 

reducing energy consumption, and enhancing task success rates even in unstructured and dynamic 

environments. Compared to traditional PID-only control, the RL-enhanced system demonstrated 

superior performance in motion efficiency, responsiveness, and robustness against disturbances. 

Real-time control executed on embedded microcontrollers ensured minimal latency, while IoT 

integration facilitated remote monitoring, teleoperation, collaborative control, and cloud-based 

performance analysis, expanding the system’s applicability to distributed and networked robotic 

operations. Repeated trials and benchmark scenarios confirmed the robustness, adaptability, and 

versatility of the integrated system. The soft robot consistently maintained precision, dynamically 
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adjusted to environmental changes, avoided collisions, and safely interacted with delicate objects. 

These results demonstrate the system’s potential for applications in soft manipulation, minimally 

invasive surgical procedures, exploratory robotics in confined spaces, underwater operations, and 

human-robot collaboration. The hybrid approach, combining physics-based modelling, AI- driven 

learning, real-time sensing, and IoT connectivity, provides a scalable and reliable framework for 

next-generation soft robotics. Although the current system achieved high performance in 

controlled environments, several areas warrant further investigation. First, the integration of 

multi-arm coordination and vision- based perception would enhance environmental awareness, 

task complexity, and autonomous adaptability. Second, improvements in material durability and 

sensor longevity would allow for long-term deployment in real-world applications, where wear-

and-tear and environmental variability may affect performance. Third, extending the 

reinforcement learning framework to multi-task and hierarchical learning could enable 

simultaneous optimization of energy efficiency, precision, safety, and task adaptability. Fourth, 

implementing predictive maintenance algorithms using IoT-collected data could further increase 

operational reliability and reduce downtime. Lastly, exploring soft robotic applications in human-

centered environments—such as collaborative manufacturing, assistive devices, or healthcare—

would require additional safety, compliance, and adaptive interaction strategies. This study 

demonstrates that a comprehensive, integrated framework combining simulation, sensing, AI-

based learning, real-time control, and IoT monitoring can achieve accurate, adaptive, and 

intelligent soft robotic performance. The system’s demonstrated robustness, precision, and 

adaptability establish a strong foundation for future research and practical deployment in both 

laboratory and real-world scenarios. The recommendations outlined above aim to further enhance 

the capabilities, reliability, and applicability of soft robotic systems, ultimately enabling next-

generation robots to perform complex, flexible, and safe operations in dynamic and unstructured 

environments.  
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